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Clustering

Introduction

Until now, we’ve assumed our training samples are “labeled” by their
category membership.

Methods that use labeled samples are said to be supervised ;
otherwise, they’re said to be unsupervised.

However:

Why would one even be interested in learning with unlabeled samples?
Is it even possible in principle to learn anything of value from unlabeled
samples?
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Introduction

Why Unsupervised Learning?

1 Collecting and labeling a large set of sample patterns can be
surprisingly costly.

E.g., videos are virtually free, but accurately labeling the video pixels is
expensive and time consuming.

2 Extend to a larger training set by using semi-supervised learning.

Train a classifier on a small set of samples, then tune it up to make it
run without supervision on a large, unlabeled set.
Or, in the reverse direction, let a large set of unlabeled data group
automatically, then label the groupings found.

3 To detect the gradual change of pattern over time.

4 To find features that will then be useful for categorization.

5 To gain insight into the nature or structure of the data during the
early stages of an investigation.
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Data Clustering

Data Clustering
Source: A. K. Jain and R. C. Dubes. Alg. for Clustering Data, Prentiice Hall, 1988.

What is data clustering?

Grouping of objects into meaningful categories
Given a representation of N objects, find k clusters based on a
measure of similarity.

Why data clustering?

Natural Classification: degree of similarity among forms.
Data exploration: discover underlying structure, generate hypotheses,
detect anomalies.
Compression: for organizing data.
Applications: can be used by any scientific field that collects data!

Google Scholar: 1500 clustering papers in 2007 alone!
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Data Clustering

E.g.: Structure Discovering via Clustering
Source: http://clusty.com
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Data Clustering

E.g.: Topic Discovery
Source: Map of Science, Nature, 2006

800,000 scientific papers clustered into 776 topics based on how often
the papers were cited together by authors of other papers
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Data Clustering

Data Clustering - Formal Definition

Given a set of N unlabeled examples D = x1, x2, ..., xN in a
d-dimensional feature space, D is partitioned into a number of
disjoint subsets Dj ’s:

D = ∪kj=1Dj where Di ∩Dj = ∅, i 6= j , (1)

where the points in each subset are similar to each other according to
a given criterion φ.

A partition is denoted by

π = (D1, D2, ..., Dk) (2)

and the problem of data clustering is thus formulated as

π∗ = argmin
π

f(π) , (3)

where f(·) is formulated according to φ.
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Data Clustering

k-Means Clustering
Source: D. Aurthor and S. Vassilvitskii. k-Means++: The Advantages of Careful
Seeding

Randomly initialize µ1, µ2, ..., µc
Repeat until no change in µi:

Classify N samples according to nearest µi

Recompute µi
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Data Clustering

k-Means++ Clustering
Source: D. Aurthor and S. Vassilvitskii. k-Means++: The Advantages of Careful
Seeding

Choose starting centers iteratively.

Let D(x) be the distance from x to the nearest existing center, take
x as new center with probability ∝ D(x)2.

Repeat until no change in µi:

Classify N samples according to nearest µi

Recompute µi

(refer to the slides by D. Aurthor and S. Vassolvitskii for details)
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User’s Dilemma

User’s Dilemma
Source: R. Dubes and A. K. Jain, Clustering Techniques: User’s Dilemma, PR 1976

1 What is a cluster?

2 How to define pair-wise similarity?

3 Which features and normalization scheme?

4 How many clusters?

5 Which clustering method?

6 Are the discovered clusters and partition valid?

7 Does the data have any clustering tendency?
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User’s Dilemma

Cluster Similarity?
Source: R. Dubes and A. K. Jain, Clustering Techniques: User’s Dilemma, PR 1976

Compact Clusters
Within-cluster distance < between-cluster connectivity

Connected Clusters
Within-cluster connectivity > between-cluster connectivity

Ideal cluster: compact and isolated.
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User’s Dilemma

Representation (features)?
Source: R. Dubes and A. K. Jain, Clustering Techniques: User’s Dilemma, PR 1976

There’s no universal representation; they’re domain dependent.
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User’s Dilemma

Good Representation
Source: R. Dubes and A. K. Jain, Clustering Techniques: User’s Dilemma, PR 1976

A good representation leads to compact and isolated clusters.
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User’s Dilemma

How do we weigh the features?
Source: R. Dubes and A. K. Jain, Clustering Techniques: User’s Dilemma, PR 1976

Two different meaningful groupings produced by different weighting
schemes.
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User’s Dilemma

How do we decide the Number of Clusters?
Source: R. Dubes and A. K. Jain, Clustering Techniques: User’s Dilemma, PR 1976

The samples are generated by 6 independent classes, yet:

ground truth k = 2

k = 5 k = 6
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User’s Dilemma

Cluster Validity
Source: R. Dubes and A. K. Jain, Clustering Techniques: User’s Dilemma, PR 1976

Clustering algorithms find clusters, even if there are no natural
clusters in the data.

100 2D uniform data points k-Means with k=3
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User’s Dilemma

Comparing Clustering Methods
Source: R. Dubes and A. K. Jain, Clustering Techniques: User’s Dilemma, PR 1976

Which clustering algorithm is the best?
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User’s Dilemma

There’s no best Clustering Algorithm!
Source: R. Dubes and A. K. Jain, Clustering Techniques: User’s Dilemma, PR 1976

Each algorithm imposes a structure on data.
Good fit between model and data ⇒ success.

GMM; k=3 GMM; k=2

Spectral; k=3 Spectral; k=2
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Gaussian Mixture Models

Gaussian Mixture Models

Recall the Gaussian distribution:

N (x|µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
(4)

It forms the basis for the important Mixture of Gaussians density.

The Gaussian mixture is a linear superposition of Gaussians in the
form:

p(x) =
K∑
k=1

πkN (x|µk,Σk) . (5)

The πk are non-negative scalars called mixing coefficients and they
govern the relative importance between the various Gaussians in the
mixture density.

∑
k πk = 1.
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Gaussian Mixture Models

x

p(x)
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Gaussian Mixture Models

Introducing Latent Variables

Define a K-dimensional binary random variable z.

z has a 1-of-K representation such that a particular element zk is 1
and all of the others are zero. Hence:

zk ∈ {0, 1} (6)∑
k

zk = 1 (7)

The marginal distribution over z is specified in terms of the mixing
coefficients:

p(zk = 1) = πk (8)

And, recall, 0 ≤ πk ≤ 1 and
∑

k πk = 1.
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Gaussian Mixture Models

Since z has a 1-of-K representation, we can also write this
distribution as

p(z) =

K∏
k=1

πzkk (9)

The conditional distribution of x given z is a Gaussian:

p(x|zk = 1) = N (x|µk,Σk) (10)

or

p(x|z) =
K∏
k=1

N (x|µk,Σk)
zk (11)
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Gaussian Mixture Models

We are interested in the marginal distribution of x:

p(x) =
∑
z

p(x, z) (12)

=
∑
z

p(z)p(x|z) (13)

=
∑
z

K∏
k=1

πzkk N (x|µk,Σk)
zk (14)

=

K∑
k=1

πkN (x|µk,Σk) (15)

So, given our latent variable z, the marginal distribution of x is a
Gaussian mixture.

If we have N observations x1, . . . ,xN , then because of our chosen
representation, it follows that we have a latent variable zn for each
observed data point xn.
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Gaussian Mixture Models

Component Responsibility Term

We need to also express the conditional probability of z given x.

Denote this conditional p(zk = 1|x) as γ(zk).

We can derive this value with Bayes’ theorem:

γ(zk)
.
= p(zk = 1|x) = p(zk = 1)p(x|zk = 1)∑K

j=1 p(zj = 1)p(x|zj = 1)
(16)

=
πkN (x|µk,Σk)∑K
j=1 πjN (x|µj ,Σj)

(17)

View πk as the prior probability of zk = 1 and the quantity γ(zk) as
the corresponding posterior probability once we have observed x.

γ(zk) can also be viewed as the responsibility that component k takes
for explaining the observation x.
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Gaussian Mixture Models Sampling

Sampling from the GMM

To sample from the GMM, we can first generate a value for z from
the marginal distribution p(z). Denote this sample ẑ.

Then, sample from the conditional distribution p(x|ẑ).
The figure below-left shows samples from a three-mixture and colors
the samples based on their z. The figure below-middle shows samples
from the marginal p(x) and ignores z. On the right, we show the
γ(zk) for each sampled point, colored accordingly.
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Gaussian Mixture Models Maximum-Likelihood

Maximum-Likelihood

Suppose we have a set of N i.i.d. observations {x1, . . . ,xN} that we
wish to model with a GMM.

Consider this data set as an N × d matrix X in which the nth row is
given by xT

n .

Similarly, the corresponding latent variables define an N ×K matrix
Z with rows zT

n .

The log-likelihood of the corresponding GMM is given by

ln p(X|π,µ,Σ) =

N∑
n=1

ln

[
K∑
k=1

πkN (x|µk,Σk)

]
. (18)

Ultimately, we want to find the values of the parameters π,µ,Σ that
maximize this function.

J. Corso (SUNY at Buffalo) Clustering / Unsupervised Methods 27 / 41



Gaussian Mixture Models Maximum-Likelihood

Maximum-Likelihood

Suppose we have a set of N i.i.d. observations {x1, . . . ,xN} that we
wish to model with a GMM.

Consider this data set as an N × d matrix X in which the nth row is
given by xT

n .

Similarly, the corresponding latent variables define an N ×K matrix
Z with rows zT

n .

The log-likelihood of the corresponding GMM is given by

ln p(X|π,µ,Σ) =

N∑
n=1

ln

[
K∑
k=1

πkN (x|µk,Σk)

]
. (18)

Ultimately, we want to find the values of the parameters π,µ,Σ that
maximize this function.

J. Corso (SUNY at Buffalo) Clustering / Unsupervised Methods 27 / 41



Gaussian Mixture Models Maximum-Likelihood

Maximum-Likelihood

Suppose we have a set of N i.i.d. observations {x1, . . . ,xN} that we
wish to model with a GMM.

Consider this data set as an N × d matrix X in which the nth row is
given by xT

n .

Similarly, the corresponding latent variables define an N ×K matrix
Z with rows zT

n .

The log-likelihood of the corresponding GMM is given by

ln p(X|π,µ,Σ) =

N∑
n=1

ln

[
K∑
k=1

πkN (x|µk,Σk)

]
. (18)

Ultimately, we want to find the values of the parameters π,µ,Σ that
maximize this function.

J. Corso (SUNY at Buffalo) Clustering / Unsupervised Methods 27 / 41



Gaussian Mixture Models Maximum-Likelihood

Maximum-Likelihood

Suppose we have a set of N i.i.d. observations {x1, . . . ,xN} that we
wish to model with a GMM.

Consider this data set as an N × d matrix X in which the nth row is
given by xT

n .

Similarly, the corresponding latent variables define an N ×K matrix
Z with rows zT

n .

The log-likelihood of the corresponding GMM is given by

ln p(X|π,µ,Σ) =

N∑
n=1

ln

[
K∑
k=1

πkN (x|µk,Σk)

]
. (18)

Ultimately, we want to find the values of the parameters π,µ,Σ that
maximize this function.

J. Corso (SUNY at Buffalo) Clustering / Unsupervised Methods 27 / 41



Gaussian Mixture Models Maximum-Likelihood

Maximum-Likelihood

Suppose we have a set of N i.i.d. observations {x1, . . . ,xN} that we
wish to model with a GMM.

Consider this data set as an N × d matrix X in which the nth row is
given by xT

n .

Similarly, the corresponding latent variables define an N ×K matrix
Z with rows zT

n .

The log-likelihood of the corresponding GMM is given by

ln p(X|π,µ,Σ) =

N∑
n=1

ln

[
K∑
k=1

πkN (x|µk,Σk)

]
. (18)

Ultimately, we want to find the values of the parameters π,µ,Σ that
maximize this function.

J. Corso (SUNY at Buffalo) Clustering / Unsupervised Methods 27 / 41



Gaussian Mixture Models Maximum-Likelihood

However, maximizing the log-likelihood terms for GMMs is much
more complicated than for the case of a single Gaussian. Why?

The difficulty arises from the sum over k inside of the log-term. The
log function no longer acts directly on the Gaussian, and no
closed-form solution is available.
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Gaussian Mixture Models Maximum-Likelihood

Singularities

There is a significant problem when we apply MLE to estimate GMM
parameters.

Consider simply covariances defined by Σk = σ2kI.

Suppose that one of the components of the mixture model, j, has its
mean µj exactly equal to one of the data points so that µj = xn for
some n.

This term contributes

N (xn|xn, σ2j I) =
1

(2π)(1/2)σj
(19)

Consider the limit σj → 0 to see that this term goes to infinity and
hence the log-likelihood will also go to infinity.

Thus, the maximization of the log-likelihood function is not a
well posed problem because such a singularity will occur
whenever one of the components collapses to a single, specific
data point.
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Gaussian Mixture Models Maximum-Likelihood

x

p(x)
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Expectation-Maximization for GMMs

Expectation-Maximization for GMMs

Expectation-Maximization or EM is an elegant and powerful
method for finding MLE solutions in the case of missing data such as
the latent variables z indicating the mixture component.

Recall the conditions that must be satisfied at a maximum of the
likelihood function.

For the mean µk, setting the derivatives of ln p(X|π,µ,Σ) w.r.t. µk
to zero yields

0 = −
N∑
n=1

πkN (x|µk,Σk)∑K
j=1 πjN (x|µj ,Σj)

Σk(xn − µk) (20)

= −
N∑
n=1

γ(znk)Σk(xn − µk) (21)

Note the natural appearance of the responsibility terms on the RHS.
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Expectation-Maximization for GMMs

Multiplying by Σ−1
k , which we assume is non-singular, gives

µk =
1

Nk

N∑
n=1

γ(znk)xn (22)

where

Nk =

N∑
n=1

γ(znk) (23)

We see the kth mean is the weighted mean over all of the points in
the dataset.

Interpret Nk as the number of points assigned to component k.

We find a similar result for the covariance matrix:

Σk =
1

Nk

N∑
n=1

γ(znk)(xn − µk)(xn − µk)
T . (24)
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Expectation-Maximization for GMMs

We also need to maximize ln p(X|π,µ,Σ) with respect to the mixing
coefficients πk.

Introduce a Lagrange multiplier to enforce the constraint
∑

k πk = 1.

ln p(X|π,µ,Σ) + λ

(
K∑
k=1

πk − 1

)
(25)

Maximizing it yields:

0 =
1

Nk

∑
n=1

γ(znk) + λ (26)

After multiplying both sides by π and summing over k, we get

λ = −N (27)

Eliminate λ and rearrange to obtain:

πk =
Nk

N
(28)
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Expectation-Maximization for GMMs

Solved...right?

So, we’re done, right? We’ve computed the maximum likelihood
solutions for each of the unknown parameters.

Wrong!

The responsibility terms depend on these parameters in an intricate
way:

γ(zk)
.
= p(zk = 1|x) = πkN (x|µk,Σk)∑K

j=1 πjN (x|µj ,Σj)

But, these results do suggest an iterative scheme for finding a
solution to the maximum likelihood problem.

1 Chooce some initial values for the parameters, π,µ,Σ.
2 Use the current parameters estimates to compute the posteriors on the

latent terms, i.e., the responsibilities.
3 Use the responsibilities to update the estimates of the parameters.
4 Repeat 2 and 3 until convergence.
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latent terms, i.e., the responsibilities.
3 Use the responsibilities to update the estimates of the parameters.
4 Repeat 2 and 3 until convergence.
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Expectation-Maximization for GMMs
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Expectation-Maximization for GMMs

Some Quick, Early Notes on EM

EM generally tends to take more steps than the K-Means clustering
algorithm.

Each step is more computationally intense than with K-Means too.

So, one commonly computes K-Means first and then initializes EM
from the resulting clusters.

Care must be taken to avoid singularities in the MLE solution.

There will generally be multiple local maxima of the likelihood
function and EM is not guaranteed to find the largest of these.
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Expectation-Maximization for GMMs

Given a GMM, the goal is to maximize the likelihood function with respect to the
parameters (the means, the covarianes, and the mixing coefficients).

1 Initialize the means, µk, the covariances, Σk, and mixing coefficients, πk.
Evaluate the initial value of the log-likelihood.

2 E-Step Evaluate the responsibilities using the current parameter values:

γ(zk) =
πkN (x|µk,Σk)∑K
j=1 πjN (x|µj ,Σj)

3 M-Step Update the parameters using the current responsibilities

µnew
k =

1

Nk

N∑
n=1

γ(znk)xn (29)

Σnew
k =

1

Nk

N∑
n=1

γ(znk)(xn − µnew
k )(xn − µnew

k )T (30)

πnew
k =

Nk

N
(31)

where

Nk =

N∑
n=1

γ(znk) (32)
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Expectation-Maximization for GMMs

4 Evaluate the log-likelihood

ln p(X|µnew,Σnew,πnew) =

N∑
n=1

ln

[
K∑

k=1

πnew
k N (xn|µnew

k ,Σnew
k )

]
(33)

5 Check for convergence of either the parameters of the log-likelihood. If the
convergence is not satisfied, set the parameters:

µ = µnew (34)

Σ = Σnew (35)

π = πnew (36)

and goto step 2.
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A More General EM

A More General View of EM

The goal of EM is to find maximum likelihood solutions for models
having latent variables.

Denote the set of all model parameters as θ, and so the log-likelihood
function is

ln p(X|θ) = ln

[∑
Z

p(X,Z|θ)

]
(37)

Note how the summation over the latent variables appears inside of
the log.

Even if the joint distribution p(X,Z|θ) belongs to the exponential
family, the marginal p(X|θ) typically does not.

If, for each sample xn we were given the value of the latent variable
zn, then we would have a complete data set, {X,Z}, with which
maximizing this likelihood term would be straightforward.
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A More General EM

However, in practice, we are not given the latent variables values.

So, instead, we focus on the expectation of the log-likelihood under
the posterior distribution of the latent variables.

In the E-Step, we use the current parameter values θold to find the
posterior distribution of the latent variables given by p(Z|X,θold).

This posterior is used to define the expectation of the
complete-data log-likelihood, denoted Q(θ,θold), which is given by

Q(θ,θold) =
∑
Z

p(Z|X,θold) ln p(X,Z|θ) (38)

Then, in the M-step, we revise the parameters to θnew by maximizing
this function:

θnew = argmax
θ
Q(θ,θold) (39)

Note that the log acts directly on the joint distribution p(X,Z|θ) and
so the M-step maximization will likely be tractable.
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