
Boosting and AdaBoost

Jason Corso

SUNY at Buffalo

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 1 / 62

Introduction

We’ve talked loosely about

1 Lack of inherent superiority of any one particular classifier; and
2 Some systematic ways for selecting a particular method over another

for a given scenario.

Now, we turn to boosting and the AdaBoost method for integrating
component classifiers into one strong classifier.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 2 / 62

Introduction

Rationale

Imagine the situation where you want to build an email filter that can
distinguish spam from non-spam.

The general way we would approach this problem in ML/PR follows
the same scheme we have for the other topics:

1 Gathering as many examples as possible of both spam and non-spam
emails.

2 Train a classifier using these examples and their labels.
3 Take the learned classifier, or prediction rule, and use it to filter your

mail.
4 The goal is to train a classifier that makes the most accurate

predictions possible on new test examples.
And, we’ve covered related topics on how to measure this like bias and
variance.

But, building a highly accurate classifier is a difficult task. (You still
get spam, right?!)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 3 / 62

Introduction

Rationale

Imagine the situation where you want to build an email filter that can
distinguish spam from non-spam.

The general way we would approach this problem in ML/PR follows
the same scheme we have for the other topics:

1 Gathering as many examples as possible of both spam and non-spam
emails.

2 Train a classifier using these examples and their labels.
3 Take the learned classifier, or prediction rule, and use it to filter your

mail.
4 The goal is to train a classifier that makes the most accurate

predictions possible on new test examples.
And, we’ve covered related topics on how to measure this like bias and
variance.

But, building a highly accurate classifier is a difficult task. (You still
get spam, right?!)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 3 / 62

Introduction

Rationale

Imagine the situation where you want to build an email filter that can
distinguish spam from non-spam.

The general way we would approach this problem in ML/PR follows
the same scheme we have for the other topics:

1 Gathering as many examples as possible of both spam and non-spam
emails.

2 Train a classifier using these examples and their labels.
3 Take the learned classifier, or prediction rule, and use it to filter your

mail.
4 The goal is to train a classifier that makes the most accurate

predictions possible on new test examples.
And, we’ve covered related topics on how to measure this like bias and
variance.

But, building a highly accurate classifier is a difficult task. (You still
get spam, right?!)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 3 / 62

Introduction

Rationale

Imagine the situation where you want to build an email filter that can
distinguish spam from non-spam.

The general way we would approach this problem in ML/PR follows
the same scheme we have for the other topics:

1 Gathering as many examples as possible of both spam and non-spam
emails.

2 Train a classifier using these examples and their labels.
3 Take the learned classifier, or prediction rule, and use it to filter your

mail.
4 The goal is to train a classifier that makes the most accurate

predictions possible on new test examples.
And, we’ve covered related topics on how to measure this like bias and
variance.

But, building a highly accurate classifier is a difficult task. (You still
get spam, right?!)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 3 / 62

Introduction

We could probably come up with many quick rules of thumb. These
could be only moderately accurate. Can you think of an example for
this situation?

An example could be “if the subject line contains ‘buy now’ then
classify as spam.”

This certainly doesn’t cover all spams, but it will be significantly
better than random guessing.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 4 / 62

Introduction

We could probably come up with many quick rules of thumb. These
could be only moderately accurate. Can you think of an example for
this situation?

An example could be “if the subject line contains ‘buy now’ then
classify as spam.”

This certainly doesn’t cover all spams, but it will be significantly
better than random guessing.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 4 / 62

Introduction

We could probably come up with many quick rules of thumb. These
could be only moderately accurate. Can you think of an example for
this situation?

An example could be “if the subject line contains ‘buy now’ then
classify as spam.”

This certainly doesn’t cover all spams, but it will be significantly
better than random guessing.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 4 / 62

Introduction

Basic Idea of Boosting

Boosting refers to a general and provably effective method of
producing a very accurate classifier by combining rough and
moderately inaccurate rules of thumb.

It is based on the observation that finding many rough rules of
thumb can be a lot easier than finding a single, highly accurate
classifier.

To begin, we define an algorithm for finding the rules of thumb,
which we call a weak learner.

The boosting algorithm repeatedly calls this weak learner, each time
feeding it a different distribution over the training data (in Adaboost).

Each call generates a weak classifier and we must combine all of
these into a single classifier that, hopefully, is much more accurate
than any one of the rules.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 5 / 62

Introduction

Basic Idea of Boosting

Boosting refers to a general and provably effective method of
producing a very accurate classifier by combining rough and
moderately inaccurate rules of thumb.

It is based on the observation that finding many rough rules of
thumb can be a lot easier than finding a single, highly accurate
classifier.

To begin, we define an algorithm for finding the rules of thumb,
which we call a weak learner.

The boosting algorithm repeatedly calls this weak learner, each time
feeding it a different distribution over the training data (in Adaboost).

Each call generates a weak classifier and we must combine all of
these into a single classifier that, hopefully, is much more accurate
than any one of the rules.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 5 / 62

Introduction

Basic Idea of Boosting

Boosting refers to a general and provably effective method of
producing a very accurate classifier by combining rough and
moderately inaccurate rules of thumb.

It is based on the observation that finding many rough rules of
thumb can be a lot easier than finding a single, highly accurate
classifier.

To begin, we define an algorithm for finding the rules of thumb,
which we call a weak learner.

The boosting algorithm repeatedly calls this weak learner, each time
feeding it a different distribution over the training data (in Adaboost).

Each call generates a weak classifier and we must combine all of
these into a single classifier that, hopefully, is much more accurate
than any one of the rules.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 5 / 62

Introduction

Basic Idea of Boosting

Boosting refers to a general and provably effective method of
producing a very accurate classifier by combining rough and
moderately inaccurate rules of thumb.

It is based on the observation that finding many rough rules of
thumb can be a lot easier than finding a single, highly accurate
classifier.

To begin, we define an algorithm for finding the rules of thumb,
which we call a weak learner.

The boosting algorithm repeatedly calls this weak learner, each time
feeding it a different distribution over the training data (in Adaboost).

Each call generates a weak classifier and we must combine all of
these into a single classifier that, hopefully, is much more accurate
than any one of the rules.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 5 / 62

Introduction

Basic Idea of Boosting

Boosting refers to a general and provably effective method of
producing a very accurate classifier by combining rough and
moderately inaccurate rules of thumb.

It is based on the observation that finding many rough rules of
thumb can be a lot easier than finding a single, highly accurate
classifier.

To begin, we define an algorithm for finding the rules of thumb,
which we call a weak learner.

The boosting algorithm repeatedly calls this weak learner, each time
feeding it a different distribution over the training data (in Adaboost).

Each call generates a weak classifier and we must combine all of
these into a single classifier that, hopefully, is much more accurate
than any one of the rules.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 5 / 62

Introduction A Toy Example (From Schapire’s Slides)

Toy ExampleToy ExampleToy ExampleToy ExampleToy Example

D1

weak classifiers = vertical or horizontal half-planes

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 6 / 62

Introduction A Toy Example (From Schapire’s Slides)

Round 1Round 1Round 1Round 1Round 1

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

h1

α

ε1

1

=0.30

=0.42

2D

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 6 / 62

Introduction A Toy Example (From Schapire’s Slides)

Round 2Round 2Round 2Round 2Round 2

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

α

ε2

2

=0.21

=0.65

h2 3D

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 6 / 62

Introduction A Toy Example (From Schapire’s Slides)

Round 3Round 3Round 3Round 3Round 3

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

h3

α

ε3

3=0.92

=0.14

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 6 / 62

Introduction A Toy Example (From Schapire’s Slides)

Final ClassifierFinal ClassifierFinal ClassifierFinal ClassifierFinal Classifier

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !

" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

$ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $

% % % % % % % % %
% % % % % % % % %
% % % % % % % % %
% % % % % % % % %
% % % % % % % % %
% % % % % % % % %
% % % % % % % % %
% % % % % % % % %
% % % % % % % % %
% % % % % % % % %
% % % % % % % % %
% % % % % % % % %
% % % % % % % % %
% % % % % % % % %
% % % % % % % % %
% % % % % % % % %
% % % % % % % % %
% % % % % % % % %
% % % % % % % % %

& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &

' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '

((((((((((((
((((((((((((
((((((((((((
((((((((((((
((((((((((((
((((((((((((
((((((((((((
((((((((((((
((((((((((((
((((((((((((

))))))))))))
))))))))))))
))))))))))))
))))))))))))
))))))))))))
))))))))))))
))))))))))))
))))))))))))
))))))))))))
))))))))))))

H
final

+ 0.92+ 0.650.42sign=

=

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 6 / 62

Introduction A Toy Example (From Schapire’s Slides)

STOP!

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 7 / 62

Introduction Introduction Wrap-Up

Key Questions Defining and Analyzing Boosting

1 How should the distribution be chosen each round?

2 How should the weak rules be combined into a single rule?

3 How should the weak learner be defined?

4 How many weak classifiers should we learn?

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 8 / 62

Introduction Introduction Wrap-Up

Key Questions Defining and Analyzing Boosting

1 How should the distribution be chosen each round?

2 How should the weak rules be combined into a single rule?

3 How should the weak learner be defined?

4 How many weak classifiers should we learn?

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 8 / 62

Introduction Introduction Wrap-Up

Key Questions Defining and Analyzing Boosting

1 How should the distribution be chosen each round?

2 How should the weak rules be combined into a single rule?

3 How should the weak learner be defined?

4 How many weak classifiers should we learn?

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 8 / 62

Introduction Introduction Wrap-Up

Key Questions Defining and Analyzing Boosting

1 How should the distribution be chosen each round?

2 How should the weak rules be combined into a single rule?

3 How should the weak learner be defined?

4 How many weak classifiers should we learn?

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 8 / 62

Basic AdaBoost

Getting Started

We are given a training set

D = {(xi, yi) : xi ∈ Rd, yi ∈ {−1,+1}, i = 1, . . . ,m}. (1)

For example, xi could represent some encoding of an email message
(say in the vector-space text model), and yi is whether or not this
message is spam.

Note that we are working in a two-class setting, and this will be the
case for the majority of our discussion. Some extensions to multi-class
scenarios will be presented.

We need to define a distribution D over the dataset D such that∑
iD(i) = 1.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 9 / 62

Basic AdaBoost

Getting Started

We are given a training set

D = {(xi, yi) : xi ∈ Rd, yi ∈ {−1,+1}, i = 1, . . . ,m}. (1)

For example, xi could represent some encoding of an email message
(say in the vector-space text model), and yi is whether or not this
message is spam.

Note that we are working in a two-class setting, and this will be the
case for the majority of our discussion. Some extensions to multi-class
scenarios will be presented.

We need to define a distribution D over the dataset D such that∑
iD(i) = 1.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 9 / 62

Basic AdaBoost

Getting Started

We are given a training set

D = {(xi, yi) : xi ∈ Rd, yi ∈ {−1,+1}, i = 1, . . . ,m}. (1)

For example, xi could represent some encoding of an email message
(say in the vector-space text model), and yi is whether or not this
message is spam.

Note that we are working in a two-class setting, and this will be the
case for the majority of our discussion. Some extensions to multi-class
scenarios will be presented.

We need to define a distribution D over the dataset D such that∑
iD(i) = 1.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 9 / 62

Basic AdaBoost

Getting Started

We are given a training set

D = {(xi, yi) : xi ∈ Rd, yi ∈ {−1,+1}, i = 1, . . . ,m}. (1)

For example, xi could represent some encoding of an email message
(say in the vector-space text model), and yi is whether or not this
message is spam.

Note that we are working in a two-class setting, and this will be the
case for the majority of our discussion. Some extensions to multi-class
scenarios will be presented.

We need to define a distribution D over the dataset D such that∑
iD(i) = 1.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 9 / 62

Basic AdaBoost Weak Learners and Weak Classifiers

Weak Learners and Weak Classifiers

First, we concretely define a weak classifier:

ht : R
d → {−1,+1} (2)

A weak classifier must work better than chance. In the two-class
setting this means it has less than 50% error and this is easy; if it
would have higher than 50% error, just flip the sign. So, we want only
a classifier that does not have exactly 50% error (since these
classifiers would add no information).

The error rate of a weak classifier ht(x) is calculated empirically over
the training data:

ε(ht) =
1

m

m∑
i=1

δ(ht(xi) 6= yi) <
1

2
. (3)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 10 / 62

Basic AdaBoost Weak Learners and Weak Classifiers

Weak Learners and Weak Classifiers

First, we concretely define a weak classifier:

ht : R
d → {−1,+1} (2)

A weak classifier must work better than chance. In the two-class
setting this means it has less than 50% error and this is easy; if it
would have higher than 50% error, just flip the sign. So, we want only
a classifier that does not have exactly 50% error (since these
classifiers would add no information).

The error rate of a weak classifier ht(x) is calculated empirically over
the training data:

ε(ht) =
1

m

m∑
i=1

δ(ht(xi) 6= yi) <
1

2
. (3)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 10 / 62

Basic AdaBoost Weak Learners and Weak Classifiers

Weak Learners and Weak Classifiers

First, we concretely define a weak classifier:

ht : R
d → {−1,+1} (2)

A weak classifier must work better than chance. In the two-class
setting this means it has less than 50% error and this is easy; if it
would have higher than 50% error, just flip the sign. So, we want only
a classifier that does not have exactly 50% error (since these
classifiers would add no information).

The error rate of a weak classifier ht(x) is calculated empirically over
the training data:

ε(ht) =
1

m

m∑
i=1

δ(ht(xi) 6= yi) <
1

2
. (3)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 10 / 62

Basic AdaBoost Weak Learners and Weak Classifiers

A WL/WC Example for Images

Consider the case that our input data xi are
rectangular image patches.

Given example images where

for negative and positive examples respec-

tively.

Initialize weights for respec-

tively, where and are the number of negatives and

positives respectively.

For :

1. Normalize the weights,

so that is a probability distribution.

2. For each feature, , train a classifi er which

is restricted to using a single feature. The

error is evaluated with respect to ,

.

3. Choose the classifi er, , with the lowest error .

4. Update the weights:

where if example is classifi ed cor-

rectly, otherwise, and .

The fi nal strong classifi er is:

otherwise

where

Table 1: The AdaBoost algorithm for classifier learn-

ing. Each round of boosting selects one feature from the

180,000 potential features.

number of features are retained (perhaps a few hundred or

thousand).

3.2. Learning Results

While details on the training and performance of the final

system are presented in Section 5, several simple results

merit discussion. Initial experiments demonstrated that a

frontal face classifier constructed from 200 features yields

a detection rate of 95% with a false positive rate of 1 in

14084. These results are compelling, but not sufficient for

many real-world tasks. In terms of computation, this clas-

sifier is probably faster than any other published system,

requiring 0.7 seconds to scan an 384 by 288 pixel image.

Unfortunately, the most straightforward technique for im-

proving detection performance, adding features to the clas-

sifier, directly increases computation time.

For the task of face detection, the initial rectangle fea-

tures selected by AdaBoost are meaningful and easily inter-

preted. The first feature selected seems to focus on the prop-

erty that the region of the eyes is often darker than the region

Figure 3: The first and second features selected by Ad-

aBoost. The two features are shown in the top row and then

overlayed on a typical training face in the bottom row. The

first feature measures the difference in intensity between the

region of the eyes and a region across the upper cheeks. The

feature capitalizes on the observation that the eye region is

often darker than the cheeks. The second feature compares

the intensities in the eye regions to the intensity across the

bridge of the nose.

of the nose and cheeks (see Figure 3). This feature is rel-

atively large in comparison with the detection sub-window,

and should be somewhat insensitive to size and location of

the face. The second feature selected relies on the property

that the eyes are darker than the bridge of the nose.

4. The Attentional Cascade

This section describes an algorithm for constructing a cas-

cade of classifiers which achieves increased detection per-

formance while radically reducing computation time. The

key insight is that smaller, and therefore more efficient,

boosted classifiers can be constructed which reject many of

the negative sub-windows while detecting almost all posi-

tive instances (i.e. the threshold of a boosted classifier can

be adjusted so that the false negative rate is close to zero).

Simpler classifiers are used to reject the majority of sub-

windows before more complex classifiers are called upon

to achieve low false positive rates.

The overall form of the detection process is that of a de-

generate decision tree, what we call a “cascade” (see Fig-

ure 4). A positive result from the first classifier triggers the

evaluation of a second classifier which has also been ad-

justed to achieve very high detection rates. A positive result

from the second classifier triggers a third classifier, and so

on. A negative outcome at any point leads to the immediate

rejection of the sub-window.

Stages in the cascade are constructed by training clas-

sifiers using AdaBoost and then adjusting the threshold to

minimize false negatives. Note that the default AdaBoost

threshold is designed to yield a low error rate on the train-

ing data. In general a lower threshold yields higher detec-

4

Define a collection of Haar-like
rectangle features.

The feature value extracted is
the difference of the pixel sum
in the white sub-regions and the
black sub-regions.

With a base patch size of 24x24,
there are over 180,000 possible
such rectangle features.

single feature [2]. As a result each stage of the boosting

process, which selects a new weak classifier, can be viewed

as a feature selection process. AdaBoost provides an effec-

tive learning algorithm and strong bounds on generalization

performance [13, 9, 10].

The third major contribution of this paper is a method

for combining successively more complex classifiers in a

cascade structure which dramatically increases the speed of

the detector by focusing attention on promising regions of

the image. The notion behind focus of attention approaches

is that it is often possible to rapidly determine where in an

image an object might occur [17, 8, 1]. More complex pro-

cessing is reserved only for these promising regions. The

key measure of such an approach is the “false negative” rate

of the attentional process. It must be the case that all, or

almost all, object instances are selected by the attentional

filter.

We will describe a process for training an extremely sim-

ple and efficient classifier which can be used as a “super-

vised” focus of attention operator. The term supervised

refers to the fact that the attentional operator is trained to

detect examples of a particular class. In the domain of face

detection it is possible to achieve fewer than 1% false neg-

atives and 40% false positives using a classifier constructed

from two Harr-like features. The effect of this filter is to

reduce by over one half the number of locations where the

final detector must be evaluated.

Those sub-windows which are not rejected by the initial

classifier are processed by a sequence of classifiers, each

slightly more complex than the last. If any classifier rejects

the sub-window, no further processing is performed. The

structure of the cascaded detection process is essentially

that of a degenerate decision tree, and as such is related to

the work of Geman and colleagues [1, 4].

An extremely fast face detector will have broad prac-

tical applications. These include user interfaces, image

databases, and teleconferencing. In applications where

rapid frame-rates are not necessary, our system will allow

for significant additional post-processing and analysis. In

addition our system can be implemented on a wide range of

small low power devices, including hand-helds and embed-

ded processors. In our lab we have implemented this face

detector on the Compaq iPaq handheld and have achieved

detection at two frames per second (this device has a low

power 200 mips Strong Arm processor which lacks floating

point hardware).

The remainder of the paper describes our contributions

and a number of experimental results, including a detailed

description of our experimental methodology. Discussion

of closely related work takes place at the end of each sec-

tion.

2. Features

Our object detection procedure classifies images based on

the value of simple features. There are many motivations

A B

C D

Figure 1: Example rectangle features shown relative to the

enclosing detection window. The sum of the pixels which

lie within the white rectangles are subtracted from the sum

of pixels in the grey rectangles. Two-rectangle features are

shown in (A) and (B). Figure (C) shows a three-rectangle

feature, and (D) a four-rectangle feature.

for using features rather than the pixels directly. The most

common reason is that features can act to encode ad-hoc

domain knowledge that is difficult to learn using a finite

quantity of training data. For this system there is also a

second critical motivation for features: the feature based

system operates much faster than a pixel-based system.

The simple features used are reminiscent of Haar basis

functions which have been used by Papageorgiou et al. [10].

More specifically, we use three kinds of features. The value

of a two-rectangle feature is the difference between the sum

of the pixels within two rectangular regions. The regions

have the same size and shape and are horizontally or ver-

tically adjacent (see Figure 1). A three-rectangle feature

computes the sum within two outside rectangles subtracted

from the sum in a center rectangle. Finally a four-rectangle

feature computes the difference between diagonal pairs of

rectangles.

Given that the base resolution of the detector is 24x24,

the exhaustive set of rectangle features is quite large, over

180,000 . Note that unlike the Haar basis, the set of rectan-

gle features is overcomplete1.

2.1. Integral Image

Rectangle features can be computed very rapidly using an

intermediate representation for the image which we call the

integral image.2 The integral image at location contains

the sum of the pixels above and to the left of , inclusive:

1A complete basis has no linear dependence between basis elements

and has the same number of elements as the image space, in this case 576.

The full set of 180,000 thousand features is many times over-complete.
2There is a close relation to “summed area tables” as used in graphics

[3]. We choose a different name here in order to emphasize its use for the

analysis of images, rather than for texture mapping.

2

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 11 / 62

Basic AdaBoost Weak Learners and Weak Classifiers

A WL/WC Example for Images

Consider the case that our input data xi are
rectangular image patches.

Given example images where

for negative and positive examples respec-

tively.

Initialize weights for respec-

tively, where and are the number of negatives and

positives respectively.

For :

1. Normalize the weights,

so that is a probability distribution.

2. For each feature, , train a classifi er which

is restricted to using a single feature. The

error is evaluated with respect to ,

.

3. Choose the classifi er, , with the lowest error .

4. Update the weights:

where if example is classifi ed cor-

rectly, otherwise, and .

The fi nal strong classifi er is:

otherwise

where

Table 1: The AdaBoost algorithm for classifier learn-

ing. Each round of boosting selects one feature from the

180,000 potential features.

number of features are retained (perhaps a few hundred or

thousand).

3.2. Learning Results

While details on the training and performance of the final

system are presented in Section 5, several simple results

merit discussion. Initial experiments demonstrated that a

frontal face classifier constructed from 200 features yields

a detection rate of 95% with a false positive rate of 1 in

14084. These results are compelling, but not sufficient for

many real-world tasks. In terms of computation, this clas-

sifier is probably faster than any other published system,

requiring 0.7 seconds to scan an 384 by 288 pixel image.

Unfortunately, the most straightforward technique for im-

proving detection performance, adding features to the clas-

sifier, directly increases computation time.

For the task of face detection, the initial rectangle fea-

tures selected by AdaBoost are meaningful and easily inter-

preted. The first feature selected seems to focus on the prop-

erty that the region of the eyes is often darker than the region

Figure 3: The first and second features selected by Ad-

aBoost. The two features are shown in the top row and then

overlayed on a typical training face in the bottom row. The

first feature measures the difference in intensity between the

region of the eyes and a region across the upper cheeks. The

feature capitalizes on the observation that the eye region is

often darker than the cheeks. The second feature compares

the intensities in the eye regions to the intensity across the

bridge of the nose.

of the nose and cheeks (see Figure 3). This feature is rel-

atively large in comparison with the detection sub-window,

and should be somewhat insensitive to size and location of

the face. The second feature selected relies on the property

that the eyes are darker than the bridge of the nose.

4. The Attentional Cascade

This section describes an algorithm for constructing a cas-

cade of classifiers which achieves increased detection per-

formance while radically reducing computation time. The

key insight is that smaller, and therefore more efficient,

boosted classifiers can be constructed which reject many of

the negative sub-windows while detecting almost all posi-

tive instances (i.e. the threshold of a boosted classifier can

be adjusted so that the false negative rate is close to zero).

Simpler classifiers are used to reject the majority of sub-

windows before more complex classifiers are called upon

to achieve low false positive rates.

The overall form of the detection process is that of a de-

generate decision tree, what we call a “cascade” (see Fig-

ure 4). A positive result from the first classifier triggers the

evaluation of a second classifier which has also been ad-

justed to achieve very high detection rates. A positive result

from the second classifier triggers a third classifier, and so

on. A negative outcome at any point leads to the immediate

rejection of the sub-window.

Stages in the cascade are constructed by training clas-

sifiers using AdaBoost and then adjusting the threshold to

minimize false negatives. Note that the default AdaBoost

threshold is designed to yield a low error rate on the train-

ing data. In general a lower threshold yields higher detec-

4

Define a collection of Haar-like
rectangle features.

The feature value extracted is
the difference of the pixel sum
in the white sub-regions and the
black sub-regions.

With a base patch size of 24x24,
there are over 180,000 possible
such rectangle features.

single feature [2]. As a result each stage of the boosting

process, which selects a new weak classifier, can be viewed

as a feature selection process. AdaBoost provides an effec-

tive learning algorithm and strong bounds on generalization

performance [13, 9, 10].

The third major contribution of this paper is a method

for combining successively more complex classifiers in a

cascade structure which dramatically increases the speed of

the detector by focusing attention on promising regions of

the image. The notion behind focus of attention approaches

is that it is often possible to rapidly determine where in an

image an object might occur [17, 8, 1]. More complex pro-

cessing is reserved only for these promising regions. The

key measure of such an approach is the “false negative” rate

of the attentional process. It must be the case that all, or

almost all, object instances are selected by the attentional

filter.

We will describe a process for training an extremely sim-

ple and efficient classifier which can be used as a “super-

vised” focus of attention operator. The term supervised

refers to the fact that the attentional operator is trained to

detect examples of a particular class. In the domain of face

detection it is possible to achieve fewer than 1% false neg-

atives and 40% false positives using a classifier constructed

from two Harr-like features. The effect of this filter is to

reduce by over one half the number of locations where the

final detector must be evaluated.

Those sub-windows which are not rejected by the initial

classifier are processed by a sequence of classifiers, each

slightly more complex than the last. If any classifier rejects

the sub-window, no further processing is performed. The

structure of the cascaded detection process is essentially

that of a degenerate decision tree, and as such is related to

the work of Geman and colleagues [1, 4].

An extremely fast face detector will have broad prac-

tical applications. These include user interfaces, image

databases, and teleconferencing. In applications where

rapid frame-rates are not necessary, our system will allow

for significant additional post-processing and analysis. In

addition our system can be implemented on a wide range of

small low power devices, including hand-helds and embed-

ded processors. In our lab we have implemented this face

detector on the Compaq iPaq handheld and have achieved

detection at two frames per second (this device has a low

power 200 mips Strong Arm processor which lacks floating

point hardware).

The remainder of the paper describes our contributions

and a number of experimental results, including a detailed

description of our experimental methodology. Discussion

of closely related work takes place at the end of each sec-

tion.

2. Features

Our object detection procedure classifies images based on

the value of simple features. There are many motivations

A B

C D

Figure 1: Example rectangle features shown relative to the

enclosing detection window. The sum of the pixels which

lie within the white rectangles are subtracted from the sum

of pixels in the grey rectangles. Two-rectangle features are

shown in (A) and (B). Figure (C) shows a three-rectangle

feature, and (D) a four-rectangle feature.

for using features rather than the pixels directly. The most

common reason is that features can act to encode ad-hoc

domain knowledge that is difficult to learn using a finite

quantity of training data. For this system there is also a

second critical motivation for features: the feature based

system operates much faster than a pixel-based system.

The simple features used are reminiscent of Haar basis

functions which have been used by Papageorgiou et al. [10].

More specifically, we use three kinds of features. The value

of a two-rectangle feature is the difference between the sum

of the pixels within two rectangular regions. The regions

have the same size and shape and are horizontally or ver-

tically adjacent (see Figure 1). A three-rectangle feature

computes the sum within two outside rectangles subtracted

from the sum in a center rectangle. Finally a four-rectangle

feature computes the difference between diagonal pairs of

rectangles.

Given that the base resolution of the detector is 24x24,

the exhaustive set of rectangle features is quite large, over

180,000 . Note that unlike the Haar basis, the set of rectan-

gle features is overcomplete1.

2.1. Integral Image

Rectangle features can be computed very rapidly using an

intermediate representation for the image which we call the

integral image.2 The integral image at location contains

the sum of the pixels above and to the left of , inclusive:

1A complete basis has no linear dependence between basis elements

and has the same number of elements as the image space, in this case 576.

The full set of 180,000 thousand features is many times over-complete.
2There is a close relation to “summed area tables” as used in graphics

[3]. We choose a different name here in order to emphasize its use for the

analysis of images, rather than for texture mapping.

2

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 11 / 62

Basic AdaBoost Weak Learners and Weak Classifiers

Although these features are somewhat primitive in comparison to
things like steerable filters, SIFT keys, etc., they do provide a rich set
on which boosting can learn.

And, they are quite efficiently computed when using the integral
image representation.

Define the integral image as the image whose pixel value at a
particular pixel x, y is the sum of the pixel values to the left and
above x, y in the original image:

ii(x, y) =
∑

x′≤x,y′≤y
i(x, y) (4)

where ii is the integral image and i is the original image.

Use the following pair of recurrences to compute the integral image in
just one pass.

s(x, y) = s(x, y − 1) + i(x, y) (5)

ii(x, y) = ii(x− 1, y) + s(x, y) (6)

where we define s(x,−1) = 0 and ii(−1, y) = 0.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 12 / 62

Basic AdaBoost Weak Learners and Weak Classifiers

Although these features are somewhat primitive in comparison to
things like steerable filters, SIFT keys, etc., they do provide a rich set
on which boosting can learn.

And, they are quite efficiently computed when using the integral
image representation.

Define the integral image as the image whose pixel value at a
particular pixel x, y is the sum of the pixel values to the left and
above x, y in the original image:

ii(x, y) =
∑

x′≤x,y′≤y
i(x, y) (4)

where ii is the integral image and i is the original image.

Use the following pair of recurrences to compute the integral image in
just one pass.

s(x, y) = s(x, y − 1) + i(x, y) (5)

ii(x, y) = ii(x− 1, y) + s(x, y) (6)

where we define s(x,−1) = 0 and ii(−1, y) = 0.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 12 / 62

Basic AdaBoost Weak Learners and Weak Classifiers

Although these features are somewhat primitive in comparison to
things like steerable filters, SIFT keys, etc., they do provide a rich set
on which boosting can learn.

And, they are quite efficiently computed when using the integral
image representation.

Define the integral image as the image whose pixel value at a
particular pixel x, y is the sum of the pixel values to the left and
above x, y in the original image:

ii(x, y) =
∑

x′≤x,y′≤y
i(x, y) (4)

where ii is the integral image and i is the original image.

Use the following pair of recurrences to compute the integral image in
just one pass.

s(x, y) = s(x, y − 1) + i(x, y) (5)

ii(x, y) = ii(x− 1, y) + s(x, y) (6)

where we define s(x,−1) = 0 and ii(−1, y) = 0.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 12 / 62

Basic AdaBoost Weak Learners and Weak Classifiers

Although these features are somewhat primitive in comparison to
things like steerable filters, SIFT keys, etc., they do provide a rich set
on which boosting can learn.

And, they are quite efficiently computed when using the integral
image representation.

Define the integral image as the image whose pixel value at a
particular pixel x, y is the sum of the pixel values to the left and
above x, y in the original image:

ii(x, y) =
∑

x′≤x,y′≤y
i(x, y) (4)

where ii is the integral image and i is the original image.

Use the following pair of recurrences to compute the integral image in
just one pass.

s(x, y) = s(x, y − 1) + i(x, y) (5)

ii(x, y) = ii(x− 1, y) + s(x, y) (6)

where we define s(x,−1) = 0 and ii(−1, y) = 0.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 12 / 62

Basic AdaBoost Weak Learners and Weak Classifiers

The sum of a particular rectangle can be computed in just 4
references using the integral image.

The value at point 1 is the sum
of the pixels in rectangle A.

Point 2 is A+B.

Point 3 is A+C.

Point 4 is A+B+C+D.

So, the sum within D alone is
4+1-2-3.

A

C

B

D

1

4

2

3

Figure 2: The sum of the pixels within rectangle can be

computed with four array references. The value of the inte-

gral image at location 1 is the sum of the pixels in rectangle

. The value at location 2 is , at location 3 is ,

and at location 4 is . The sum within can

be computed as .

where is the integral image and is the origi-

nal image. Using the following pair of recurrences:

(1)

(2)

(where is the cumulative row sum, ,

and) the integral image can be computed in

one pass over the original image.

Using the integral image any rectangular sum can be

computed in four array references (see Figure 2). Clearly

the difference between two rectangular sums can be com-

puted in eight references. Since the two-rectangle features

defined above involve adjacent rectangular sums they can

be computed in six array references, eight in the case of

the three-rectangle features, and nine for four-rectangle fea-

tures.

2.2. Feature Discussion

Rectangle features are somewhat primitive when compared

with alternatives such as steerable filters [5, 7]. Steerable fil-

ters, and their relatives, are excellent for the detailed analy-

sis of boundaries, image compression, and texture analysis.

In contrast rectangle features, while sensitive to the pres-

ence of edges, bars, and other simple image structure, are

quite coarse. Unlike steerable filters the only orientations

available are vertical, horizontal, and diagonal. The set of

rectangle features do however provide a rich image repre-

sentation which supports effective learning. In conjunction

with the integral image , the efficiency of the rectangle fea-

ture set provides ample compensation for their limited flex-

ibility.

3. Learning Classification Functions

Given a feature set and a training set of positive and neg-

ative images, any number of machine learning approaches

could be used to learn a classification function. In our sys-

tem a variant of AdaBoost is used both to select a small set

of features and train the classifier [6]. In its original form,

the AdaBoost learning algorithm is used to boost the clas-

sification performance of a simple (sometimes called weak)

learning algorithm. There are a number of formal guaran-

tees provided by the AdaBoost learning procedure. Freund

and Schapire proved that the training error of the strong

classifier approaches zero exponentially in the number of

rounds. More importantly a number of results were later

proved about generalization performance [14]. The key

insight is that generalization performance is related to the

margin of the examples, and that AdaBoost achieves large

margins rapidly.

Recall that there are over 180,000 rectangle features as-

sociated with each image sub-window, a number far larger

than the number of pixels. Even though each feature can

be computed very efficiently, computing the complete set is

prohibitively expensive. Our hypothesis, which is borne out

by experiment, is that a very small number of these features

can be combined to form an effective classifier. The main

challenge is to find these features.

In support of this goal, the weak learning algorithm is

designed to select the single rectangle feature which best

separates the positive and negative examples (this is similar

to the approach of [2] in the domain of image database re-

trieval). For each feature, the weak learner determines the

optimal threshold classification function, such that the min-

imum number of examples are misclassified. A weak clas-

sifier thus consists of a feature , a threshold and

a parity indicating the direction of the inequality sign:

if

otherwise

Here is a 24x24 pixel sub-window of an image. See Ta-

ble 1 for a summary of the boosting process.

In practice no single feature can perform the classifica-

tion task with low error. Features which are selected in early

rounds of the boosting process had error rates between 0.1

and 0.3. Features selected in later rounds, as the task be-

comes more difficult, yield error rates between 0.4 and 0.5.

3.1. Learning Discussion

Many general feature selection procedures have been pro-

posed (see chapter 8 of [18] for a review). Our final appli-

cation demanded a very aggressive approach which would

discard the vast majority of features. For a similar recogni-

tion problem Papageorgiou et al. proposed a scheme for fea-

ture selection based on feature variance [10]. They demon-

strated good results selecting 37 features out of a total 1734

features.

Roth et al. propose a feature selection process based

on the Winnow exponential perceptron learning rule [11].

TheWinnow learning process converges to a solution where

many of these weights are zero. Nevertheless a very large

3

We have a bunch of features. We certainly can’t use them all. So, we
let the boosting procedure select the best. But before we can do this,
we need to pair these features with a simple weak learner.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 13 / 62

Basic AdaBoost Weak Learners and Weak Classifiers

The sum of a particular rectangle can be computed in just 4
references using the integral image.

The value at point 1 is the sum
of the pixels in rectangle A.

Point 2 is A+B.

Point 3 is A+C.

Point 4 is A+B+C+D.

So, the sum within D alone is
4+1-2-3.

A

C

B

D

1

4

2

3

Figure 2: The sum of the pixels within rectangle can be

computed with four array references. The value of the inte-

gral image at location 1 is the sum of the pixels in rectangle

. The value at location 2 is , at location 3 is ,

and at location 4 is . The sum within can

be computed as .

where is the integral image and is the origi-

nal image. Using the following pair of recurrences:

(1)

(2)

(where is the cumulative row sum, ,

and) the integral image can be computed in

one pass over the original image.

Using the integral image any rectangular sum can be

computed in four array references (see Figure 2). Clearly

the difference between two rectangular sums can be com-

puted in eight references. Since the two-rectangle features

defined above involve adjacent rectangular sums they can

be computed in six array references, eight in the case of

the three-rectangle features, and nine for four-rectangle fea-

tures.

2.2. Feature Discussion

Rectangle features are somewhat primitive when compared

with alternatives such as steerable filters [5, 7]. Steerable fil-

ters, and their relatives, are excellent for the detailed analy-

sis of boundaries, image compression, and texture analysis.

In contrast rectangle features, while sensitive to the pres-

ence of edges, bars, and other simple image structure, are

quite coarse. Unlike steerable filters the only orientations

available are vertical, horizontal, and diagonal. The set of

rectangle features do however provide a rich image repre-

sentation which supports effective learning. In conjunction

with the integral image , the efficiency of the rectangle fea-

ture set provides ample compensation for their limited flex-

ibility.

3. Learning Classification Functions

Given a feature set and a training set of positive and neg-

ative images, any number of machine learning approaches

could be used to learn a classification function. In our sys-

tem a variant of AdaBoost is used both to select a small set

of features and train the classifier [6]. In its original form,

the AdaBoost learning algorithm is used to boost the clas-

sification performance of a simple (sometimes called weak)

learning algorithm. There are a number of formal guaran-

tees provided by the AdaBoost learning procedure. Freund

and Schapire proved that the training error of the strong

classifier approaches zero exponentially in the number of

rounds. More importantly a number of results were later

proved about generalization performance [14]. The key

insight is that generalization performance is related to the

margin of the examples, and that AdaBoost achieves large

margins rapidly.

Recall that there are over 180,000 rectangle features as-

sociated with each image sub-window, a number far larger

than the number of pixels. Even though each feature can

be computed very efficiently, computing the complete set is

prohibitively expensive. Our hypothesis, which is borne out

by experiment, is that a very small number of these features

can be combined to form an effective classifier. The main

challenge is to find these features.

In support of this goal, the weak learning algorithm is

designed to select the single rectangle feature which best

separates the positive and negative examples (this is similar

to the approach of [2] in the domain of image database re-

trieval). For each feature, the weak learner determines the

optimal threshold classification function, such that the min-

imum number of examples are misclassified. A weak clas-

sifier thus consists of a feature , a threshold and

a parity indicating the direction of the inequality sign:

if

otherwise

Here is a 24x24 pixel sub-window of an image. See Ta-

ble 1 for a summary of the boosting process.

In practice no single feature can perform the classifica-

tion task with low error. Features which are selected in early

rounds of the boosting process had error rates between 0.1

and 0.3. Features selected in later rounds, as the task be-

comes more difficult, yield error rates between 0.4 and 0.5.

3.1. Learning Discussion

Many general feature selection procedures have been pro-

posed (see chapter 8 of [18] for a review). Our final appli-

cation demanded a very aggressive approach which would

discard the vast majority of features. For a similar recogni-

tion problem Papageorgiou et al. proposed a scheme for fea-

ture selection based on feature variance [10]. They demon-

strated good results selecting 37 features out of a total 1734

features.

Roth et al. propose a feature selection process based

on the Winnow exponential perceptron learning rule [11].

TheWinnow learning process converges to a solution where

many of these weights are zero. Nevertheless a very large

3

We have a bunch of features. We certainly can’t use them all. So, we
let the boosting procedure select the best. But before we can do this,
we need to pair these features with a simple weak learner.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 13 / 62

Basic AdaBoost Weak Learners and Weak Classifiers

The sum of a particular rectangle can be computed in just 4
references using the integral image.

The value at point 1 is the sum
of the pixels in rectangle A.

Point 2 is A+B.

Point 3 is A+C.

Point 4 is A+B+C+D.

So, the sum within D alone is
4+1-2-3.

A

C

B

D

1

4

2

3

Figure 2: The sum of the pixels within rectangle can be

computed with four array references. The value of the inte-

gral image at location 1 is the sum of the pixels in rectangle

. The value at location 2 is , at location 3 is ,

and at location 4 is . The sum within can

be computed as .

where is the integral image and is the origi-

nal image. Using the following pair of recurrences:

(1)

(2)

(where is the cumulative row sum, ,

and) the integral image can be computed in

one pass over the original image.

Using the integral image any rectangular sum can be

computed in four array references (see Figure 2). Clearly

the difference between two rectangular sums can be com-

puted in eight references. Since the two-rectangle features

defined above involve adjacent rectangular sums they can

be computed in six array references, eight in the case of

the three-rectangle features, and nine for four-rectangle fea-

tures.

2.2. Feature Discussion

Rectangle features are somewhat primitive when compared

with alternatives such as steerable filters [5, 7]. Steerable fil-

ters, and their relatives, are excellent for the detailed analy-

sis of boundaries, image compression, and texture analysis.

In contrast rectangle features, while sensitive to the pres-

ence of edges, bars, and other simple image structure, are

quite coarse. Unlike steerable filters the only orientations

available are vertical, horizontal, and diagonal. The set of

rectangle features do however provide a rich image repre-

sentation which supports effective learning. In conjunction

with the integral image , the efficiency of the rectangle fea-

ture set provides ample compensation for their limited flex-

ibility.

3. Learning Classification Functions

Given a feature set and a training set of positive and neg-

ative images, any number of machine learning approaches

could be used to learn a classification function. In our sys-

tem a variant of AdaBoost is used both to select a small set

of features and train the classifier [6]. In its original form,

the AdaBoost learning algorithm is used to boost the clas-

sification performance of a simple (sometimes called weak)

learning algorithm. There are a number of formal guaran-

tees provided by the AdaBoost learning procedure. Freund

and Schapire proved that the training error of the strong

classifier approaches zero exponentially in the number of

rounds. More importantly a number of results were later

proved about generalization performance [14]. The key

insight is that generalization performance is related to the

margin of the examples, and that AdaBoost achieves large

margins rapidly.

Recall that there are over 180,000 rectangle features as-

sociated with each image sub-window, a number far larger

than the number of pixels. Even though each feature can

be computed very efficiently, computing the complete set is

prohibitively expensive. Our hypothesis, which is borne out

by experiment, is that a very small number of these features

can be combined to form an effective classifier. The main

challenge is to find these features.

In support of this goal, the weak learning algorithm is

designed to select the single rectangle feature which best

separates the positive and negative examples (this is similar

to the approach of [2] in the domain of image database re-

trieval). For each feature, the weak learner determines the

optimal threshold classification function, such that the min-

imum number of examples are misclassified. A weak clas-

sifier thus consists of a feature , a threshold and

a parity indicating the direction of the inequality sign:

if

otherwise

Here is a 24x24 pixel sub-window of an image. See Ta-

ble 1 for a summary of the boosting process.

In practice no single feature can perform the classifica-

tion task with low error. Features which are selected in early

rounds of the boosting process had error rates between 0.1

and 0.3. Features selected in later rounds, as the task be-

comes more difficult, yield error rates between 0.4 and 0.5.

3.1. Learning Discussion

Many general feature selection procedures have been pro-

posed (see chapter 8 of [18] for a review). Our final appli-

cation demanded a very aggressive approach which would

discard the vast majority of features. For a similar recogni-

tion problem Papageorgiou et al. proposed a scheme for fea-

ture selection based on feature variance [10]. They demon-

strated good results selecting 37 features out of a total 1734

features.

Roth et al. propose a feature selection process based

on the Winnow exponential perceptron learning rule [11].

TheWinnow learning process converges to a solution where

many of these weights are zero. Nevertheless a very large

3

We have a bunch of features. We certainly can’t use them all. So, we
let the boosting procedure select the best. But before we can do this,
we need to pair these features with a simple weak learner.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 13 / 62

Basic AdaBoost Weak Learners and Weak Classifiers

Each run, the weak learner is designed to select the single rectangle
feature which best separates the positive and negative examples.

The weak learner searches for the optimal threshold classification
function, such that the minimum number of examples are
misclassified.

The weak classifier ht(x) hence consists of the feature ft(x), a
threshold θt, and a parity pt indicating the direction of the inequality
sign:

ht(x) =

{
+1 if ptft(x) < ptθt

−1 otherwise.
(7)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 14 / 62

Basic AdaBoost The AdaBoost Classifier

The Strong AdaBoost Classifier

Let’s assume we have selected T weak classifiers and a scalar
constant αt associated with each:

h = {ht : t = 1, . . . , T} (8)

α = {αt : t = 1, . . . , T} (9)

Denote the inner product over all weak classifiers as F :

F (x) =
T∑
t=1

αtht(x) = 〈α, h(x)〉 (10)

Define the strong classifier as the sign of this inner product:

H(x) = sign [F (x)] = sign

[
T∑
t=1

αtht(x)

]
(11)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 15 / 62

Basic AdaBoost The AdaBoost Classifier

The Strong AdaBoost Classifier

Let’s assume we have selected T weak classifiers and a scalar
constant αt associated with each:

h = {ht : t = 1, . . . , T} (8)

α = {αt : t = 1, . . . , T} (9)

Denote the inner product over all weak classifiers as F :

F (x) =

T∑
t=1

αtht(x) = 〈α, h(x)〉 (10)

Define the strong classifier as the sign of this inner product:

H(x) = sign [F (x)] = sign

[
T∑
t=1

αtht(x)

]
(11)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 15 / 62

Basic AdaBoost The AdaBoost Classifier

The Strong AdaBoost Classifier

Let’s assume we have selected T weak classifiers and a scalar
constant αt associated with each:

h = {ht : t = 1, . . . , T} (8)

α = {αt : t = 1, . . . , T} (9)

Denote the inner product over all weak classifiers as F :

F (x) =

T∑
t=1

αtht(x) = 〈α, h(x)〉 (10)

Define the strong classifier as the sign of this inner product:

H(x) = sign [F (x)] = sign

[
T∑
t=1

αtht(x)

]
(11)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 15 / 62

Basic AdaBoost The AdaBoost Classifier

Our objective is to choose h and α to minimize the empirical
classification error of the strong classifier.

(h, α)∗ = argminErr(H;D) (12)

= argmin
1

m

m∑
i=1

δ(H(xi) 6= yi) (13)

Adaboost doesn’t directly minimize this error but rather minimizes an
upper bound on it.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 16 / 62

Basic AdaBoost The AdaBoost Classifier

Our objective is to choose h and α to minimize the empirical
classification error of the strong classifier.

(h, α)∗ = argminErr(H;D) (12)

= argmin
1

m

m∑
i=1

δ(H(xi) 6= yi) (13)

Adaboost doesn’t directly minimize this error but rather minimizes an
upper bound on it.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 16 / 62

Basic AdaBoost The AdaBoost Classifier

Illustration of AdaBoost Classifier

Weak Learner

Input

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 17 / 62

Basic AdaBoost The AdaBoost Algorithm

The Basic AdaBoost Algorithm

Given D = (xi, yi), . . . , (xm, ym) as before.
Initialize the distribution D1 to be uniform: D1(i) =

1
m .

Repeat for t = 1, . . . , T :

1 Learn weak classifier ht using distribution Dt.

For the example given, this requires you to learn the threshold and the
parity at each iteration given the current distribution Dt for the weak
classifier h over each feature:

1 Compute the weighted error for each weak classifier.

εt(h) =
m∑
i=1

Dt(i)δ(h(xi) 6= yi), ∀h (14)

2 Select the weak classifier with minimum error.

ht = argminh εt(h) (15)

Note, there are other ways of doing this step...

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 18 / 62

Basic AdaBoost The AdaBoost Algorithm

The Basic AdaBoost Algorithm

Given D = (xi, yi), . . . , (xm, ym) as before.
Initialize the distribution D1 to be uniform: D1(i) =

1
m .

Repeat for t = 1, . . . , T :

1 Learn weak classifier ht using distribution Dt.

For the example given, this requires you to learn the threshold and the
parity at each iteration given the current distribution Dt for the weak
classifier h over each feature:

1 Compute the weighted error for each weak classifier.

εt(h) =

m∑
i=1

Dt(i)δ(h(xi) 6= yi), ∀h (14)

2 Select the weak classifier with minimum error.

ht = argminh εt(h) (15)

Note, there are other ways of doing this step...

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 18 / 62

Basic AdaBoost The AdaBoost Algorithm

The Basic AdaBoost Algorithm

Given D = (xi, yi), . . . , (xm, ym) as before.
Initialize the distribution D1 to be uniform: D1(i) =

1
m .

Repeat for t = 1, . . . , T :

1 Learn weak classifier ht using distribution Dt.

For the example given, this requires you to learn the threshold and the
parity at each iteration given the current distribution Dt for the weak
classifier h over each feature:

1 Compute the weighted error for each weak classifier.

εt(h) =

m∑
i=1

Dt(i)δ(h(xi) 6= yi), ∀h (14)

2 Select the weak classifier with minimum error.

ht = argminh εt(h) (15)

Note, there are other ways of doing this step...

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 18 / 62

Basic AdaBoost The AdaBoost Algorithm

2 Set weight αt based on the error:

αt =
1

2
ln

(
1− εt(ht)
εt(ht)

)
(16)

3 Update the distribution based on the performance so far:

Dt+1(i) =
1

Zt
Dt(i) exp [−αtyiht(xi)] (17)

where Zt is a normalization factor to keep Dt+1 a distribution. Note
the careful evaluation of the term inside of the exp based on the
possible {−1,+1} values of the label.

One chooses T based on some established error criterion or some
fixed number.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 19 / 62

Basic AdaBoost The AdaBoost Algorithm

2 Set weight αt based on the error:

αt =
1

2
ln

(
1− εt(ht)
εt(ht)

)
(16)

3 Update the distribution based on the performance so far:

Dt+1(i) =
1

Zt
Dt(i) exp [−αtyiht(xi)] (17)

where Zt is a normalization factor to keep Dt+1 a distribution. Note
the careful evaluation of the term inside of the exp based on the
possible {−1,+1} values of the label.

One chooses T based on some established error criterion or some
fixed number.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 19 / 62

Basic AdaBoost The AdaBoost Algorithm

2 Set weight αt based on the error:

αt =
1

2
ln

(
1− εt(ht)
εt(ht)

)
(16)

3 Update the distribution based on the performance so far:

Dt+1(i) =
1

Zt
Dt(i) exp [−αtyiht(xi)] (17)

where Zt is a normalization factor to keep Dt+1 a distribution. Note
the careful evaluation of the term inside of the exp based on the
possible {−1,+1} values of the label.

One chooses T based on some established error criterion or some
fixed number.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 19 / 62

AdaBoost Analysis

Contents for AdaBoost Analysis

Facts about the weights and normalizing functions.

AdaBoost Convergence (why and how fast).

Why do we calculate the weight of each weak classifier to be

αt =
1

2
ln

1− εt(ht)
εt(ht)

?

Why do we choose the weak classifier that has the minimum weighted
error?

Testing Error Analysis.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 20 / 62

AdaBoost Analysis

Facts About the Weights
Weak Classifier Weights

The selected weight for each new weak classifier is always positive.

εt(ht) <
1

2
⇒ αt =

1

2
ln

1− εt(ht)
εt(ht)

> 0 (18)

The smaller the classification error, the bigger the weight and the
more this particular weak classifier will impact the final strong
classifier.

ε(hA) < ε(hB)⇒ αA > αB (19)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 21 / 62

AdaBoost Analysis

Facts About the Weights
Weak Classifier Weights

The selected weight for each new weak classifier is always positive.

εt(ht) <
1

2
⇒ αt =

1

2
ln

1− εt(ht)
εt(ht)

> 0 (18)

The smaller the classification error, the bigger the weight and the
more this particular weak classifier will impact the final strong
classifier.

ε(hA) < ε(hB)⇒ αA > αB (19)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 21 / 62

AdaBoost Analysis

Facts About the Weights
Data Sample Weights

The weights of the data points are multiplied by exp [−yiαtht(xi)].

exp [−yiαtht(xi)] =

{
exp [−αt] < 1 if ht(xi) = yi

exp [αt] > 1 if ht(xi) 6= yi
(20)

The weights of correctly classified points are reduced and the weights
of incorrectly classified points are increased. Hence, the incorrectly
classified points will receive more attention in the next run.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 22 / 62

AdaBoost Analysis

Facts About the Weights
Data Sample Weights

The weights of the data points are multiplied by exp [−yiαtht(xi)].

exp [−yiαtht(xi)] =

{
exp [−αt] < 1 if ht(xi) = yi

exp [αt] > 1 if ht(xi) 6= yi
(20)

The weights of correctly classified points are reduced and the weights
of incorrectly classified points are increased. Hence, the incorrectly
classified points will receive more attention in the next run.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 22 / 62

AdaBoost Analysis

The weight distribution can be computed recursively:

Dt+1(i) =
1

Zt
Dt(i) exp [−αtyiht(xi)] (21)

=
1

Zt−1Zt
Dt−1(i) exp

[
−yi
(
αtht(xi) + αt−1ht−1(xi)

)]
= . . .

=
1

Z1 . . . Zt
D1(i) exp

[
−yi
(
αtht(xi) + · · ·+ α1h1(xi)

)]

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 23 / 62

AdaBoost Analysis

Facts About the Normalizing Functions

At each iteration, the weights on the data points are normalized by

Zt =
∑
xi

Dt(xi) exp [−yiαiht(xi)] (22)

=
∑
xi∈A

Dt(xi) exp [−αt] +
∑
xi∈A

Dt(xi) exp [αt] (23)

where A is the set of correctly classified points: {xi : yi = ht(xi)}.

We can write these normalization factors as functions of αt, then:

Zt = Zt(αt) (24)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 24 / 62

AdaBoost Analysis

Facts About the Normalizing Functions

At each iteration, the weights on the data points are normalized by

Zt =
∑
xi

Dt(xi) exp [−yiαiht(xi)] (22)

=
∑
xi∈A

Dt(xi) exp [−αt] +
∑
xi∈A

Dt(xi) exp [αt] (23)

where A is the set of correctly classified points: {xi : yi = ht(xi)}.
We can write these normalization factors as functions of αt, then:

Zt = Zt(αt) (24)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 24 / 62

AdaBoost Analysis

Recall the data weights can be computed recursively:

Dt+1(i) =
1

Z1 . . . Zt

1

m
exp
[
−yiF (xi)

]
. (25)

And, since we know the data weights must sum to one, we have

m∑
i=1

Dt(xi) =
1

Z1 . . . Zt

1

m

m∑
i=1

exp
[
−yiF (xi)

]
= 1 (26)

Therefore, we can summarize this with a new normalizing function:

Z = Z1 . . . Zt =
1

m

m∑
i=1

exp
[
−yiF (xi)

]
. (27)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 25 / 62

AdaBoost Analysis

Recall the data weights can be computed recursively:

Dt+1(i) =
1

Z1 . . . Zt

1

m
exp
[
−yiF (xi)

]
. (25)

And, since we know the data weights must sum to one, we have

m∑
i=1

Dt(xi) =
1

Z1 . . . Zt

1

m

m∑
i=1

exp
[
−yiF (xi)

]
= 1 (26)

Therefore, we can summarize this with a new normalizing function:

Z = Z1 . . . Zt =
1

m

m∑
i=1

exp
[
−yiF (xi)

]
. (27)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 25 / 62

AdaBoost Analysis

Recall the data weights can be computed recursively:

Dt+1(i) =
1

Z1 . . . Zt

1

m
exp
[
−yiF (xi)

]
. (25)

And, since we know the data weights must sum to one, we have

m∑
i=1

Dt(xi) =
1

Z1 . . . Zt

1

m

m∑
i=1

exp
[
−yiF (xi)

]
= 1 (26)

Therefore, we can summarize this with a new normalizing function:

Z = Z1 . . . Zt =
1

m

m∑
i=1

exp
[
−yiF (xi)

]
. (27)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 25 / 62

AdaBoost Analysis AdaBoost Convergence

AdaBoost Convergence

Key Idea: AdaBoost minimizes an upper bound on the
classification error.

Claim: After t steps, the error of the strong classifier is bounded
above by quantity Z, as we just defined it (the product of the data
weight normalization factors):

Err(H) ≤ Z = Z(α, h) = Zt(αt, ht) . . . Z1(α1, h1) (28)

AdaBoost is a greedy algorithm that minimizes this upper bound on
the classification error by choosing the optimal ht and αt to minimize
Zt at each step.

(h, α)∗ = argminZ(α, h) (29)

(ht, αt)
∗ = argminZt(αt, ht) (30)

As Z goes to zero, the classification error goes to zero. Hence, it
converges. (But, we need to account for the case when no new weak

classifier has an error rate better than 0.5, upon which time we should stop.)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 26 / 62

AdaBoost Analysis AdaBoost Convergence

AdaBoost Convergence

Key Idea: AdaBoost minimizes an upper bound on the
classification error.
Claim: After t steps, the error of the strong classifier is bounded
above by quantity Z, as we just defined it (the product of the data
weight normalization factors):

Err(H) ≤ Z = Z(α, h) = Zt(αt, ht) . . . Z1(α1, h1) (28)

AdaBoost is a greedy algorithm that minimizes this upper bound on
the classification error by choosing the optimal ht and αt to minimize
Zt at each step.

(h, α)∗ = argminZ(α, h) (29)

(ht, αt)
∗ = argminZt(αt, ht) (30)

As Z goes to zero, the classification error goes to zero. Hence, it
converges. (But, we need to account for the case when no new weak

classifier has an error rate better than 0.5, upon which time we should stop.)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 26 / 62

AdaBoost Analysis AdaBoost Convergence

AdaBoost Convergence

Key Idea: AdaBoost minimizes an upper bound on the
classification error.
Claim: After t steps, the error of the strong classifier is bounded
above by quantity Z, as we just defined it (the product of the data
weight normalization factors):

Err(H) ≤ Z = Z(α, h) = Zt(αt, ht) . . . Z1(α1, h1) (28)

AdaBoost is a greedy algorithm that minimizes this upper bound on
the classification error by choosing the optimal ht and αt to minimize
Zt at each step.

(h, α)∗ = argminZ(α, h) (29)

(ht, αt)
∗ = argminZt(αt, ht) (30)

As Z goes to zero, the classification error goes to zero. Hence, it
converges. (But, we need to account for the case when no new weak

classifier has an error rate better than 0.5, upon which time we should stop.)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 26 / 62

AdaBoost Analysis AdaBoost Convergence

AdaBoost Convergence

Key Idea: AdaBoost minimizes an upper bound on the
classification error.
Claim: After t steps, the error of the strong classifier is bounded
above by quantity Z, as we just defined it (the product of the data
weight normalization factors):

Err(H) ≤ Z = Z(α, h) = Zt(αt, ht) . . . Z1(α1, h1) (28)

AdaBoost is a greedy algorithm that minimizes this upper bound on
the classification error by choosing the optimal ht and αt to minimize
Zt at each step.

(h, α)∗ = argminZ(α, h) (29)

(ht, αt)
∗ = argminZt(αt, ht) (30)

As Z goes to zero, the classification error goes to zero. Hence, it
converges. (But, we need to account for the case when no new weak

classifier has an error rate better than 0.5, upon which time we should stop.)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 26 / 62

AdaBoost Analysis AdaBoost Convergence

We need to show the claim on the error bound is true:

Err(H) =
1

m

m∑
i=1

δ(H(xi) 6= yi) ≤ Z =
1

m

m∑
i=1

exp [−yiF (xi)] (31)

Proof:

F (xi) = sign(F (xi))|F (xi)| (32)

= H(xi)|F (xi)| (33)

The two cases are:

If H(xi) 6= yi then the LHS = 1 ≤ RHS = e+|F (xi)|.
If H(xi) = yi then the LHS = 0 ≤ RHS = e−|F (xi)|.

So, the inequality holds for each term

δ(H(xi) 6= yi) ≤ exp [−yiF (xi)] (34)

and hence, the inequality is true.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 27 / 62

AdaBoost Analysis AdaBoost Convergence

We need to show the claim on the error bound is true:

Err(H) =
1

m

m∑
i=1

δ(H(xi) 6= yi) ≤ Z =
1

m

m∑
i=1

exp [−yiF (xi)] (31)

Proof:

F (xi) = sign(F (xi))|F (xi)| (32)

= H(xi)|F (xi)| (33)

The two cases are:

If H(xi) 6= yi then the LHS = 1 ≤ RHS = e+|F (xi)|.
If H(xi) = yi then the LHS = 0 ≤ RHS = e−|F (xi)|.

So, the inequality holds for each term

δ(H(xi) 6= yi) ≤ exp [−yiF (xi)] (34)

and hence, the inequality is true.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 27 / 62

AdaBoost Analysis AdaBoost Convergence

We need to show the claim on the error bound is true:

Err(H) =
1

m

m∑
i=1

δ(H(xi) 6= yi) ≤ Z =
1

m

m∑
i=1

exp [−yiF (xi)] (31)

Proof:

F (xi) = sign(F (xi))|F (xi)| (32)

= H(xi)|F (xi)| (33)

The two cases are:

If H(xi) 6= yi then the LHS = 1 ≤ RHS = e+|F (xi)|.
If H(xi) = yi then the LHS = 0 ≤ RHS = e−|F (xi)|.

So, the inequality holds for each term

δ(H(xi) 6= yi) ≤ exp [−yiF (xi)] (34)

and hence, the inequality is true.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 27 / 62

AdaBoost Analysis AdaBoost Convergence

We need to show the claim on the error bound is true:

Err(H) =
1

m

m∑
i=1

δ(H(xi) 6= yi) ≤ Z =
1

m

m∑
i=1

exp [−yiF (xi)] (31)

Proof:

F (xi) = sign(F (xi))|F (xi)| (32)

= H(xi)|F (xi)| (33)

The two cases are:

If H(xi) 6= yi then the LHS = 1 ≤ RHS = e+|F (xi)|.
If H(xi) = yi then the LHS = 0 ≤ RHS = e−|F (xi)|.

So, the inequality holds for each term

δ(H(xi) 6= yi) ≤ exp [−yiF (xi)] (34)

and hence, the inequality is true.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 27 / 62

AdaBoost Analysis AdaBoost Convergence

Weak Classifier Pursuit

Now, we want to explore how we are solving the step-wise
minimization problem:

(ht, αt)
∗ = argminZ(αt, ht) (35)

Recall, we can separate Z into two parts:

Zt(αt, ht) =
∑
xi∈A

Dt(xi) exp [−αt] +
∑
xi∈A

Dt(xi) exp [αt] (36)

where A is the set of correctly classified points: {xi : yi = ht(xi)}.

Take the derivative w.r.t. αt and set it to zero:

dZt(αt, ht)

dαt
=
∑
xi∈A

−Dt(xi) exp [−αt] +
∑
xi∈A

Dt(xi) exp [αt] = 0 (37)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 28 / 62

AdaBoost Analysis AdaBoost Convergence

Weak Classifier Pursuit

Now, we want to explore how we are solving the step-wise
minimization problem:

(ht, αt)
∗ = argminZ(αt, ht) (35)

Recall, we can separate Z into two parts:

Zt(αt, ht) =
∑
xi∈A

Dt(xi) exp [−αt] +
∑
xi∈A

Dt(xi) exp [αt] (36)

where A is the set of correctly classified points: {xi : yi = ht(xi)}.
Take the derivative w.r.t. αt and set it to zero:

dZt(αt, ht)

dαt
=
∑
xi∈A

−Dt(xi) exp [−αt] +
∑
xi∈A

Dt(xi) exp [αt] = 0 (37)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 28 / 62

AdaBoost Analysis AdaBoost Convergence

dZt(αt, ht)

dαt
=
∑
xi∈A

−Dt(xi) exp [−αt] +
∑
xi∈A

Dt(xi) exp [αt] = 0 (38)

∑
xi∈A

Dt(xi) =
∑
xi∈A

Dt(xi) exp [2αt] (39)

And, by definition, we can write the error as

εt(h) =

m∑
i=1

Dt(xi)δ(h(xi) 6= yi) =
∑
xi∈A

Dt(xi), ∀h (40)

Rewriting (39) and solving for αt yields

αt =
1

2
ln

1− εt(ht)
εt(ht)

(41)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 29 / 62

AdaBoost Analysis AdaBoost Convergence

dZt(αt, ht)

dαt
=
∑
xi∈A

−Dt(xi) exp [−αt] +
∑
xi∈A

Dt(xi) exp [αt] = 0 (38)

∑
xi∈A

Dt(xi) =
∑
xi∈A

Dt(xi) exp [2αt] (39)

And, by definition, we can write the error as

εt(h) =

m∑
i=1

Dt(xi)δ(h(xi) 6= yi) =
∑
xi∈A

Dt(xi), ∀h (40)

Rewriting (39) and solving for αt yields

αt =
1

2
ln

1− εt(ht)
εt(ht)

(41)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 29 / 62

AdaBoost Analysis AdaBoost Convergence

dZt(αt, ht)

dαt
=
∑
xi∈A

−Dt(xi) exp [−αt] +
∑
xi∈A

Dt(xi) exp [αt] = 0 (38)

∑
xi∈A

Dt(xi) =
∑
xi∈A

Dt(xi) exp [2αt] (39)

And, by definition, we can write the error as

εt(h) =

m∑
i=1

Dt(xi)δ(h(xi) 6= yi) =
∑
xi∈A

Dt(xi), ∀h (40)

Rewriting (39) and solving for αt yields

αt =
1

2
ln

1− εt(ht)
εt(ht)

(41)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 29 / 62

AdaBoost Analysis AdaBoost Convergence

We can plug it back into the normalization term to get the minimum:

Zt(αt, ht) =
∑
xi∈A

Dt(xi) exp [−αt] +
∑
xi∈A

Dt(xi) exp [αt] (42)

= (1− εt(ht))

√
εt(ht)

1− εt(ht)
+ εt(ht)

√
1− εt(ht)
εt(ht)

(43)

= 2
√
εt(ht)(1− εt(ht)) (44)

Change a variable, γt =
1
2 − εt(ht), γt ∈ (0, 12].

Then, we have the minimum to be

Zt(αt, ht) = 2
√
εt(ht)(1− εt(ht)) (45)

=
√
1− 4γ2t (46)

≤ exp
[
−2γ2t

]
(47)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 30 / 62

AdaBoost Analysis AdaBoost Convergence

We can plug it back into the normalization term to get the minimum:

Zt(αt, ht) =
∑
xi∈A

Dt(xi) exp [−αt] +
∑
xi∈A

Dt(xi) exp [αt] (42)

= (1− εt(ht))

√
εt(ht)

1− εt(ht)
+ εt(ht)

√
1− εt(ht)
εt(ht)

(43)

= 2
√
εt(ht)(1− εt(ht)) (44)

Change a variable, γt =
1
2 − εt(ht), γt ∈ (0, 12].

Then, we have the minimum to be

Zt(αt, ht) = 2
√
εt(ht)(1− εt(ht)) (45)

=
√
1− 4γ2t (46)

≤ exp
[
−2γ2t

]
(47)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 30 / 62

AdaBoost Analysis AdaBoost Convergence

We can plug it back into the normalization term to get the minimum:

Zt(αt, ht) =
∑
xi∈A

Dt(xi) exp [−αt] +
∑
xi∈A

Dt(xi) exp [αt] (42)

= (1− εt(ht))

√
εt(ht)

1− εt(ht)
+ εt(ht)

√
1− εt(ht)
εt(ht)

(43)

= 2
√
εt(ht)(1− εt(ht)) (44)

Change a variable, γt =
1
2 − εt(ht), γt ∈ (0, 12].

Then, we have the minimum to be

Zt(αt, ht) = 2
√
εt(ht)(1− εt(ht)) (45)

=
√

1− 4γ2t (46)

≤ exp
[
−2γ2t

]
(47)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 30 / 62

AdaBoost Analysis AdaBoost Convergence

Therefore, after t steps, the error rate of the strong classifier is
bounded on top by

Err(H) ≤ Z ≤ exp

[
−2

T∑
t=1

γ2t

]
(48)

Hence, each step decreases the upper bound exponentially.

And, a weak classifier with small error rate will lead to faster descent.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 31 / 62

AdaBoost Analysis AdaBoost Convergence

Therefore, after t steps, the error rate of the strong classifier is
bounded on top by

Err(H) ≤ Z ≤ exp

[
−2

T∑
t=1

γ2t

]
(48)

Hence, each step decreases the upper bound exponentially.

And, a weak classifier with small error rate will lead to faster descent.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 31 / 62

AdaBoost Analysis AdaBoost Convergence

Therefore, after t steps, the error rate of the strong classifier is
bounded on top by

Err(H) ≤ Z ≤ exp

[
−2

T∑
t=1

γ2t

]
(48)

Hence, each step decreases the upper bound exponentially.

And, a weak classifier with small error rate will lead to faster descent.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 31 / 62

AdaBoost Analysis AdaBoost Convergence

Summary of AdaBoost Convergence

The objective of AdaBoost is to minimize an upper bound on the
classification error:

(α, h)∗ = argminZ(α, h) (49)

= argminZt(αt, ht) . . . Z1(α1, h1) (50)

= argmin
m∑
i=1

exp [−yi〈α, h(xi)〉] (51)

AdaBoost takes a stepwise minimization scheme, which may not be
optimal (it is greedy). When we calculate the parameter for the tth

weak classifier, the others remain set.

We should stop AdaBoost if all of the weak classifiers have an error
rate of 1

2 .

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 32 / 62

AdaBoost Analysis Test Error Analysis (From Schapire’s Slides)

How Will Test Error Behave? (A First Guess)How Will Test Error Behave? (A First Guess)How Will Test Error Behave? (A First Guess)How Will Test Error Behave? (A First Guess)How Will Test Error Behave? (A First Guess)

20 40 60 80 100

0.2

0.4

0.6

0.8

1

of rounds (

er
ro

r

T)

train

test

expect:

• training error to continue to drop (or reach zero)

• test error to increase when Hfinal becomes “too complex”
• “Occam’s razor”
• overfitting

• hard to know when to stop training

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 33 / 62

AdaBoost Analysis Test Error Analysis (From Schapire’s Slides)

Actual Typical RunActual Typical RunActual Typical RunActual Typical RunActual Typical Run

10 100 1000
0

5

10

15

20

of rounds (T

C4.5 test error

)

train

test

er
ro

r

(boosting C4.5 on
“letter” dataset)

• test error does not increase, even after 1000 rounds
• (total size > 2,000,000 nodes)

• test error continues to drop even after training error is zero!

rounds
5 100 1000

train error 0.0 0.0 0.0

test error 8.4 3.3 3.1

• Occam’s razor wrongly predicts “simpler” rule is better

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 34 / 62

AdaBoost Analysis Test Error Analysis (From Schapire’s Slides)

A Better Story: The Margins ExplanationA Better Story: The Margins ExplanationA Better Story: The Margins ExplanationA Better Story: The Margins ExplanationA Better Story: The Margins Explanation
[with Freund, Bartlett & Lee]

• key idea:
• training error only measures whether classifications are

right or wrong
• should also consider confidence of classifications

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 35 / 62

AdaBoost Analysis Test Error Analysis (From Schapire’s Slides)

A Better Story: The Margins ExplanationA Better Story: The Margins ExplanationA Better Story: The Margins ExplanationA Better Story: The Margins ExplanationA Better Story: The Margins Explanation
[with Freund, Bartlett & Lee]

• key idea:
• training error only measures whether classifications are

right or wrong
• should also consider confidence of classifications

• recall: Hfinal is weighted majority vote of weak classifiers

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 36 / 62

AdaBoost Analysis Test Error Analysis (From Schapire’s Slides)

A Better Story: The Margins ExplanationA Better Story: The Margins ExplanationA Better Story: The Margins ExplanationA Better Story: The Margins ExplanationA Better Story: The Margins Explanation
[with Freund, Bartlett & Lee]

• key idea:
• training error only measures whether classifications are

right or wrong
• should also consider confidence of classifications

• recall: Hfinal is weighted majority vote of weak classifiers

• measure confidence by margin = strength of the vote
= (fraction voting correctly)− (fraction voting incorrectly)

correctincorrect

correctincorrect

0

high conf. high conf.
low conf.

−1 +1
final

H
final

H

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 37 / 62

AdaBoost Analysis Test Error Analysis (From Schapire’s Slides)

Empirical Evidence: The Margin DistributionEmpirical Evidence: The Margin DistributionEmpirical Evidence: The Margin DistributionEmpirical Evidence: The Margin DistributionEmpirical Evidence: The Margin Distribution

• margin distribution
= cumulative distribution of margins of training examples

10 100 1000
0

5

10

15

20

er
ro

r

test

train

)T# of rounds (
-1 -0.5 0.5 1

0.5

1.0

cu
m

ul
at

iv
e

di
st

ri
bu

tio
n

1000
100

margin

5

rounds
5 100 1000

train error 0.0 0.0 0.0

test error 8.4 3.3 3.1

% margins ≤ 0.5 7.7 0.0 0.0

minimum margin 0.14 0.52 0.55

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 38 / 62

AdaBoost Analysis Test Error Analysis (From Schapire’s Slides)

Theoretical Evidence: Analyzing Boosting Using MarginsTheoretical Evidence: Analyzing Boosting Using MarginsTheoretical Evidence: Analyzing Boosting Using MarginsTheoretical Evidence: Analyzing Boosting Using MarginsTheoretical Evidence: Analyzing Boosting Using Margins

• Theorem: large margins ⇒ better bound on generalization
error (independent of number of rounds)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 39 / 62

AdaBoost Analysis Test Error Analysis (From Schapire’s Slides)

Theoretical Evidence: Analyzing Boosting Using MarginsTheoretical Evidence: Analyzing Boosting Using MarginsTheoretical Evidence: Analyzing Boosting Using MarginsTheoretical Evidence: Analyzing Boosting Using MarginsTheoretical Evidence: Analyzing Boosting Using Margins

• Theorem: large margins ⇒ better bound on generalization
error (independent of number of rounds)

• proof idea: if all margins are large, then can approximate
final classifier by a much smaller classifier (just as polls
can predict not-too-close election)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 40 / 62

AdaBoost Analysis Test Error Analysis (From Schapire’s Slides)

Theoretical Evidence: Analyzing Boosting Using MarginsTheoretical Evidence: Analyzing Boosting Using MarginsTheoretical Evidence: Analyzing Boosting Using MarginsTheoretical Evidence: Analyzing Boosting Using MarginsTheoretical Evidence: Analyzing Boosting Using Margins

• Theorem: large margins ⇒ better bound on generalization
error (independent of number of rounds)

• proof idea: if all margins are large, then can approximate
final classifier by a much smaller classifier (just as polls
can predict not-too-close election)

• Theorem: boosting tends to increase margins of training
examples (given weak learning assumption)

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 41 / 62

AdaBoost Analysis Test Error Analysis (From Schapire’s Slides)

Theoretical Evidence: Analyzing Boosting Using MarginsTheoretical Evidence: Analyzing Boosting Using MarginsTheoretical Evidence: Analyzing Boosting Using MarginsTheoretical Evidence: Analyzing Boosting Using MarginsTheoretical Evidence: Analyzing Boosting Using Margins

• Theorem: large margins ⇒ better bound on generalization
error (independent of number of rounds)

• proof idea: if all margins are large, then can approximate
final classifier by a much smaller classifier (just as polls
can predict not-too-close election)

• Theorem: boosting tends to increase margins of training
examples (given weak learning assumption)

• proof idea: similar to training error proof

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 42 / 62

AdaBoost Analysis Test Error Analysis (From Schapire’s Slides)

Theoretical Evidence: Analyzing Boosting Using MarginsTheoretical Evidence: Analyzing Boosting Using MarginsTheoretical Evidence: Analyzing Boosting Using MarginsTheoretical Evidence: Analyzing Boosting Using MarginsTheoretical Evidence: Analyzing Boosting Using Margins

• Theorem: large margins ⇒ better bound on generalization
error (independent of number of rounds)

• proof idea: if all margins are large, then can approximate
final classifier by a much smaller classifier (just as polls
can predict not-too-close election)

• Theorem: boosting tends to increase margins of training
examples (given weak learning assumption)

• proof idea: similar to training error proof

• so:
although final classifier is getting larger,
margins are likely to be increasing,
so final classifier actually getting close to a simpler classifier,
driving down the test error

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 43 / 62

AdaBoost Analysis Test Error Analysis (From Schapire’s Slides)

More Technically...More Technically...More Technically...More Technically...More Technically...

• with high probability, ∀θ > 0 :

generalization error ≤ P̂r[margin ≤ θ] + Õ

(

√

d/m

θ

)

(P̂r[] = empirical probability)

• bound depends on

• m = # training examples
• d = “complexity” of weak classifiers
• entire distribution of margins of training examples

• P̂r[margin ≤ θ]→ 0 exponentially fast (in T) if
(error of ht on Dt) < 1/2− θ (∀t)

• so: if weak learning assumption holds, then all examples
will quickly have “large” margins

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 44 / 62

AdaBoost Recap

Summary of Basic AdaBoost

AdaBoost is a sequential algorithm that minimizes an upper bound of
the empirical classification error by selecting the weak classifiers and
their weights. These are “pursued” one-by-one with each one being
selected to maximally reduce the upper bound of error.

AdaBoost defines a distribution of weights over the data samples.
These weights are updated each time a new weak classifier is added
such that samples misclassified by this new weak classifiers are given
more weight. In this manner, currently misclassified samples are
emphasized more during the selection of the subsequent weak
classifier.

The empirical error will converge to zero at an exponential rate.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 45 / 62

AdaBoost Recap

Summary of Basic AdaBoost

AdaBoost is a sequential algorithm that minimizes an upper bound of
the empirical classification error by selecting the weak classifiers and
their weights. These are “pursued” one-by-one with each one being
selected to maximally reduce the upper bound of error.

AdaBoost defines a distribution of weights over the data samples.
These weights are updated each time a new weak classifier is added
such that samples misclassified by this new weak classifiers are given
more weight. In this manner, currently misclassified samples are
emphasized more during the selection of the subsequent weak
classifier.

The empirical error will converge to zero at an exponential rate.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 45 / 62

AdaBoost Recap

Summary of Basic AdaBoost

AdaBoost is a sequential algorithm that minimizes an upper bound of
the empirical classification error by selecting the weak classifiers and
their weights. These are “pursued” one-by-one with each one being
selected to maximally reduce the upper bound of error.

AdaBoost defines a distribution of weights over the data samples.
These weights are updated each time a new weak classifier is added
such that samples misclassified by this new weak classifiers are given
more weight. In this manner, currently misclassified samples are
emphasized more during the selection of the subsequent weak
classifier.

The empirical error will converge to zero at an exponential rate.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 45 / 62

AdaBoost Recap

Practical AdaBoost Advantages

It is fast to evaluate (linear-additive) and can be fast to train
(depending on weak learner).

T is the only parameter to tune.

It is flexible and can be combined with any weak learner.

It is provably effective if it can consistently find the weak classifiers
(that do better than random).

Since it can work with any weak learner, it can handle the gamut of
data.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 46 / 62

AdaBoost Recap

AdaBoost Caveats

Performance depends on the data and the weak learner.

It can fail if

The weak classifiers are too complex and overfit.

The weak classifiers are too weak, essentially underfitting.

AdaBoost seems, empirically, to be especially susceptible to uniform
noise.

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 47 / 62

AdaBoost Recap The Coordinate Descent View of AdaBoost (from Schapire)

Coordinate DescentCoordinate DescentCoordinate DescentCoordinate DescentCoordinate Descent
[Breiman]

• {g1, . . . , gN} = space of all weak classifiers

• want to find λ1, . . . , λN to minimize

L(λ1, . . . , λN) =
∑

i

exp



−yi

∑

j

λjgj(xi)





J. Corso (SUNY at Buffalo) Boosting and AdaBoost 48 / 62

AdaBoost Recap The Coordinate Descent View of AdaBoost (from Schapire)

Coordinate DescentCoordinate DescentCoordinate DescentCoordinate DescentCoordinate Descent
[Breiman]

• {g1, . . . , gN} = space of all weak classifiers

• want to find λ1, . . . , λN to minimize

L(λ1, . . . , λN) =
∑

i

exp



−yi

∑

j

λjgj(xi)





• AdaBoost is actually doing coordinate descent on this
optimization problem:

• initially, all λj = 0
• each round: choose one coordinate λj (corresponding to

ht) and update (increment by αt)
• choose update causing biggest decrease in loss

• powerful technique for minimizing over huge space of
functions

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 49 / 62

AdaBoost for Estimating Conditional Probabilities

Estimating Conditional ProbabilitiesEstimating Conditional ProbabilitiesEstimating Conditional ProbabilitiesEstimating Conditional ProbabilitiesEstimating Conditional Probabilities
[Friedman, Hastie & Tibshirani]

• often want to estimate probability that y = +1 given x

• AdaBoost minimizes (empirical version of):

Ex ,y

[

e−yf (x)
]

= Ex

[

P [y = +1|x] e−f (x) + P [y = −1|x] ef (x)
]

where x , y random from true distribution

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 50 / 62

AdaBoost for Estimating Conditional Probabilities

Estimating Conditional ProbabilitiesEstimating Conditional ProbabilitiesEstimating Conditional ProbabilitiesEstimating Conditional ProbabilitiesEstimating Conditional Probabilities
[Friedman, Hastie & Tibshirani]

• often want to estimate probability that y = +1 given x

• AdaBoost minimizes (empirical version of):

Ex ,y

[

e−yf (x)
]

= Ex

[

P [y = +1|x] e−f (x) + P [y = −1|x] ef (x)
]

where x , y random from true distribution

• over all f , minimized when

f (x) =
1

2
· ln

(

P [y = +1|x]

P [y = −1|x]

)

or

P [y = +1|x] =
1

1 + e−2f (x)

• so, to convert f output by AdaBoost to probability estimate,
use same formula

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 51 / 62

Multiclass AdaBoost From Schapire’s Slides

Multiclass ProblemsMulticlass ProblemsMulticlass ProblemsMulticlass ProblemsMulticlass Problems
[with Freund]

• say y ∈ Y = {1, . . . , k}
• direct approach (AdaBoost.M1):

ht : X → Y

Dt+1(i) =
Dt(i)

Zt

·

{

e−αt if yi = ht(xi)
eαt if yi 6= ht(xi)

Hfinal(x) = arg max
y∈Y

∑

t:ht(x)=y

αt

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 52 / 62

Multiclass AdaBoost From Schapire’s Slides

Multiclass ProblemsMulticlass ProblemsMulticlass ProblemsMulticlass ProblemsMulticlass Problems
[with Freund]

• say y ∈ Y = {1, . . . , k}
• direct approach (AdaBoost.M1):

ht : X → Y

Dt+1(i) =
Dt(i)

Zt

·

{

e−αt if yi = ht(xi)
eαt if yi 6= ht(xi)

Hfinal(x) = arg max
y∈Y

∑

t:ht(x)=y

αt

• can prove same bound on error if ∀t : εt ≤ 1/2

• in practice, not usually a problem for “strong” weak
learners (e.g., C4.5)

• significant problem for “weak” weak learners (e.g.,
decision stumps)

• instead, reduce to binary
J. Corso (SUNY at Buffalo) Boosting and AdaBoost 53 / 62

Multiclass AdaBoost From Schapire’s Slides

Reducing Multiclass to BinaryReducing Multiclass to BinaryReducing Multiclass to BinaryReducing Multiclass to BinaryReducing Multiclass to Binary
[with Singer]

• say possible labels are {a, b, c, d, e}

• each training example replaced by five {−1,+1}-labeled
examples:

x , c →























(x , a) , −1
(x , b) , −1
(x , c) , +1
(x , d) , −1
(x , e) , −1

• predict with label receiving most (weighted) votes

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 54 / 62

Applications

AdaBoost for Face Detection

Viola and Jones 2000-2002.
Given example images where

for negative and positive examples respec-

tively.

Initialize weights for respec-

tively, where and are the number of negatives and

positives respectively.

For :

1. Normalize the weights,

so that is a probability distribution.

2. For each feature, , train a classifi er which

is restricted to using a single feature. The

error is evaluated with respect to ,

.

3. Choose the classifi er, , with the lowest error .

4. Update the weights:

where if example is classifi ed cor-

rectly, otherwise, and .

The fi nal strong classifi er is:

otherwise

where

Table 1: The AdaBoost algorithm for classifier learn-

ing. Each round of boosting selects one feature from the

180,000 potential features.

number of features are retained (perhaps a few hundred or

thousand).

3.2. Learning Results

While details on the training and performance of the final

system are presented in Section 5, several simple results

merit discussion. Initial experiments demonstrated that a

frontal face classifier constructed from 200 features yields

a detection rate of 95% with a false positive rate of 1 in

14084. These results are compelling, but not sufficient for

many real-world tasks. In terms of computation, this clas-

sifier is probably faster than any other published system,

requiring 0.7 seconds to scan an 384 by 288 pixel image.

Unfortunately, the most straightforward technique for im-

proving detection performance, adding features to the clas-

sifier, directly increases computation time.

For the task of face detection, the initial rectangle fea-

tures selected by AdaBoost are meaningful and easily inter-

preted. The first feature selected seems to focus on the prop-

erty that the region of the eyes is often darker than the region

Figure 3: The first and second features selected by Ad-

aBoost. The two features are shown in the top row and then

overlayed on a typical training face in the bottom row. The

first feature measures the difference in intensity between the

region of the eyes and a region across the upper cheeks. The

feature capitalizes on the observation that the eye region is

often darker than the cheeks. The second feature compares

the intensities in the eye regions to the intensity across the

bridge of the nose.

of the nose and cheeks (see Figure 3). This feature is rel-

atively large in comparison with the detection sub-window,

and should be somewhat insensitive to size and location of

the face. The second feature selected relies on the property

that the eyes are darker than the bridge of the nose.

4. The Attentional Cascade

This section describes an algorithm for constructing a cas-

cade of classifiers which achieves increased detection per-

formance while radically reducing computation time. The

key insight is that smaller, and therefore more efficient,

boosted classifiers can be constructed which reject many of

the negative sub-windows while detecting almost all posi-

tive instances (i.e. the threshold of a boosted classifier can

be adjusted so that the false negative rate is close to zero).

Simpler classifiers are used to reject the majority of sub-

windows before more complex classifiers are called upon

to achieve low false positive rates.

The overall form of the detection process is that of a de-

generate decision tree, what we call a “cascade” (see Fig-

ure 4). A positive result from the first classifier triggers the

evaluation of a second classifier which has also been ad-

justed to achieve very high detection rates. A positive result

from the second classifier triggers a third classifier, and so

on. A negative outcome at any point leads to the immediate

rejection of the sub-window.

Stages in the cascade are constructed by training clas-

sifiers using AdaBoost and then adjusting the threshold to

minimize false negatives. Note that the default AdaBoost

threshold is designed to yield a low error rate on the train-

ing data. In general a lower threshold yields higher detec-

4

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 55 / 62

Applications

Figure 7: Output of our face detector on a number of test images from the MIT+CMU test set.

Figure 6: ROC curve for our face detector on the

MIT+CMU test set. The detector was run using a step size

of 1.0 and starting scale of 1.0 (75,081,800 sub-windows

scanned).

have broader application in computer vision and image pro-

cessing.

Finally this paper presents a set of detailed experiments

on a difficult face detection dataset which has been widely

studied. This dataset includes faces under a very wide range

of conditions including: illumination, scale, pose, and cam-

era variation. Experiments on such a large and complex

dataset are difficult and time consuming. Nevertheless sys-

tems which work under these conditions are unlikely to be

brittle or limited to a single set of conditions. More impor-

tantly conclusions drawn from this dataset are unlikely to

be experimental artifacts.

References

[1] Y. Amit, D. Geman, and K. Wilder. Joint induction of shape

features and tree classifi ers, 1997.

[2] Anonymous. Anonymous. In Anonymous, 2000.

[3] F. Crow. Summed-area tables for texture mapping. In

Proceedings of SIGGRAPH, volume 18(3), pages 207–212,

1984.

[4] F. Fleuret and D. Geman. Coarse-to-fi ne face detection. Int.

J. Computer Vision, 2001.

[5] William T. Freeman and Edward H. Adelson. The design

and use of steerable fi lters. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 13(9):891–906, 1991.

[6] Yoav Freund and Robert E. Schapire. A decision-theoretic

generalization of on-line learning and an application to

boosting. In Computational Learning Theory: Eurocolt ’95,

pages 23–37. Springer-Verlag, 1995.

[7] H. Greenspan, S. Belongie, R. Gooodman, P. Perona, S. Rak-

shit, and C. Anderson. Overcomplete steerable pyramid fi l-

ters and rotation invariance. In Proceedings of the IEEECon-

ference on Computer Vision and Pattern Recognition, 1994.

[8] L. Itti, C. Koch, and E. Niebur. A model of saliency-based

visual attention for rapid scene analysis. IEEE Patt. Anal.

Mach. Intell., 20(11):1254–1259, November 1998.

[9] Edgar Osuna, Robert Freund, and Federico Girosi. Training

support vector machines: an application to face detection.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 1997.

[10] C. Papageorgiou, M. Oren, and T. Poggio. A general frame-

work for object detection. In International Conference on

Computer Vision, 1998.

[11] D. Roth, M. Yang, and N. Ahuja. A snowbased face detector.

In Neural Information Processing 12, 2000.

[12] H. Rowley, S. Baluja, and T. Kanade. Neural network-based

face detection. In IEEE Patt. Anal. Mach. Intell., volume 20,

pages 22–38, 1998.

[13] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boost-

ing the margin: a new explanation for the effectiveness of

voting methods. Ann. Stat., 26(5):1651–1686, 1998.

[14] Robert E. Schapire, Yoav Freund, Peter Bartlett, and

Wee Sun Lee. Boosting the margin: A new explanation for

the effectiveness of voting methods. In Proceedings of the

Fourteenth International Conference on Machine Learning,

1997.

[15] H. Schneiderman and T. Kanade. A statistical method for 3D

object detection applied to faces and cars. In International

Conference on Computer Vision, 2000.

8

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 56 / 62

Applications

Figure 7: Output of our face detector on a number of test images from the MIT+CMU test set.

Figure 6: ROC curve for our face detector on the

MIT+CMU test set. The detector was run using a step size

of 1.0 and starting scale of 1.0 (75,081,800 sub-windows

scanned).

have broader application in computer vision and image pro-

cessing.

Finally this paper presents a set of detailed experiments

on a difficult face detection dataset which has been widely

studied. This dataset includes faces under a very wide range

of conditions including: illumination, scale, pose, and cam-

era variation. Experiments on such a large and complex

dataset are difficult and time consuming. Nevertheless sys-

tems which work under these conditions are unlikely to be

brittle or limited to a single set of conditions. More impor-

tantly conclusions drawn from this dataset are unlikely to

be experimental artifacts.

References

[1] Y. Amit, D. Geman, and K. Wilder. Joint induction of shape

features and tree classifi ers, 1997.

[2] Anonymous. Anonymous. In Anonymous, 2000.

[3] F. Crow. Summed-area tables for texture mapping. In

Proceedings of SIGGRAPH, volume 18(3), pages 207–212,

1984.

[4] F. Fleuret and D. Geman. Coarse-to-fi ne face detection. Int.

J. Computer Vision, 2001.

[5] William T. Freeman and Edward H. Adelson. The design

and use of steerable fi lters. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 13(9):891–906, 1991.

[6] Yoav Freund and Robert E. Schapire. A decision-theoretic

generalization of on-line learning and an application to

boosting. In Computational Learning Theory: Eurocolt ’95,

pages 23–37. Springer-Verlag, 1995.

[7] H. Greenspan, S. Belongie, R. Gooodman, P. Perona, S. Rak-

shit, and C. Anderson. Overcomplete steerable pyramid fi l-

ters and rotation invariance. In Proceedings of the IEEECon-

ference on Computer Vision and Pattern Recognition, 1994.

[8] L. Itti, C. Koch, and E. Niebur. A model of saliency-based

visual attention for rapid scene analysis. IEEE Patt. Anal.

Mach. Intell., 20(11):1254–1259, November 1998.

[9] Edgar Osuna, Robert Freund, and Federico Girosi. Training

support vector machines: an application to face detection.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 1997.

[10] C. Papageorgiou, M. Oren, and T. Poggio. A general frame-

work for object detection. In International Conference on

Computer Vision, 1998.

[11] D. Roth, M. Yang, and N. Ahuja. A snowbased face detector.

In Neural Information Processing 12, 2000.

[12] H. Rowley, S. Baluja, and T. Kanade. Neural network-based

face detection. In IEEE Patt. Anal. Mach. Intell., volume 20,

pages 22–38, 1998.

[13] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boost-

ing the margin: a new explanation for the effectiveness of

voting methods. Ann. Stat., 26(5):1651–1686, 1998.

[14] Robert E. Schapire, Yoav Freund, Peter Bartlett, and

Wee Sun Lee. Boosting the margin: A new explanation for

the effectiveness of voting methods. In Proceedings of the

Fourteenth International Conference on Machine Learning,

1997.

[15] H. Schneiderman and T. Kanade. A statistical method for 3D

object detection applied to faces and cars. In International

Conference on Computer Vision, 2000.

8

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 57 / 62

Applications

AdaBoost for Car and Pedestrian Detection

F. Moutarde, B. Stanciulescu, and A. Breheret. Real-time visual
detection of vehicles and pedestrians with new efficient AdaBoost
features. 2008.
They define a different pixel level “connected control point” feature.

Abstract— This paper deals with real-time visual detection,

by mono-camera, of objects categories such as cars and

pedestrians. We report on improvements that can be obtained

for this task, in complex applications such as advanced driving

assistance systems, by using new visual features as adaBoost

weak classifiers. These new features, the “connected control-

points” have recently been shown to give very good results on

real-time visual rear car detection. We here report on results

obtained by applying these new features to a public lateral car

images dataset, and a public pedestrian images database. We

show that our new features consistently outperform previously

published results on these databases, while still operating fast

enough for real-time pedestrians and vehicles detection.

I. INTRODUCTION AND RELATED WORK

UTONOMOUS vehicles, as well as most Advanced

Driving Assistance System (ADAS) functions, require

real-time perception analysis. This environment perception

can be done using various sensors such as lidars, radars,

ultrasonic devices, etc… However, compared to other

sensors, visual perception can provide very rich information

for very low equipment costs, if an abstract enough scene

analysis can be conducted in real-time.

One of the key bricks required for such an automated

scene analysis is efficient visual detection of most common

moving objects in car environment: vehicles and pedestrians.

Many techniques have been proposed for visual object

detection and classification (see eg [10] for a review of some

of the state-of-the-art methods for pedestrian detection,

which is the most challenging). Of the various machine-

learning approaches applied to this problem, only few are

able to process videos in real-time. Among those last ones,

the boosting algorithm with feature selection was

successfully extended to machine-vision by Viola & Jones

[4][5]. The adaBoost algorithm was introduced in 1995 by

Y. Freund and R. Shapire [1][2], and its principle is to build

a strong classifier, assembling weighted weak classifiers,

those being obtained iteratively by using successive

weighting of the examples in the training set.

Most published works using adaBoost for visual object

class detection are using the Haar-like features initially

proposed by Viola & Jones for face and pedestrian detection.

Manuscript received June 10, 2008.

F. Moutarde, B. Stanciulescu and A. Breheret are all with the Robotics

Laboratory of Mines ParisTech, 60 Bd St Michel, 75006 Paris, FRANCE

(33-1-40.51.92.92, {Fabien.Moutarde,Bogdan.Stanciulescu}@ensmp.fr).

Fig.1: Viola &Jones Haar-like features

These weak classifiers compute the absolute difference

between the sum of pixel values in red and blue areas (see

figure 1), with the respect of the following rule:

if ThresholdBAreaAArea >!)()(then True

else False

Fig. 2: Some examples of adaBoost-selected Viola-Jones features for

car detection (top) and pedestrian detection (bottom).

However, the adaBoost outcome may strongly depend on the

family of features from which the weak classifiers are drawn.

But rather few investigations have been done on using other

kinds of features with adaBoost: Zhu et al. in [13] defined

and successfully applied adaBoost features directly inspired

from the Histogram of Oriented Gradient (HOG) approach

initially proposed (combined with SVM) by Dalal [12];

Baluja et al. in [14] and Leyrit et al. in [15] both use pixel-

comparison-based feature very similar, although simplified,

to our lab’s control-points approach ([6][7][8][9]); very

recently Pettersson et al. in [16] proposed efficient gradient-

histogram-based features inspired from HOG.

Real-time visual detection of vehicles and pedestrians

with new efficient adaBoost features

Fabien Moutarde, Bogdan Stanciulescu and Amaury Breheret

A

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 58 / 62

Applications

II. CONTROL-POINTS ADABOOST FEATURES

Several years ago, Abramson & Steux [6][7] proposed an

original set of features, the control-points, for faster and

more illumination-independant adaBoost classifiers.

These features operate directly at pixel level (at one

among 3 different possible resolutions) and are illumination-

independent. Each of these features can be computed by only

a few pixel comparisons, which makes them extremely fast,

thus providing very good real-time performances for the

resulting detector. Arbitrary points are divided in two

groups, one called the positive set and the second called the

negative set. Examples are classified as positive, if the

following condition applies:

 { } { } VNjPNiP ji >=!= !

!

+
+

),...,1,max(),...,1,min(

OR

 { } { } VNiPNjP ij >=!= +
+

!

!
),...,1,max(),...,1,min(

V is the minimum separation threshold between the two

point groups, Pi
+
 a point from the positive group, Pj

-
 a point

from the negative group, and N+ and N- the number of points

in the respective groups.

Fig. 3a: Positive-classified example with respect

 to the threshold V.

Fig. 3b: Negative-classified example.

In a linear representation of the pixel values, an example

is classified as positive if the two point groups are separated

by at least the value of threshold V (see figure 3a). Negative

examples are those that do not respect this characteristic:

values of the control-points of the two groups are interleaved

(see figure 3b).

 One can see on the figure 4 some examples of control-

points features acting on vehicle or pedestrian detection.

Each feature operates at either full-, half- or quarter-

resolution of the minimal detection window size (80x32 for

the lateral car case, and 18x36 for the pedestrian case). An

examined image or sub-window is thus resized to those 3

resolutions before the features are applied.

On the upper-left example of figure 4, the feature will

respond positively if the 2 pixels values (on the correctly

resized image) corresponding to the 2 white squares all have

higher luminance (with margin " V) than all 3 pixels values

corresponding to the 3 red squares (or opposite). This

particular feature can therefore be interpreted as detecting

some usual contrast between the car itself and region just

below, with shadow and dark tyres. Similarly, the lower-left

feature seems to detect some contrast between pedestrian

center and the background. Such interpretation of selected

control-points features is not always very clear, however.

AdaBoost requires a ”weak learner”, i.e. an algorithm

which will select and provide, for each adaBoost step, a

”good” feature (i.e. with a ”low-enough” weighted error

measured on the training set). The weak learner used by

Viola and Jones is just an exhaustive search of all

~180,000 possible features in their set of features. But as our

control-point family features is absolutely huge (there are

more than 10
35

 of them for a 36 ! 36 detection window size),

a systematic full search is definitely not possible. We

therefore use as weak learner a genetic-like heuristic search

in feature space: an evolutionary hill-climbing described in

more details in [8].

The core of our heuristic search weak-learner is to define

specific mutations adapted to the feature-type, and apply

them to a population of initially random features. A single

mutation of one control-points feature typically consists in

adding, moving, or removing one of the points, changing

working resolution, or modifying the value of threshold V.

When evolution provides no more improvement, the best

feature of the population is selected and the weak-learner

returns it to be added as the next adaBoost feature.

Fig. 4: Some examples of adaBoost-selected Control-Points features for

car detection (top) and pedestrian detection (bottom line). Some features

operate at full resolution of detection window (eg rightmost bottom), while

others work on half-resolution (eg leftmost bottom), or even at quarter-

resolution (third on bottom line).

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 59 / 62

Applications

best Area Under Curve with 0.91, instead of 0.88)

outperforms both our usual simple control-points, and Haar-

like features.

Figure 7 shows some detection results on test wider-field

images by our connected-control-points adaBoost classifier.

These illustrate the robustness to at least moderate occlusion,

of classifiers built with our new features.

Fig. 7: Some detection results with our connected-control-points adaBoost

classifier, which illustrates its robustness to at least moderate occlusion.

If we compare detectors with similar computation loads

(in this particular setup, control-points features operate ~ 8

times faster than our implementation of ViolaJones Haar-like

features), then the superiority of our new connected control-

points features over Haar-like features is even clearer (see

figure 7). It should be noted however that our ViolaJones

classifiers were obtained using the same heuristic weak-

learner as for control-points (with adapted mutation

operator), rather than usual full-search which would anyway

have been prohibitively long for a 80x32 detection window

size.

PR_lateralCar_multiScale

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
1-precision

re
c
a
ll

connectedCP800_80x32

VJ100_80x32

Fig. 7: Precision-recall for adaBoost lateral car detection, when comparing

detectors with similar computation loads. At equivalent computation time,

our new connected-control-points features clearly outperform ViolaJone

Haar-like features.

B. Pedestrians database

The pedestrian database comprises 3 training sets and 2

test sets (each one of the 5 sets with 4800 positive examples

and 5000 negative ones). As suggested in [10], 3

independent trainings were conducted on unions of 2 of the 3

training sets, and the evaluation was done on the 2 test sets,

producing a total of 6 evaluations, to be averaged, for each

feature type. In each training, 2000 boosting steps were

allowed, therefore producing adaBoost detectors assembling

2000 weak-classifiers.

Fig. 9: Averaged ROC curves for adaBoost pedestrian classifiers obtained

with various feature families

As one can see in figure 9, the classifiers obtained with

the new “connected control-points” features have by far the

best classification results. The Viola-Jones performs rather

poorly, even when compared to “ordinary control-points”.

We also compared the performance of our new classifier

to the Viola-Jones classifier performance reported in [10],

which was obtained with openCV implementation. As can be

seen on figure 10, our “connected control-points” pedestrian

classifier has a significantly better performance, which

confirms the results obtained with our own implementation

(with which we did not use cascade for our comparisons).

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 60 / 62

Applications

best Area Under Curve with 0.91, instead of 0.88)

outperforms both our usual simple control-points, and Haar-

like features.

Figure 7 shows some detection results on test wider-field

images by our connected-control-points adaBoost classifier.

These illustrate the robustness to at least moderate occlusion,

of classifiers built with our new features.

Fig. 7: Some detection results with our connected-control-points adaBoost

classifier, which illustrates its robustness to at least moderate occlusion.

If we compare detectors with similar computation loads

(in this particular setup, control-points features operate ~ 8

times faster than our implementation of ViolaJones Haar-like

features), then the superiority of our new connected control-

points features over Haar-like features is even clearer (see

figure 7). It should be noted however that our ViolaJones

classifiers were obtained using the same heuristic weak-

learner as for control-points (with adapted mutation

operator), rather than usual full-search which would anyway

have been prohibitively long for a 80x32 detection window

size.

PR_lateralCar_multiScale

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
1-precision

re
c
a
ll

connectedCP800_80x32

VJ100_80x32

Fig. 7: Precision-recall for adaBoost lateral car detection, when comparing

detectors with similar computation loads. At equivalent computation time,

our new connected-control-points features clearly outperform ViolaJone

Haar-like features.

B. Pedestrians database

The pedestrian database comprises 3 training sets and 2

test sets (each one of the 5 sets with 4800 positive examples

and 5000 negative ones). As suggested in [10], 3

independent trainings were conducted on unions of 2 of the 3

training sets, and the evaluation was done on the 2 test sets,

producing a total of 6 evaluations, to be averaged, for each

feature type. In each training, 2000 boosting steps were

allowed, therefore producing adaBoost detectors assembling

2000 weak-classifiers.

Fig. 9: Averaged ROC curves for adaBoost pedestrian classifiers obtained

with various feature families

As one can see in figure 9, the classifiers obtained with

the new “connected control-points” features have by far the

best classification results. The Viola-Jones performs rather

poorly, even when compared to “ordinary control-points”.

We also compared the performance of our new classifier

to the Viola-Jones classifier performance reported in [10],

which was obtained with openCV implementation. As can be

seen on figure 10, our “connected control-points” pedestrian

classifier has a significantly better performance, which

confirms the results obtained with our own implementation

(with which we did not use cascade for our comparisons).

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 61 / 62

References

Sources

These slides have made extensive use of the following sources.

Y.Freund and R.E. Schapire. A Decision-Theoretic Generalization of On-line
Learning and an Application to Boosting. Journal of Computer and System
Science, 55(1):119139, 1997.

R.E. Schapire. The boosting approach to machine learning: an overview. In
MSRI Workshop on Nonlinear Estimation and Classification, 2002.

Schapire’s NIPS Tutorial http://nips.cc/Conferences/2007/Program/
schedule.php?Session=Tutorials

P.Viola and M.Jones. Rapid object detection using a boosted cascade of
simple features. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, 2001.

P.Viola and M.Jones. Fast and Robust Classification Using Asymmetric
AdaBoost and a Detector Cascade. In Proceedings of Neural Information
Processing Systems (NIPS), 2002.

SC Zhu’s slides for AdaBoost (UCLA).

J. Corso (SUNY at Buffalo) Boosting and AdaBoost 62 / 62

http://nips.cc/Conferences/2007/Program/schedule.php?Session=Tutorials
http://nips.cc/Conferences/2007/Program/schedule.php?Session=Tutorials

	Introduction
	A Toy Example (From Schapire's Slides)
	Introduction Wrap-Up

	Basic AdaBoost
	Weak Learners and Weak Classifiers
	The AdaBoost Classifier
	The AdaBoost Algorithm

	AdaBoost Analysis
	AdaBoost Convergence
	Test Error Analysis (From Schapire's Slides)

	AdaBoost Recap
	The Coordinate Descent View of AdaBoost (from Schapire)

	AdaBoost for Estimating Conditional Probabilities
	Multiclass AdaBoost
	From Schapire's Slides

	Applications
	References

