### **Spectral Clustering**

Jing Gao SUNY Buffalo

### **Motivation**

#### Complex cluster shapes

 K-means performs poorly because it can only find spherical clusters

#### • Spectral approach

- Use similarity graphs to encode local neighborhood information
- Data points are vertices of the graph
- Connect points which are "close"



### **Similarity Graph**

- Represent dataset as a weighted graph G(V,E)
- All vertices which can be reached from each other by a path form a connected component
- Only one connected component in the graph—The graph is fully connected
  - $V = \{x_i\}$  Set of *n* vertices representing data points
  - E={W<sub>ij</sub>} Set of weighted edges indicating pair-wise similarity
    between points



### **Graph Construction**

#### ε-neighborhood graph

- Identify a threshold value,  $\varepsilon$ , and include edges if the affinity between two points is greater than  $\varepsilon$ 

#### k-nearest neighbors

- Insert edges between a node and its k-nearest neighbors
- Each node will be connected to (at least) k nodes

#### Fully connected

- Insert an edge between every pair of nodes
- Weight of the edge represents similarity
- Gaussian kernel:

$$w_{ij} = \exp(-\|x_i - x_j\|^2 / \sigma^2)$$

# *ɛ*-neighborhood Graph

### • *ε*-neighborhood

- Compute pairwise distance between any two objects
- Connect each point to all other points which have distance smaller than a threshold  $\varepsilon$

### • Weighted or unweighted

- Unweighted—There is an edge if one point belongs to the  $\varepsilon$ -neighborhood of another point
- Weighted—Transform distance to similarity and use similarity as edge weights

# *k***NN Graph**

#### • Directed graph

Connect each point to its k nearest neighbors

### • kNN graph

- Undirected graph
- An edge between x<sub>i</sub> and x<sub>j</sub>: There's an edge from x<sub>i</sub> to x<sub>j</sub> OR from x<sub>j</sub> to x<sub>i</sub> in the directed graph
- Mutual kNN graph
  - Undirected graph
  - Edge set is a subset of that in the kNN graph
  - An edge between x<sub>i</sub> and x<sub>j</sub>: There's an edge from x<sub>i</sub> to x<sub>j</sub> AND from x<sub>j</sub> to x<sub>i</sub> in the directed graph



# **Clustering Objective**

### Traditional definition of a "good" clustering

- Points assigned to same cluster should be highly similar
- Points assigned to different clusters should be highly dissimilar

#### Apply this objective to our graph representation



Minimize weight of between-group connections

## **Graph Cuts**

- Express clustering objective as a function of the *edge cut* of the partition
- Cut: Sum of weights of edges with only one vertex in each group
- We wants to find the *minimal cut* between groups



## **Bi-partitional Cuts**

• Minimum (bi-partitional) cut

$$\min Cut(C_1, C_2) = \sum_{i \in C_1} \sum_{j \in C_2} w_{ij}$$



### **Example**

• Minimum Cut



Cut(BCDE, A) = 0.17

### **Normalized Cuts**

• Minimal (bipartitional) normalized cut

$$\min \frac{Cut(C_1, C_2)}{Vol(C_1)} + \frac{Cut(C_1, C_2)}{Vol(C_2)} = \min \left(\frac{1}{Vol(C_1)} + \frac{1}{Vol(C_2)}\right) Cut(C_1, C_2)$$

$$Vol(C) = \sum_{i \in C, j \in V} w_{ij}$$

## Example



## Example



# Problem

- Identifying a minimum cut is NP-hard
- There are efficient approximations using linear algebra
- Based on the Laplacian Matrix, or graph
   Laplacian

## **Matrix Representations**

### Similarity matrix (W)

-n x n matrix

 $-W = [w_{ij}]$  : edge weight between vertex  $x_i$  and  $x_j$ 



|                       | <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | X <sub>3</sub> | X <sub>4</sub> | <i>X</i> <sub>5</sub> | X <sub>6</sub> |
|-----------------------|-----------------------|-----------------------|----------------|----------------|-----------------------|----------------|
| <i>X</i> <sub>1</sub> | 0                     | 0.8                   | 0.6            | 0              | 0.1                   | 0              |
| <i>X</i> <sub>2</sub> | 0.8                   | 0                     | 0.8            | 0              | 0                     | 0              |
| X <sub>3</sub>        | 0.6                   | 0.8                   | 0              | 0.2            | 0                     | 0              |
| X <sub>4</sub>        | 0                     | 0                     | 0.2            | 0              | 0.8                   | 0.7            |
| <i>X</i> <sub>5</sub> | 0.1                   | 0                     | 0              | 0.8            | 0                     | 0.8            |
| X <sub>6</sub>        | 0                     | 0                     | 0              | 0.7            | 0.8                   | 0              |

#### • Important properties

- Symmetric matrix

# **Matrix Representations**

#### • Degree matrix (D)

- -n x n diagonal matrix
- $D(i,i) = \sum_{j} w_{ij}$  : total weight of edges incident to vertex  $x_i$



|                       | <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | X <sub>3</sub> | X <sub>4</sub> | <i>X</i> <sub>5</sub> | X <sub>6</sub> |
|-----------------------|-----------------------|-----------------------|----------------|----------------|-----------------------|----------------|
| <i>X</i> <sub>1</sub> | 1.5                   | 0                     | 0              | 0              | 0                     | 0              |
| <i>X</i> <sub>2</sub> | 0                     | 1.6                   | 0              | 0              | 0                     | 0              |
| X <sub>3</sub>        | 0                     | 0                     | 1.6            | 0              | 0                     | 0              |
| <i>X</i> <sub>4</sub> | 0                     | 0                     | 0              | 1.7            | 0                     | 0              |
| <i>X</i> <sub>5</sub> | 0                     | 0                     | 0              | 0              | 1.7                   | 0              |
| X <sub>6</sub>        | 0                     | 0                     | 0              | 0              | 0                     | 1.5            |

#### • Used to

Normalize adjacency matrix

# **Matrix Representations**

### • Laplacian matrix (L)

L = D - W



#### Important properties

- Eigenvalues are non-negative real numbers
- Eigenvectors are real and orthogonal
- Eigenvalues and eigenvectors provide an insight into the connectivity of the graph...

## Find An Optimal Min-Cut (Hall'70, Fiedler'73)

• Express a bi-partition  $(C_1, C_2)$  as a vector

$$f_i = \begin{cases} 1 & \text{if } x_i \in C_1 \\ -1 & \text{if } x_i \in C_2 \end{cases}$$

 We can minimize the cut of the partition by finding a non-trivial vector *f* that minimizes the function

$$g(f) = \sum_{i,j \in V} w_{ij} (f_i - f_j)^2 = f^T L f$$
Laplacian
matrix

## Why does this work?

• How eigen decomposition of L relates to clustering?

$$\begin{split} L &= D - W \qquad f(x_j) = f_j \text{ cluster assignment} \\ f^T L f &= f^T D f - f^T W f \\ &= \sum_i d_i f_i^2 - \sum_{ij} f_i f_j w_{ij} \\ &= \frac{1}{2} \left( \sum_i \left( \sum_j w_{ij} \right) f_i^2 - 2 \sum_{ij} f_i f_j w_{ij} + \sum_j \left( \sum_i w_{ij} \right) f_j^2 \right) \\ &= \frac{1}{2} \sum_{ij} w_{ij} (f_i - f_j)^2 \quad \text{-Cluster objective function} \end{split}$$

• if we let *f* be eigen vectors of *L*, then the eigenvalues are the cluster objective functions

# **Optimal Min-Cut**

- The Laplacian matrix *L* is semi positive definite
- The Rayleigh Theorem shows:
  - The minimum value for g(f) is given by the 2nd smallest eigenvalue of the Laplacian L
  - The optimal solution for f is given by the corresponding eigenvector  $\lambda_2$ , referred as the Fiedler Vector

# **Spectral Bi-partitioning Algorithm**

- 1. Pre-processing
  - Build Laplacian
     matrix L of the
     graph



|                       | <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | X <sub>3</sub> | X <sub>4</sub> | <i>X</i> <sub>5</sub> | X <sub>6</sub> |
|-----------------------|-----------------------|-----------------------|----------------|----------------|-----------------------|----------------|
| <i>X</i> <sub>1</sub> | 1.5                   | -0.8                  | -0.6           | 0              | -0.1                  | 0              |
| <i>X</i> <sub>2</sub> | -0.8                  | 1.6                   | -0.8           | 0              | 0                     | 0              |
| X <sub>3</sub>        | -0.6                  | -0.8                  | 1.6            | -0.2           | 0                     | 0              |
| X <sub>4</sub>        | 0                     | 0                     | -0.2           | 1.7            | -0.8                  | -0.7           |
| <i>X</i> <sub>5</sub> | -0.1                  | 0                     | 0              | -0.8           | 1.7                   | -0.8           |
| X <sub>6</sub>        | 0                     | 0                     | 0              | -0.7           | -0.8                  | 1.5            |

- 2. Decomposition
  - Find eigenvalues X and eigenvectors A of the matrix L
  - Map vertices to corresponding components of λ<sub>2</sub>



# **Spectral Bi-partitioning Algorithm**

The matrix which represents the eigenvector of the Laplacian (the eigenvector matched to the corresponded eigenvalues with increasing order)

| 0.41 | -0.41 | 0.65- | 0.31- | 0.38- | 0.11  |
|------|-------|-------|-------|-------|-------|
|      |       |       |       |       |       |
| 0.41 | -0.44 | 0.01  | 0.30  | 0.71  | 0.22  |
| 0.41 | -0.37 | 0.64  | 0.04  | 0.39- | 0.37- |
| 0.41 | 0.37  | 0.34  | 0.45- | 0.00  | 0.61  |
| 0.41 | 0.41  | 0.17- | 0.30- | 0.35  | 0.65- |
| 0.41 | 0.45  | 0.18- | 0.72  | 0.29- | 0.09  |
|      |       |       |       |       |       |



# **Spectral Bi-partitioning**

- Grouping
  - Sort components of reduced 1-dimensional vector
  - Identify clusters by splitting the sorted vector in two (above zero, below zero)





- Cluster  $C_1$ : Positive points
- Cluster C<sub>2</sub>:
   Negative points

| <b>x</b> <sub>1</sub> | 0.2 |  |
|-----------------------|-----|--|
| x <sub>2</sub>        | 0.2 |  |
| <b>X</b> <sub>3</sub> | 0.2 |  |

| <b>x</b> <sub>4</sub> | -0.4 |
|-----------------------|------|
| <b>X</b> <sub>5</sub> | -0.7 |
| x <sub>6</sub>        | -0.7 |



## **Normalized Laplacian**

• Laplacian matrix (L)

 $L = D^{-1}(D - W)$  $L = D^{-0.5}(D - W)D^{-0.5}$ 



# **K-Way Spectral Clustering**

- How do we partition a graph into k clusters?
  - **1. Recursive bi-partitioning** (Hagen et al.,'91)
    - Recursively apply bi-partitioning algorithm in a hierarchical divisive manner.
    - Disadvantages: Inefficient, unstable
  - 2. Cluster multiple eigenvectors (Shi & Malik,'00)
    - Build a reduced space from multiple eigenvectors.
    - Commonly used in recent papers
    - A preferable approach

### **Eigenvectors & Eigenvalues**







### **K-way Spectral Clustering Algorithm**

#### Pre-processing

– Compute Laplacian matrix L

### Decomposition

- Find the eigenvalues and eigenvectors of L
- Build embedded space from the eigenvectors corresponding to the k smallest eigenvalues

### Clustering

 Apply k-means to the reduced n x k space to produce k clusters

# How to select *k*?

- *Eigengap*: the difference between two consecutive eigenvalues
- Most stable clustering is generally given by the value k that maximizes the expression  $\Delta_k = |\lambda_k \lambda_{k-1}|$



## **Summary**

- Clustering formulated as graph cut problem
- Solve min-cut by eigen decomposition of Laplacian matrix
- Bipartition and multi-partition spectral clustering procedure

### **Hierarchical Clustering**

Jing Gao SUNY Buffalo

## **Hierarchical Clustering**

#### Agglomerative approach



Step 1

Step 0

Step 2 Step 3 Step 4

Initialization: Each object is a cluster Iteration: Merge two clusters which are most similar to each other; Until all objects are merged into a single cluster

bottom-up

# **Hierarchical Clustering**



Initialization:

All objects stay in one cluster Iteration: Select a cluster and split it into

two sub clusters

Until each leaf cluster contains

only one object



### Dendrogram

- A tree that shows how clusters are merged/split hierarchically
- Each node on the tree is a cluster; each leaf node is a singleton cluster



## Dendrogram

 A clustering of the data objects is obtained by cutting the *dendrogram* at the desired level, then each connected component forms a cluster



# **Agglomerative Clustering Algorithm**

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
  - 1. Compute the distance matrix
  - 2. Let each data point be a cluster
  - 3. Repeat
  - 4. Merge the two closest clusters
  - 5. Update the distance matrix
  - 6. Until only a single cluster remains
- Key operation is the computation of the distance between two clusters
  - Different approaches to defining the distance between clusters distinguish the different algorithms
# **Starting Situation**

• Start with clusters of individual points and a distance matrix



# **Intermediate Situation**

• After some merging steps, we have some clusters

C4

C5

Choose two clusters that has the smallest <u>C1</u> <u>C2</u> <u>C3</u> <u>C4</u> <u>C5</u> distance (largest similarity) to merge <u>C1</u> <u>C1</u> <u>C2</u> <u>C3</u> <u>C4</u> <u>C5</u>



C2



Distance Matrix



## **Intermediate Situation**

We want to merge the two closest clusters (C2 and C5) and update the distance matrix.
| <u>c1</u> | <u>c2</u> | <u>c3</u> | <u>c4</u> | <u>c5</u> |



# **After Merging**

• The question is "How do we update the distance matrix?"



## **How to Define Inter-Cluster Distance**





- MIN
- MAX
- Group Average
- Distance Between Centroids
- .....

• Distance Matrix

## **MIN or Single Link**

#### Inter-cluster distance

- The distance between two clusters is represented by the distance of the <u>closest pair of data objects</u> belonging to different clusters.
- Determined by one pair of points, i.e., by one link in the proximity graph



 $d_{\min}(C_i, C_j) = \min_{p \in C_i, q \in C_j} d(p, q)$ 

#### MIN





#### **Nested Clusters**

Dendrogram

## **Strength of MIN**



**Original Points** 

**Two Clusters** 

• Can handle non-elliptical shapes

#### **Limitations of MIN**





**Original Points** 

Two Clusters

• Sensitive to noise and outliers

## **MAX or Complete Link**

- Inter-cluster distance
  - The distance between two clusters is represented by the distance of the <u>farthest pair of data objects</u> belonging to different clusters



 $d_{\min}(C_i, C_j) = \max_{p \in C_i, q \in C_j} d(p, q)$ 

#### MAX



**Nested Clusters** 

Dendrogram

#### **Strength of MAX**





**Original Points** 

**Two Clusters** 

• Less susceptible to noise and outliers

## **Limitations of MAX**

•Tends to break large clusters







### **Limitations of MAX**



• Biased towards globular clusters

## **Group Average or Average Link**

- Inter-cluster distance
  - The distance between two clusters is represented by the <u>average</u> distance of <u>all pairs of data objects</u> belonging to different clusters
  - Determined by all pairs of points in the two clusters



 $d_{\min}(C_i, C_j) = \underset{p \in C_i, q \in C_j}{avg} d(p, q)$ 

## **Group Average**



**Nested Clusters** 

Dendrogram

5

## **Group Average**

 Compromise between Single and Complete Link

- Strengths
  - Less susceptible to noise and outliers

- Limitations
  - Biased towards globular clusters

## **Centroid Distance**

- Inter-cluster distance
  - The distance between two clusters is represented by the distance between <u>the centers of the clusters</u>
  - Determined by cluster centroids



 $d_{mean}(C_i, C_j) = d(m_i, m_j)$ 

# **Summary**

- Agglomerative and divisive hierarchical clustering
- Several ways of defining inter-cluster distance
- The properties of clusters outputted by different approaches based on different inter-cluster distance definition