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Motivation 

• Complex cluster shapes 

– K-means performs poorly because it can only find spherical 
clusters 

• Spectral approach 

– Use similarity graphs to encode local neighborhood information 

– Data points are vertices of the graph 

– Connect points which are “close” 
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E={Wij}   Set of weighted edges indicating pair-wise similarity 
between points 

Similarity Graph 

• Represent dataset as a weighted graph G(V,E) 

• All vertices which can be reached from each other by a path 
form a connected component 

• Only one connected component in the graph—The graph is 
fully connected  
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V={xi}  Set of n vertices representing data points 
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Graph Construction 

• ε-neighborhood graph 
– Identify a threshold value, ε, and include edges if the 

affinity between two points is greater than ε 
• k-nearest neighbors 

– Insert edges between a node and its k-nearest 
neighbors 

– Each node will be connected to (at least) k nodes 
• Fully connected 

– Insert an edge between every pair of nodes 
– Weight of the edge represents similarity 
– Gaussian kernel:  
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ε-neighborhood Graph 

• ε-neighborhood 

– Compute pairwise distance between any two 
objects 

– Connect each point to all other points which have 
distance smaller than a threshold ε 

•  Weighted or unweighted 

– Unweighted—There is an edge if one point 
belongs to the ε–neighborhood of another point 

– Weighted—Transform distance to similarity and 
use similarity as edge weights 
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kNN Graph 

• Directed graph 

– Connect each point to its k nearest neighbors 

•  kNN graph 

– Undirected graph 

– An edge between xi and xj : There’s an edge from xi to 
xj OR from xj to xi in the directed graph 

• Mutual kNN graph 

– Undirected graph 

– Edge set is a subset of that in the kNN graph 

– An edge between xi and xj : There’s an edge from xi to 
xj AND from xj to xi in the directed graph 
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Clustering Objective 

Traditional definition of a “good” clustering 
• Points assigned to same cluster should be highly similar 

• Points assigned to different clusters should be highly dissimilar 

Minimize weight of between-group connections 
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Apply this objective to our graph representation 

8 



Graph Cuts 

• Express clustering objective as a function of the edge 
cut of the partition 

• Cut: Sum of weights of edges with only one vertex in 
each group 

• We wants to find the minimal cut between groups 
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Bi-partitional Cuts 

• Minimum (bi-partitional) cut 
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Example 

• Minimum Cut 

1 

.2 D 

E 

C 

.19 

.45 

B 

.22 

.24 

A 

.08 

.09 

11 



Normalized Cuts 

• Minimal (bipartitional) normalized cut 
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Example 

• Normalized Minimum Cut 
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• Normalized Minimum Cut 
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Problem  

• Identifying a minimum cut is NP-hard 

• There are efficient approximations using linear 
algebra 

• Based on the Laplacian Matrix, or graph 
Laplacian 
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Matrix Representations 

• Similarity matrix (W) 
– n x n matrix 

–                 : edge weight between vertex xi and xj 

x1 x2 x3 x4 x5 x6 

x1 0 0.8 0.6 0 0.1 0 

x2 0.8 0 0.8 0 0 0 

x3 0.6 0.8 0 0.2 0 0 

x4 0 0 0.2 0 0.8 0.7 

x5 0.1 0 0 0.8 0 0.8 

x6 0 0 0 0.7 0.8 0 

• Important properties 

– Symmetric matrix 
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Matrix Representations 

• Degree matrix (D) 
– n x n  diagonal matrix 

–                           : total weight of edges incident to vertex xi 

x1 x2 x3 x4 x5 x6 

x1 1.5 0 0 0 0 0 

x2 0 1.6 0 0 0 0 

x3 0 0 1.6 0 0 0 

x4 0 0 0 1.7 0 0 

x5 0 0 0 0 1.7 0 

x6 0 0 0 0 0 1.5 
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• Used to 
– Normalize adjacency matrix 
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Matrix Representations 

• Laplacian matrix (L) 

– n x n symmetric matrix 

• Important properties 

– Eigenvalues are non-negative real numbers 

– Eigenvectors are real and orthogonal 

– Eigenvalues and eigenvectors provide an insight into the 
connectivity of the graph… 

L = D - W 

x1 x2 x3 x4 x5 x6 

x1 1.5 -0.8 -0.6 0 -0.1 0 

x2 -0.8 1.6 -0.8 0 0 0 

x3 -0.6 -0.8 1.6 -0.2 0 0 

x4 0 0 -0.2 1.7 -0.8 -0.7 

x5 -0.1 0 0 0.8- 1.7 -0.8 

x6 0 0 0 -0.7 -0.8 1.5 
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Find An Optimal Min-Cut (Hall’70, 
Fiedler’73) 

• Express a bi-partition (C1,C2) as a vector 
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• We can minimize the cut of the partition by 
finding a non-trivial vector f that minimizes the 
function 
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Why does this work? 
• How eigen decomposition of L relates to clustering? 

 

 

 

 

 
 

• if we let f be eigen vectors of L, then the eigenvalues are the 
cluster objective functions 

cluster assignment 

--Cluster objective function 
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Optimal Min-Cut 

• The Laplacian matrix L is semi positive definite 

• The Rayleigh Theorem shows: 

– The minimum value for g(f) is given by  
the 2nd smallest eigenvalue of the Laplacian L 

– The optimal solution for f is given by the 
corresponding eigenvector λ2, referred as the 
Fiedler Vector 
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Spectral Bi-partitioning Algorithm 
 

1. Pre-processing 
– Build Laplacian  

matrix L of the  
graph 
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2. Decomposition 

– Find eigenvalues X  
and eigenvectors Λ  
of the matrix L 
 

-0.7 x6 

-0.7 x5 

-0.4 x4 

0.2 x3 

0.2 x2 

0.2 x1 – Map vertices to 
corresponding 
components of λ2 

 

x1 x2 x3 x4 x5 x6 

x1 1.5 -0.8 -0.6 0 -0.1 0 

x2 -0.8 1.6 -0.8 0 0 0 

x3 -0.6 -0.8 1.6 -0.2 0 0 

x4 0 0 -0.2 1.7 -0.8 -0.7 

x5 -0.1 0 0 -0.8 1.7 -0.8 

x6 0 0 0 -0.7 -0.8 1.5 
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Spectral Bi-partitioning Algorithm 
 

123456

0.11 -0.38  -0.31  -0.65  -0.41 0.41 

0.22 0.71 0.30 0.01 -0.44 0.41 

-0.37  -0.39  0.04 0.64 -0.37 0.41 

0.61 0.00 -0.45  0.34 0.37 0.41 

-0.65  0.35 -0.30  -0.17  0.41 0.41 

0.09 -0.29  0.72 -0.18  0.45 0.41 

The  matrix which represents the eigenvector of the 
Laplacian (the eigenvector matched  to the corresponded 
eigenvalues with increasing order)  
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Spectral Bi-partitioning 

• Grouping 
– Sort components of reduced 1-dimensional vector 

– Identify clusters by splitting the sorted vector in two 
(above zero, below zero) 
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Normalized Laplacian 

• Laplacian matrix (L)                 𝑳 = 𝑫−𝟏(𝑫 − 𝑾) 
                                                𝑳 = 𝑫−𝟎.𝟓(𝑫 − 𝑾)𝑫−𝟎.𝟓 
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K-Way Spectral Clustering 

• How do we partition a graph into k clusters? 

1. Recursive bi-partitioning (Hagen et al.,’91) 

• Recursively apply bi-partitioning algorithm in a 
hierarchical divisive manner. 

• Disadvantages: Inefficient, unstable 

2. Cluster multiple eigenvectors (Shi & Malik,’00) 

• Build a reduced space from multiple 
eigenvectors. 

• Commonly used in recent papers 

• A preferable approach 

3( )O n
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Eigenvectors & Eigenvalues 



K-way Spectral Clustering Algorithm 

• Pre-processing 

– Compute Laplacian matrix L 

• Decomposition 

– Find the eigenvalues and eigenvectors of L 

– Build embedded space from the eigenvectors 
corresponding to the k smallest eigenvalues 

• Clustering 

– Apply k-means to the reduced n x k space to 
produce k clusters 
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How to select k? 

• Eigengap: the difference between two consecutive eigenvalues 

• Most stable clustering is generally given by the value k that 
maximizes the expression 

1 kkk 

 Choose k=2 

12max  k
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Summary 

• Clustering formulated as graph cut problem 

• Solve min-cut by eigen decomposition of Laplacian 
matrix 

• Bipartition and multi-partition spectral clustering 
procedure 
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Hierarchical Clustering 

• Agglomerative approach 

b 

d 

c 

e 

a 
a b 

d e 

c d e 

a b c d e 

Step 0 Step 1 Step 2 Step 3 Step 4 bottom-up 

Initialization:  

       Each object is a cluster 

Iteration:  

      Merge two clusters which are 

          most similar to each other; 

      Until all objects are merged 

           into a single cluster 
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Hierarchical Clustering 

• Divisive Approaches 
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Step 4 Step 3 Step 2 Step 1 Step 0 Top-down 

Initialization:  

       All objects stay in one cluster 

Iteration:  

      Select a cluster and split it into 

          two sub clusters 

      Until each leaf cluster contains  

          only one object 
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Dendrogram 
• A tree that shows how clusters are merged/split 

hierarchically  

• Each node on the tree is a cluster; each leaf node is a 
singleton cluster 
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Dendrogram 
• A clustering of the data objects is obtained by cutting 

the dendrogram at the desired level, then each 
connected component forms a cluster 



Agglomerative Clustering Algorithm 

• More popular hierarchical clustering technique 
 

• Basic algorithm is straightforward 
1. Compute the distance matrix 

2. Let each data point be a cluster 

3. Repeat 

4.  Merge the two closest clusters 

5.  Update the distance matrix 

6. Until only a single cluster remains 
  

• Key operation is the computation of the distance between 
two clusters 
– Different approaches to defining the distance between clusters 

distinguish the different algorithms 
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Starting Situation  

• Start with clusters of individual points and a distance matrix 
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Intermediate Situation 

• After some merging steps, we have some clusters 

• Choose two clusters that has the smallest 

      distance (largest similarity) to merge  
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Intermediate Situation 

• We want to merge the two closest clusters (C2 and C5)  and update 
the distance matrix.  
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After Merging 

• The question is “How do we update the distance matrix?”  
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How to Define Inter-Cluster Distance 

  

p1 

p3 

p5 

p4 
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p1 p2 p3 p4 p5 . . . 

. 
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Distance? 

 MIN 

 MAX 

 Group Average 

 Distance Between Centroids 

 …… 

Distance Matrix 
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MIN or Single Link  

• Inter-cluster distance 

– The distance between two clusters is represented by the 
distance of the closest pair of data objects belonging to 
different clusters. 

– Determined by one pair of points, i.e., by one link in the 
proximity graph 
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MIN 

Nested Clusters Dendrogram 
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Strength of MIN 

Original Points Two Clusters 

• Can handle non-elliptical shapes 
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Limitations of MIN 

Original Points Two Clusters 

• Sensitive to noise and outliers 
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MAX or Complete Link 

• Inter-cluster distance 

– The distance between two clusters is represented by the 
distance of the farthest pair of data objects belonging to 
different clusters 
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MAX 

Nested Clusters Dendrogram 
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Strength of MAX 

Original Points Two Clusters 

• Less susceptible to noise and outliers 
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Limitations of MAX 

Original Points 

•Tends to break large clusters 
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MIN (2 clusters) MAX (2 clusters) 

Limitations of MAX 

•Biased towards globular clusters 



Group Average or Average Link 

• Inter-cluster distance 

– The distance between two clusters is represented by the 
average distance of all pairs of data objects belonging to 
different clusters 

– Determined by all pairs of points in the two clusters 
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Group Average 

Nested Clusters Dendrogram 
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Group Average 

• Compromise between Single and Complete 
Link 

 

• Strengths 

– Less susceptible to noise and outliers 

 

• Limitations 

– Biased towards globular clusters 
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Centroid Distance 

• Inter-cluster distance 

– The distance between two clusters is represented by the 
distance between the centers of the clusters 

– Determined by cluster centroids 
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Summary 

• Agglomerative and divisive hierarchical clustering 

• Several ways of defining inter-cluster distance 

• The properties of clusters outputted by different 
approaches based on different inter-cluster distance 
definition 
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