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@ Define a K-dimensional binary random variable z.

@ z has a 1-of-K representation such that a particular element z; is 1
and all of the others are zero. Hence:

2z € {0,1} (6)

» z=1 (7)

@ The marginal distribution over z is specified in terms of the mixing
coefficients:

(8)
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Gaussian Mixture Models

@ Since z has a 1-of-K representation, we can also write this
distribution as
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Gaussian Mixture Models

@ Since z has a 1-of-K representation, we can also write this

distribution #s M
F{O)

@ [he conditional distributios on 7z 1s a Gaussian:
p(x|2 = 1) = N (x|pay, ) (10)
or
K \
p(xlz) = T N el =) (11)
k=1
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Gaussian Mixture Models

(12)

(13)

(14)

(15)
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Gaussian Mixture Models

@ We are interested in the marginal distribution of x:

p(x) = p(x,z) (12)
=Y p(z)p(x|z) (13)

K

= > | 7N (g, =) (14)
[Z< k=1

=) TN (x|, Zie) (15)

@ So, given our latent variable z, the marginal distribution of x is a
Gaussian mixture.
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Gaussian Mixture Models

@ We are interested in the marginal distribution of x:

p(x) = p(x,z) (12)
=Y p(z)p(x|z) (13)

K

= > | 7N (g, =) (14)
; k=1

=) TN (x|, Zie) (15)

@ So, given our latent variable z, the marginal distribution of x is a
Gaussian mixture.

@ If we have N observations x1,...,Xy, then because of our chosen
representation, it follows that we have a latent variable z,, for each
observed data point x,,.
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@ We need to also express the conditional probability of z given x.



@ We need to also expres tional probability of z giv :
v Ké “X

@ Denote this condition
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@ We need to also express the conditional probability of z given x.

@ Denote this conditional p(zp = 1|x v( 2k
@ We can derive this value with Bayes ot% \
p(zr = 1)p(x|zr = 1)
1) E plak = 1jx) = '
S p(z =1)p(x|z; = 1) . \£
(
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@ We need to also express the conditional probability of z given x.
@ Denote this conditional p(z;p = 1|x) as y(zx).

@ We can derive this value with Bayes' theorem:

@ View 7y as the prior probability of z; = 1 and the quantity v(z) as
the corresponding posterior probability once we have observed x.

O
l
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Component Responsibility Term

@ We need to also express the conditional probability of z given x.

@ Denote this conditional p(zp = 1|x) as v(zx).

@ We can derive this value with Bayes' theorem:

p(zr = 1)p(x|z, = 1)

Y TSI S K = el =)
WkN(X“*l’ka k) (17)

YR N (x|, 25)

@ View 7 as the prior probability of z; = 1 and the quantity y(z) as
the corresponding posterior probability once we have observed x.

@ ~(zr) can also be viewed as the responsibility that component k takes
for explaining the observation x.
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Sampling

@ To sample from the GMM, we can first generate a value for z from
the marginal distribution p(z). Denote this sample z.



Sampling

@ To sample from the GMM, we can first generate a value for z from
the marginal distribution p(z). Denote this sample z.

@ Then, sample from the conditional distribution p(x|z).

O = = = £ DA

BTN O E TSN Clustering / Unsupervised Methods S



Sampling from the GMM

@ To sample from the GMM, we can first generate a value for z from
the marginal distribution p(z). Denote this sample z.

@ Then, sample from the conditional distribution p(x|z).

@ The figure below-
the samples based

from the margina

eft shows samples from a three-mixture and colors
on their z. The figure below-middle shows samples
p(x) and ignores z. On the right, we show the

v(zy) for each sampled point, colored accordingly.
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Maximum-Likelihood

@ Suppose we have a set of N i.i.d. observations {xi,...,xy} that we
wish to model with a GMM.



Maximum-Likelihood

@ Suppose we have a set of N i.i.d. observations {xj,...,xy} that we
wish to model with a GMM.

@ Consider this data set as an N x d matrix X in which the nt
given by x'.

h row is
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Maximum-Likelihood

@ Suppose we have a set of N i.i.d. observations {xi,...,xy} that we
wish to model with a GMM.

o Consider this data set as an N x d matrix X in which the nt" row is
given by x!.
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Maximum-Likelihood

@ Suppose we have a set of N i.i.d. observations {x1,...,xy} that we
wish to model with a GMM.

e Consider this data set as an N x d matrix X in which the n'" row is
given by x;[.

@ Similarly, the corresponding latent variables define an N x K matrix
Z with rows z .

@ The log-likelihaoad af the correspondipg-aMM is gi

N R I i
In p(X @ » |ln Zﬂk./\f(xmk,zk) .
n=1 =1
1 ~—~,

(18)




Maximum-Likelihood

@ Suppose we have a set of N i.i.d. observations {x1,...,xy} that we
wish to model with a GMM.

@ Consider this data set as an N x d matrix X in which the nth row is
given by x .

@ Similarly, the corresponding latent variables define an N x K matrix

Z with rows z .

@ The log-likelihood of the corresponding GMM_js given b

e Ultimately, we want to find t@ values of the-parameterd . 1, X that
maximize this function.



Gaussian Mixture Models Maximum-Likelihood

@ However, maximizing the log-likelihood terms for GMMSs is much
more complicated than for the case of a single Gaussian. Why?
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Gaussian Mixture Models Maximum-Likelihood

@ However, maximizing the log-likelihood terms for GMMSs is much
more complicated than for the case of a single Gaussian. Why?

@ The difficulty arises from the sum over k inside of the log-term. The
log function no longer acts directly on the Gaussian, and no
closed-form solution is available.
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Maximum-Likelihood

@ There is a significant problem when we apply MLE to estimate GMM
parameters.
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Maximum-Likelihood

@ There is a significant problem when we apply MLE to estimate GMM
parameters.

@ Consider simply covariances defined by X, = a,%I.

@ Suppose that one of the components of the mixture model, 7, has its
mean p; exactly equal to one of the data points so that pu; = x,, for
some n.

@ [ his term contributes

1
N (X, |%n, 0]2-1) =

(2m)(1/2)a;

(19)



Singularities

@ There is a significant problem when we apply MLE to estimate GMM
parameters.

@ Consider simply covariances defined by X, = azI.

@ Suppose that one of the components of the mixture model, 7, has its
mean p, exactly equal to one of the data points so that pu; = x,, for
some n.

@ [ his term contributes

1
N (X | X, O'?-I) —

(2m)(1/2)a;

@ Consider the limit o; — 0 to see that this term goes to infinity and
hence the log-likelihood will also go to infinity.

(19)
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Maximum-Likelihood

@ There is a significant problem when we apply MLE to estimate GMM
parameters.

@ Consider simply covariances defined by ;. = a,%I.

@ Suppose that one of the components of the mixture model, 7, has its
mean p; exactly equal to one of the data points so that p; = x;, for
some n.

@ This term contrib

S

N (xXp|Xn, U?I) =

1
(2m)(1/2)0;

@ Consider the limit o)xo 0 to see that this term go
hence the log-likelihood wi mafiad

@ Thus, the maximization of the log-likelihood function is not a
well posed problem because such a singularity will occur
whenever one of the components collapses to a single, specific
data point. o
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1 Mixture Models Maximum-Likelihood
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@ Expectation-Maximization or EM is an elegant and powerful
method for finding MLE solutions in the case of missing data such as
the latent variables z indicating the mixture component.
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the latent variables z indicating the mixture component.

@ Recall the conditions that must be satisfied at a maximum of the
likelihood function.



Expectation-Maximization for GMMs

Expectation-Maximization for GMMs

@ Expectation-Maximization or EM is an elegant and powerful
method for finding MLE solutions in the case of missing data such as
the latent variables z indicating the mixture component.

@ Recall the conditiogs that must be satisfied at a maximum of the

ikelihood function. ~———

o For the mean p,, detting the derivatives of In p(X[m, pu, ) w.r.t. pu,
to zero yields
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Expectation-Maximization for GMMes

@ Expectation-Maximization or EM is an elegant and powerful
method for finding MLE solutions in the case of missing data such as
the latent variables z indicating the mixture component.

@ Recall the conditions that must be satisfied at a maximum of the
kelihood function.

@ For the mean u,, setting the derivatives of Inp(X|m, p, 3) w.r.t. p,
to zero yields

N

0=-3 = (j’jf}f‘fk)z B m) (20
N
=S (o) S0 — ) (21)

@ Note the natural appearance of the responsibility terms on the RHS.
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Expectation-Maximization for GMMs

@ Multiplying b 2,:,1, -singular, gives

(22)
where

Ni = Z'Y(an) (23)
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Expectation-Maximization for GMMs

@ Multiplying by Ek_,l, which we assume is non-singular, gives

(22)
where
N
Ni = Z’Y(an) (23)
n=1

@ We see the k™" mean is the weighted mean over all of the points in
the dataset.
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Expectation-Maximization for GMMs

e Multiplying by 2;1, which we assume is non-singular, gives

N
1
— X7 n n 22
HE = 3 ;v(z k)X (22)
where

N
Nj = ZV(an) (23)

n=1

o We see the k™ mean is the weighted mean over all of the points in
the dataset.

@ Interpret V. as the number of points assigned to component k.
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(22)

where
(23)
e We see the k" mean is the Weig over all of the points in
the dataset.
@ Interpret N, as the number of points assigned to component k.
@ We find a similar result for theyariance matrix:
;N
Tk = 3 > Y(znkTn — pr) (@0 — (24)
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Expectation-Maximization for GMMs

e We also need to maximize In p(X|m, pt, 32) with respect to the mixing
coefficients 7.
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Expectation-Maximization for GMNM

e We also need to maximize In p(X|m, o, 2) with respect to the mixing
coefficients 7.
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Expectation-Maximization for GMMs

e We also need to maximize In p(X|m, pt, 32) with respect to the mixing
coefficients 7.

@ Introduce a Lagrange multiplier to enforce the constraint >, m = 1.

K
Inp(X|m, @, ) + A Zﬂ'k — 1 (25)
k=1
@ Maximizing it yields:

0= Niknz::lV(an) + A (26)
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Expectation-Maximization for GMMs

e We also need to maximize In p(X|m, pt, 32) with respect to the mixing
coefficients 7.

@ Introduce a Lagrange multiplier to enforce the constraint >, m = 1.

K
In p(X|m, p, 3) + A (Z T — 1) (25)
k=1
@ Maximizing it yields:
1
0= — n A 2
N, ;7(2 k) + (26)

@ After multiplying both sides by m and summing over k, we get

A=—N (27)
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Expectation-Maximization for GMMs

e We also need to maximize In p(X|m, o, 2) with respect to the mixing
coefficients 7.

@ Introduce a Lagrange multiplier to enforce the constraint >, m, = 1.

K
Inp(X|7m, 1, T) + A (Z e — 1 (25)
k=1
@ Maximizing it yields:
1
= — nk) + A 2
0 ngv(z k) + (26)

@ After multiplying both sides by 7 and summing over k, we get

A=—N (27)

@ Eliminate A and rearrange to obtain:

(28)
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@ So, we're done, right? We've computed the maximum likelihood
solutions for each of the unknown parameters.
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Solved...right?

@ So, we're done, right? We've computed the maximum likelihood
solutions for each of the unknown parameters.

e Wrong!

@ T he responsibility terms depend on these parameters in an intricate
way:

. TN (X[ g, i)

v(zk) = plze = 1|x) = =%
23:1 WjN(XWja 35)

@ But, these results do suggest an iterative scheme for finding a

solution to the maximum likelihood problem.

@ Chooce some initial values for the parameters, 7, u, 3.

@ Use the current parameters estimates to compute the posteriors on the
latent terms, i.e., the responsibilities.

© Use the responsibilities to update the estimates of the parameters.

©Q Repeat 2 and 3 until convergence.
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Expectation-Maximization for GMMs

2 L
0 L
o .o‘
-2 A
—2 0 (a) 2
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Expectation-Maximization for GMMs

2] 27
0 0r
—2 0 (b) 2 —2 0 (c) 2
2.
O.
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Expectation-Maximization for GMMs
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Expectation-Maximization for GMMs
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@ EM generally tends to take more steps than the K-Means clustering
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@ EM generally tends to take more steps than the K-Means clustering
algorithm.

@ Each step is more computationally intense than with K-Means too.

@ So, one commonly computes K-Means first and then initializes EM
from the resulting clusters.

@ Care must be taken to avoid singularities in the MLE solution.
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Some Quick, Early Notes on EM

@ EM generally tends to take more steps than the K-Means clustering
algorithm.

@ Each step is more computationally intense than with K-Means too.

@ So, one commonly computes K-Means first and then initializes EM
from the resulting clusters.

@ Care must be taken to avoid singularities in the MLE solution.

@ There will generally be multiple local maxima of the likelihood
function and EM is not guaranteed to find the largest of these.
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Expectation-Maximization for GMMs

Given a GMM, the goal is to maximize the likelihood function with respect to the
parameters (the means, the covarianes, and the mixing coefficients).

@ |Initialize the means, u,, the covariances, 3, and mixing coefficients, 7.
Evaluate the initial value of the log-likelihood.
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Expectation-Maximization for GMMs

Given a GMM, the goal is to maximize the likelihood function with respect to the
parameters (the means, the covarianes, and the mixing coefficients).

@ Initialize the means, u,., the covariances, X, and mixing coefficients, 7.
Evaluate the initial value of the log-likelihood.

© E-Step Evaluate the regpc les using the current parameter values:

TN (%], Bk \

F
;,'&:1 71';,'N(X|p,j, 21)
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Expectation-Maximization for GMMs

Given a GMM, the goal is to maximize the likelihood function with respect to the
parameters (the means, the covarianes, and the mixing coefficients).

© Initialize the means, .., the covariances, X, and mixing coefficients, 7.
o g
Evaluate the initial value of the log-likelihood.

© E-Step Evaluate the responsibilities using the current parameter values:

’/Tk-NX .,Ek
”/(Zk-) - — ( |/J'k )

2jm1 i

(29)
(30)
(31)
where
Ny = Z Y (znk) (32)
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Expectation-Maximization for GMMs

@ Evaluate the log-likelihood

N [ K
lnp(X“LneW, 2new) 7_‘_neW) _ Z In Z W]:eWN (Xn|[1,
n=1 k=1

J. Corso (SUNY at Buffalo)
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Expectation-Maximization for GMMs
@ Evaluate the log-likelihood

N - K
lnp(X“LneW, 2new) 7_‘_neW) _ Z In Z 7_‘_]r;ew./\/ (Xn|[,l,
n=1 k=1

© Check for convergence of either the parameters of the log-likelihood. If the

convergence is not satisfied, set the parameters:

“ — unew
2 — Enew
T = ﬂ_new

and goto step 2.
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@ The goal of EM is to find maximum likelihood solutions for models
having latent variables.



@ The goal of EM is to find maximum likelihood solutions for models
having latent variables.

@ Denote the set of all model parameters as 6, and so the log-likelihood
function is

Inp(X[0) =1In | > p(X,Z|6) (37)
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@ The goal of EM is to find maximum likelihood solutions for models
having latent variables.

@ Denote the set of all model parameters as 8, and so the log-likelihood
function is \

Inp(X|0) = In Zp(X, Z|0) (37)
. Z

@ Note how the summation over the latent variables appears inside of
the log.

e Even if the joint distribution p(X, Z|@) belongs to the exponential
family, the marginal p(X|@) typically does not.
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A More General EM

A More General View of EM

@ The goal of EM is to find maximum likelihood solutions for models
having latent variables.

@ Denote the set of all model parameters as @, and so the log-likelihood
function is

Inp(X[0) =1In | » p(X,Z|6) (37)
_ Z _

@ Note how the summation over the latent variables appears inside of
the log.

o Even if the joint distribution p(X, Z|0) belongs to the exponential
family, the marginal p(X|0) typically does not.

e If, for each sample x,, we were given the value of the latent variable
Zn, then we would have a complete data set, {X, Z}, with which
maximizing this likelihood term would be straightforward.
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A More General EM

@ However, in practice, we are not given the latent variables values.
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@ However, in practice, we are not given the latent variables values.

@ So, instead, we focus on the expectation of the log-likelihood under
the posterior distribution of the latent variables.
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A More General EM

@ However, in practice, we are not given the latent variables values.
@ So, instead, we focus on the expectation of the log-likelihood under
the posterior distribution of the latent variables.

o In the E-Step, we use the current parameter values 8°'¢ to find the
posterior distribution of the latent variables given by p(Z|X, 68°'%).
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A More General EM

@ However, in practice, we are not given the latent variables values.

@ So, instead, we focus on the expectation of the log-likelihood under
the posterior distribution of the latent variables.

o In the E-Step, we use the current parameter values 8°'¢ to find the
posterior distribution of the latent variables given by p(Z|X, 68°'%).

@ This posterior is used to define the expectation of the
complete-data log-likelihood, denoted Q(8,8°9), which is given by

Q(6,6°) = p(Z|X,6°) Inp(X, Z|6) (38)
Z

J. Corso (SUNY at Buffalo) Clustering / Unsupervised Methods 40 / 41



A More General EM

@ However, in practice, we are not given the latent variables values.

@ So, instead, we focus on the expectation of the log-likelihood under
the posterior distribution of the latent variables.

o In the E-Step, we use the current parameter values 8°'¢ to find the
posterior distribution of the latent variables given by p(Z|X, 68°'%).

@ This posterior is used to define the expectation of the
complete-data log-likelihood, denoted Q(8,8°9), which is given by

Q(6,6°) = p(Z|X,6°) Inp(X, Z|6) (38)
Z

@ Then, in the M-step, we revise the parameters to 8" by maximizing
this function:

6" = arg max Q(6). 6°'Y) (39)
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A More General EM

@ However, in practice, we are not given the latent variables values.

@ So, instead, we focus on the expectation of the log-likelihood under
the posterior distribution of the latent variables.

o In the E-Step, we use the current parameter values 8°'¢ to find the
posterior distribution of the latent variables given by p(Z|X, 68°'%).

@ This posterior is used to define the expectation of the
complete-data log-likelihood, denoted Q(8,8°9), which is given by

Q(6,6°) = p(Z|X,6°) Inp(X, Z|6) (38)
Z

@ Then, in the M-step, we revise the parameters to 8" by maximizing
this function:

6" = arg max Q(6). 6°'Y) (39)

@ Note that the log acts directly on the joint distribution p(X, Z|0) and
so the M-step maximization will likely be tractable.
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