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@ Until now, we've assumed our training samples are “labeled” by their
category membership.

@ Methods that use labeled samples are said to be supervised;
otherwise, they're said to be unsupervised.

@ However:

e Why would one even be interested in learning with unlabeled samples?
e Is it even possible in principle to learn anything of value from unlabeled

samples?



© Collecting and labeling a large set of sample patterns can be
surprisingly costly.

o E.g., videos are virtually free, but accurately /labeling the video pixels is
expensive and time consuming.



Why Unsupervised Learning?

© Collecting and labeling a large set of sample patterns can be
surprisingly costly.

o E.g., videos are virtually free, but accurately /labeling the video pixels is
expensive and time consuming.

© Extend to a larger training set by using semi-supervised learning.

e Train a classifier on a small set of samples, then tune it up to make it
run without supervision on a large, unlabeled set.

e Or, in the reverse direction, let a large set of unlabeled data group
automatically, then label the groupings found.
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Why Unsupervised Learning?

© Collecting and labeling a large set of sample patterns can be
surprisingly costly.

o E.g., videos are virtually free, but accurately /labeling the video pixels is
expensive and time consuming.

© Extend to a larger training set by using semi-supervised learning.

e Train a classifier on a small set of samples, then tune it up to make it
run without supervision on a large, unlabeled set.

e Or, in the reverse direction, let a large set of unlabeled data group
automatically, then label the groupings found.

‘0 detect the gradual change of pattern over time.

o
@ To find features that will then be useful for categorization.
o

‘0 gain insight into the nature or structure of the data during the
early stages of an investigation.

J. Corso (SUNY at Buffalo) Clustering / Unsupervised Methods 3 /41



@ What is data clustering?

e Grouping of objects into meaningful categories
e Given a representation of N objects, find k£ clusters based on a
measure of similarity.
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@ What is data clustering?

e Grouping of objects into meaningful categories
e Given a representation of N objects, find k£ clusters based on a

measure of similarity.

@ Why data clustering?

e Natural Classification: degree of similarity among forms.
e Data exploration: discover underlying structure, generate hypotheses,
detect anomalies.

e Compression: for organizing data.
e Applications: can be used by any scientific field that collects data!

@ Google Scholar: 1500 clustering papers in 2007 alone!
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@ 800,000 scientific papers clustered into 776 topics based on how often

the papers were cited t ther papers
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Given a set of NV unlabeled examples D = x1, 22, ....,.xx\n a
d-dimensional feature space, D is partitidged into a number of

disjoint subsgts D

here D,NDy=0,1# 7 , (1)
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Data Clustering - Formal Definition

@ Given a set of IV unlabeled examples D = x1,x9, ...,z In a
d-dimensional feature space, D is partitioned into a number of
disjoint subsets D;’s:

D = U§:1Dj where D; N D; = 0,147 , (1)

where the points in each subset are similar to each other according to
a given criterion ¢.

@ A partition is denoted by
T = (Dl,DQ,...,Dk) (2)
and the problem of data clustering is thus formulated as

7w = argmin f(7) , (3)

T

where f(-) is formulated according to ¢.
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@ Randomly initialize pq, pa, ..., ic

@ Repeat until no change in pu;:
o Classify NV samples according to nearest fi;
e Recompute u;

Data Point
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@ Randomly initialize 1, po, ..., e

@ Repeat until no change in p;:
o Classify /N samples according to nearest u;
e Recompute p;

Cluster center

First choose k arbitrary centers




@ Randomly initialize pq, pa, ..., ic

@ Repeat until no change in pu;:
o Classify N samples according to nearest f;
e Recompute u;

" Cluster boundary

Assign points to closest centers
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@ Randomly initialize pq, pa, ..., ic

@ Repeat until no change in pu;:
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e Recompute u; “
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@ Repeat until no change in p;:
o Classify /N samples according to nearest u;
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@ Randomly initialize 1, po, ..., e
@ Repeat until no change in p;:
o Classify /N samples according to nearest u;

e Recompute p;

X
2o

Points already assigned to nearest




@ Randomly initialize w1, H2, -y fhe .
) Repeat unt|I no change in pu;:

samples according to nearest 1i;
MCAD ) AS

e Recompute p;

Points already assigned to nearest
centers: Algorithm ends
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@ Choose starting centers iteratively.

@ Let D(z) be the distance from
x as new center with probabili

o the neares} existing center, take

@ Repeat until no change in u;:
e Classify N samples according to nearest i,
e Recompute u;

o (refer to the slides by D. Aurthor and S. Vassolvitskii for details)
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©® What is a cluster?

© How to define pair-wise similarity?
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@ How to define pair-wise similarity?

© Which features and normalization scheme?
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©® What is a cluster?

@ How to define pair-wise similarity?

© Which features and normalization scheme?
© How many clusters?
©@ Which Sring-Rethod-

O Are the discovered clusters and partition valid?
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©® What is a cluster?

© How to define pair-wise similarity?

© Which features and normalization scheme?

© How many clusters?

© Which clustering method?

O Are the discovered clusters and partition valid?

@ Does the data have any clustering tendency?



Compact Clusters
Mithin-etrrster distance < between-cluster connectivity
@ Connected Clusters
e Within-cluster connectivity > between-cluster connectivity

@ |deal cluster: compact and isolated.
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User's Dilemma

Representation (features)?
Source: R. Dubes and A. K. Jain, Clustering Techniques: User’'s Dilemma, PR 1976

@ There’'s no universal representation; they re domain dependent.

. :: 1 O '::. .
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Segmentation Time series (séé"—surface temp)

Gene Expressions

nxn snmllarlty matrlx
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@ A good repregsentation leads to compact and isolated clusters.

Poi ™ = ‘ Répresentation based on eigenvector
SR D a2 n 2l RBF kernel

O
|
Il
LT
s

BSOSO Clustering / Unsupervised Methods 14 / 41



User's Dilemma

How do we weigh the features?
Source: R. Dubes and A. K. Jain, Clustering Techniques: User’'s Dilemmf, PR 1976

@ Two different meaningful groupings produced by different weighting

schemes.
<Mamma|s Predators
VS. VS.
*— Birds "ﬁi::.érn Non-
ol JLOMCK Predators

Large weight on
appearance features activity features

http://www.ofai.at/~@#as.pampalk/kdd03/animals/

J. Corso (SUNY at Buffalo) Clustering / Unsupervised Methods 15 / 41



he samples are generated by 6 independent classes, yet

ground truth
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@ Clustering algorithms find clusters, even if there are no natural
clusters in the data.
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@ Which clustering algorithm is the best?

1'5 D-ata_ points-
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@ Each algorithm imposes a structpre on data.
@ Good fit between
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@ Recall the Gaussian_éfg

N (x|p, X)

-——(x — ) (x u)- (4)
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@ Recall the Gaussian distribution:

1
IRCOTED N

N(x|p, %)

1

%X—MFEJQ—M{

(4)

@ It forms the basis for the important Mixture of Gaussians density.

= DAl
20 / 41



@ Recall the Gaussian distribution:

Nl ®) = e enn |- w5 )| ()

@ It forms the basis for the important Mixture of Gaussians density.

@ The Gaussian mixture is a linear superposition of Gaussians in the
form:

p(x) =) m (5)
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@ Recall the Gaussian distribution:

1
(27)4/2| 3| 1/2 =5

p| 50— wTE x| (@)

N(x|p,X) =

@ It forms the basis for the important Mixture of Gaussians density.

@ The Gaussian mixture is a linear superposition of Gaussians in the
form:

K
p(x) =Y mN(x|pg, Zk) ()
k=1

@ The m; are non-negative scalars called mixing coefficients and they
govern the relative importance between the various Gaussians in the
mixture density. ), m = 1.
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Gaussian Mixture Models
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Gaussian Mixture Models

p(ﬁ)t

0.5
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