


Clustering

Introduction

Until now, we’ve assumed our training samples are “labeled” by their
category membership.

Methods that use labeled samples are said to be supervised ;
otherwise, they’re said to be unsupervised.

However:

Why would one even be interested in learning with unlabeled samples?
Is it even possible in principle to learn anything of value from unlabeled
samples?
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Introduction

Why Unsupervised Learning?

1 Collecting and labeling a large set of sample patterns can be
surprisingly costly.

E.g., videos are virtually free, but accurately labeling the video pixels is
expensive and time consuming.

2 Extend to a larger training set by using semi-supervised learning.

Train a classifier on a small set of samples, then tune it up to make it
run without supervision on a large, unlabeled set.
Or, in the reverse direction, let a large set of unlabeled data group
automatically, then label the groupings found.

3 To detect the gradual change of pattern over time.

4 To find features that will then be useful for categorization.

5 To gain insight into the nature or structure of the data during the
early stages of an investigation.
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Data Clustering

Data Clustering
Source: A. K. Jain and R. C. Dubes. Alg. for Clustering Data, Prentiice Hall, 1988.

What is data clustering?

Grouping of objects into meaningful categories
Given a representation of N objects, find k clusters based on a
measure of similarity.

Why data clustering?

Natural Classification: degree of similarity among forms.
Data exploration: discover underlying structure, generate hypotheses,
detect anomalies.
Compression: for organizing data.
Applications: can be used by any scientific field that collects data!

Google Scholar: 1500 clustering papers in 2007 alone!
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Data Clustering

Data Clustering - Formal Definition

Given a set of N unlabeled examples D = x1, x2, ..., xN in a
d-dimensional feature space, D is partitioned into a number of
disjoint subsets Dj ’s:

D = ∪k
j=1Dj where Di ∩Dj = ∅, i $= j , (1)

where the points in each subset are similar to each other according to
a given criterion φ.

A partition is denoted by

π = (D1, D2, ..., Dk) (2)

and the problem of data clustering is thus formulated as

π∗ = argmin
π

f(π) , (3)

where f(·) is formulated according to φ.
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Data Clustering

k-Means Clustering
Source: D. Aurthor and S. Vassilvitskii. k-Means++: The Advantages of Careful
Seeding

Randomly initialize µ1, µ2, ..., µc

Repeat until no change in µi:
Classify N samples according to nearest µi

Recompute µi
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User’s Dilemma

User’s Dilemma
Source: R. Dubes and A. K. Jain, Clustering Techniques: User’s Dilemma, PR 1976

1 What is a cluster?

2 How to define pair-wise similarity?

3 Which features and normalization scheme?

4 How many clusters?

5 Which clustering method?

6 Are the discovered clusters and partition valid?

7 Does the data have any clustering tendency?
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User’s Dilemma

How do we decide the Number of Clusters?
Source: R. Dubes and A. K. Jain, Clustering Techniques: User’s Dilemma, PR 1976

The samples are generated by 6 independent classes, yet:

ground truth k = 2

k = 5 k = 6
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User’s Dilemma

Cluster Validity
Source: R. Dubes and A. K. Jain, Clustering Techniques: User’s Dilemma, PR 1976

Clustering algorithms find clusters, even if there are no natural
clusters in the data.

100 2D uniform data points k-Means with k=3
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User’s Dilemma

Comparing Clustering Methods
Source: R. Dubes and A. K. Jain, Clustering Techniques: User’s Dilemma, PR 1976

Which clustering algorithm is the best?
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Gaussian Mixture Models

Gaussian Mixture Models

Recall the Gaussian distribution:

N (x|µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
(4)

It forms the basis for the important Mixture of Gaussians density.

The Gaussian mixture is a linear superposition of Gaussians in the
form:

p(x) =
K∑

k=1

πkN (x|µk,Σk) . (5)

The πk are non-negative scalars called mixing coefficients and they
govern the relative importance between the various Gaussians in the
mixture density.

∑
k πk = 1.
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Gaussian Mixture Models
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