@ In the case of zero-one loss function, the Bayes Discriminant can be

further simplified:

gi(x) = Plwilx) .

(29)



@ Is the choice of discriminant functions unique?



@ Is the choice of discriminant functions unique?
@ No!

@ Multiply by some positive constant.

@ Shift them by some additive constant.



Is the choice of discriminant functions unique?
No!

Multiply by some positive constant.

Shift them by some additive constant.

For monotonically increasing function f(-), we can replace each g;(x)
by f(g;(x)) without affecting our classification accuracy.

@ These can help for ease of understanding or computability.
e The following all yield the same exact classification results for
minimum-error-rate classification.

o) Pl PO P(w)

900 = PLab) = ol Pl -
g9i(x) = p(x|w;) P(w;) (31)
g9i(x) = In p(x|w;) + In P(w;) (32)



@ The effect of any decision rule is to divide the feature space into
decision regions.

@ Denote a decision region R; for wj;.

@ One not necessarily connected region is created for each category and
assignments Is according to:

If g;(x) > g;(x) Vj #4, then xisin R; . (33)

@ Decision boundaries separate the regions; they are ties among the
discriminant functions.



03} px|w;)Plw,) p(x|w,)P(w,)
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@ In the two-category case, one considers single discriminant

g(x) = g1(x) — g2(x) . (34)

@ What is a suitable decision rule?



@ In the two-category case, one considers single discriminant

9(x) = g1(x) — g2(x) -

@ The following simple rule is then used:

Decide w; if g(x) > 0; otherwise decide ws.

(34)

(35)



@ In the two-category case, one considers single discriminant

g(x) = g1(x) — g2(x) .

@ The following simple rule is then used:
Decide wy if g(x) > 0; otherwise decide ws.

@ Various manipulations of the discriminant:

g9(x) = P(wi|x) = P(wz[x)

p(x|w1) n P(w1)
p(x|ws) T P(ws)

g(x) = In

| 0 =

(34)



This next section is a slight digression to introduce the Normal
Density (most of you will have had this already).

The Normal density is very well studied.

It easy to work with analytically.

Often in PR, an appropriate model seems to be a single typical value
corrupted by continuous-valued, random noise.

Central Limit Theorem (Second Fundamental Theorem of
Probability).

e The distribution of the sum of n random variables approaches the
normal distribution when n is large.

e E.g., http://www.stattucino.com/berrie/dsl/Galton.html
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@ Recall the definition of expected value of any scalar function f(x) in

ELf (@) A f(2)p(x)dz (38)
Elf(@)] =) flx)P(z) (39)

where we have a set D over which the discrete expectation is
computed.
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@ Continuous univariate normal, or Gaussian' delrity:

p(x) P -—% (x;“)Q

@ The mean is the expected value of

@ The variance is the expected squared deviation

o0

o= el - = [ (@ wplays

— 00

- ),

(40)

(41)

(42)
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@ Samples from the normal density tend to cluster around the mean and
be spread-out based on the varia
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@ Samples from the normal density tend to cluster around the mean and

be spread-out based on the variance.
p{x)

2.5%

j-20 p-o I HL+o p+20

@ The normal density is completely specified by the mean and the
variance. These two are its sufficient statistics.

= ( 43' )\ Q
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@ Entropy is the uncertainty in the random samples from a distribution.

H(p(z)) = — / p(z) lnp(z)da (44)

@ The normal density has the maximum entropy for all distributions
have a given mean and variance.

@ What is the entropy of the uniform distribution?



@ Entropy is the uncertainty in the random samples from a distribution.

H(p(z)) = — / p(z) lnp(z)da (44)

@ The normal density has the maximum entropy for all distributions
have a given mean and variance.

@ What is the entropy of the uniform distribution?

@ The uniform distribution has maximum entropy (on a given interval).



@ [ he multivariate Gaussian in d dimensions is written as

1

px) = s e |5 WTE - )| (49

@ Again, we abbreviate this as p(x) ~ N(u, X).

@ [ he sufficient statistics in d-dimensions:
p=EX| = /xp(x)dx —  (46)

S=Ex—p)(x—p)'] = / (x—p)(x—p)'p(x)dx  (47)
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= L £l(x — p)(x— )]

Symmetric.

Positive semi-definite (but DHS only considers positive definite so
that the determinant is strictly positive).

The diagonal elements o;; are the variances of the respective
coordinate ;.

The off-diagonal elements o;; are the covariances of z; and z;.

What does a g;; = 0 imply?
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== el wex- )"l = [ e ) px)dx

Symmetric.

Positive semi-definite (but DHS only considers positive definite so

that the determinant is strictly positive).

The diagonal elements o;; are the variances of the respective
coordinate z;.

The off-diagonal elements o;; are the covariances of x; and z;.
What does a g;; = 0 imply?

That coordinates x; and x; are statistically independent.

E vae
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The Covariance Matrix

£ = Ellx - p)x - )] = [ (e w)x - ) px)dx

@ Symmetric.

@ Positive semi-definite (but DHS only considers positive definite so
that the determinant is strictly positive).

@ The diagonal elements o;; are the variances of the respective
coordinate x;.

@ The off-diagonal elements o;; are the covariances of z; and x;.
@ What does a 0;; = 0 imply?

) That coordinates x; and x; are statistically independent.

@ What does X reduce to if all off-diagonals are 07
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The Covariance Matrix

£ = Ellx - p)x - )] = [ (e w)x - ) px)dx

@ Symmetric.

@ Positive semi-definite (but DHS only considers positive definite so
that the determinant is strictly positive).

@ The diagonal elements o;; are the variances of the respective
coordinate x;.

@ The off-diagonal elements o;; are the covariances of z; and x;.
@ What does a 0;; = 0 imply?

) That coordinates x; and x; are statistically independent.

@ What does X reduce to if all off-diagonals are 07

) The product of the d univariate densities.
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e dv
\)Q )
The shape of the defisity is determined

by the covariance 3.

-
o

@ Specifically, the eigenvectors of 3 give
the principal axes of the hyperellipsoids
and the eigenvalues determine the
lengths of these axes.

@ The loci of points of constant density
are hyperellipsoids with constant
Mahalonobis distance:

(x—p)' =7 (x—p)  (48)



@ Linear combinations of jointly
normally distributed random
variables, independent or not,
are normally distributed.

@ For p(x) ~ N((n),>) and A, a
d-by-k matrix, definey = ATx.
Then:

MA'p@A'SA)

p(y) ~ N(A'p, ATSA) (49)

@ With the covariance matrix, we
can calculate the dispersion of
the data in any direction or in
any subspace.




@ Recall the minimum error rate discriminant,
gi(x) = In p(x|w;) + In P(w;).

@ If we assume normal densities, i.e., if p(x|w;) ~ N(u,,[;), then the
general discriminant is of the form f

1 d 1

gi(x) = —=(x— p,)) "= (x — ;) — =In27 — §ln|2i| In P(w;

2 2




@ What do the decision poundaries look like if we assume ¥, = o217
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@ What do the decision boundaries look like if we assume X, = o217

@ They are hyperplanes.

N P(w,)=.5

w>

Wy

@ Let's see why...




@ [ he discriminant functions take

@ Think of this discriminant as a combination of two things

@ The distance of the sample to the mean vector (for each 7).
@ A normalization by the variance and offset by the prior.

[
|
Il
iyl

BSOSO Bayesian Decision Theory 38 / 59



@ But, we don't need to actually compute the distances.

o Expanding the quadratic form (x — p) ' (x — ) yields

1
202

[xTx—Zu;rx u;ryz-] In P(w;) . (52)

gi(x) =

T

@ The quadratic term x'x is the same for all 2 and can thus be ignored.

@ This yields the equivalent linear discriminant functions

gi(x) = wix+wp & (53)

1
Wi = —Hi (54)
1
wip = —5—3 p) pi +In Pw;) (55)
@ w;o I1s called the bias.
— | : 39-;/\5‘“»9



@ The decision surfaces for a linear discriminant classifiers are
hyperplanes defined by the linear equations g¢;(x) = g,(x).

@ The equation can be written as

WT(X —xp) =0 (56)
@ These equations defi yperplane through point x¢ with a normal
vector w.



@ The decision boundary changes with the
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Quite A Complicated Decision §urf%ce!
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plx|w;)

@ A fundamental way of analyzing
a classifier.

@ Consider the following
experimental setup:

Illz x¥ M
@ Suppose we are interested in detecting a single pulse. 4 ' )

@ We can read an internal signal x.

@ The signal is distributed about mean p2 when an external signal is
present and around mean ©; when no external signal is present.

@ Assume the distributions have the same variances,
p(x|w;) ~ N (i, 0°).
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@ The detector uses * to decide if the external signal is present.

@ Discriminability characterizes how difficult it will be to decide if the
external signal is present without knowing z*.

d/ — |lu2 o ILL]-|
o)

(63)

@ Even if we do not know u1, s, o, or *, we can find d’ by using a
receiver operating characteristic or ROC curve, as long as we know
the state of nature for some experiments



@ A Hit is the probability that the internal signal is above ™ given that
the external signal is present

P(x > x"|x € wo)

(64)



@ A Hit is the probability that the internal signal is above =™ given that
P Q the external signal is present

\ Pz > ™|z un) (64)

@ A Correct Rejection is the probability that the internal signal is
ﬁbelow x* given that the external signal is not present.

Pz < z¥|x € w) (65)
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@ A Hit is the probability that the internal signal is above ™ given that
the external signal is present

P(x > x"|x € wo) (64)

@ A Correct Rejection is the probability that the internal signal is
below x* given that the external signal is not present.

Plr < z¥|x € wy) (65)

@ A False Alarm is the probability that the internal signal is above =*
despite there being no external signal present.

Pz > z™|x € wy) (66)



4
\ P(x > x™|x € wa) (64)

@ A Correct Rejection is the probability that the internal signal is
,< ‘&elow x* given that the external signal is not present.

Pz < z¥|x € w) (65)

@ A False Alarm is the probability that the internal signal is above z*
F despite there being no external signal present.

P(z > z*|z € w1) (66)

@ A Miss is the probability that the internal signal is below z* given
( \\ghat the external signal is present.
”~

P(x < z*|z € wo) (67)
WO YOS G.ocin Decision Theory TS

e external signal is present

-q\ Hit is the probability that the internal signal is above x* given that
h
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@ We can experimentally
determine the rates, in
particular the Hit-Rate and the
False-Alarm-Rate.

Basic idea is to assume our
densities are fixed (reasonable)
but vary our threshold ™, which
will thus change the rates.

The receiver operating
characteristic plots the hit rate
against the false alarm rate.

\ ’ false alarm
P(x<x*x e w,)

@ What shape curve do we want?

O
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@ Suppose we have built a classifier on multiple features, for example
the lightness and width.

@ What do we do if one of the features is not measurable for a
particular case? For example the lightness can be measured but the
width cannot because of occlusion.



Missing Features

@ Suppose we have built a classifier on multiple features, for example
the lightness and width.

@ What do we do if one of the features is not measurable for a
particular case? For example the lightness can be measured but the
width cannot because of occlusion.

@ Marginalize!

@ Let x be our full feature feature and x, be the subset that are
measurable (or good) and let x; be the subset that are missing (or
bad/noisy).

@ We seek an estimate of the posterior given just the good features
Xg.
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P(wilx,) = P(;E;:)g) )
[ p(wi, xg,Xp)dxp
: p(%y) (69)
[ plwilx)p(x)dxy,
- p(xg> (70)
fgz de
fp de (71)

@ We will cover the Expectation-Maximization algorithm later.

@ This is normally quite expensive to evaluate unless the densities are

special (like Gaussians).
- = = = £ A
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@ Two variables x; and x; are independent if

p(xi, ;) = p(xi)p(x;)

FIGURE 2.23. A three-dimensional distribution which obeys p(xi, x3) = p(x1)p(x3);
thus here x; and x; are statistically independent but the other feature pairs are not. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
© 2001 by John Wiley & Sons, Inc.

- -

(72)
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@ Consider a simple example consisting of four variables: the weather,
the presence of a cavity, the presence of a toothache, and the
presence of other mouth-related variables such as dry mouth.

@ The weather is clearly independent of the ot
@ And the toothache and catch are conditiona

ner three variables.
ly independent given the

cavity (one as no effect on the other given t

cavity).

ne information about the

Toothache @
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@ If we assume that all of our individual features x;,7 =1,...,d are
conditionally independent given the class, then we have

d
p(wilx) o< | [ plaslwr)
i=1
@ Circumvents issues of dimensionality.

@ Performs with surprising accuracy even in cases violating the
underlying independence assumption.

(73)
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