
Discriminants

Minimum Error-Rate Discriminant

In the case of zero-one loss function, the Bayes Discriminant can be
further simplified:

gi(x) = P (ωi|x) . (29)

J. Corso (SUNY at Buffalo) Bayesian Decision Theory 22 / 59



Discriminants

Uniqueness Of Discriminants

Is the choice of discriminant functions unique?

No!

Multiply by some positive constant.

Shift them by some additive constant.

For monotonically increasing function f(·), we can replace each gi(x)
by f(gi(x)) without affecting our classification accuracy.

These can help for ease of understanding or computability.
The following all yield the same exact classification results for
minimum-error-rate classification.

gi(x) = P (ωi|x) =
p(x|ωi)P (ωi)∑
j p(x|ωj)P (ωj)

(30)

gi(x) = p(x|ωi)P (ωi) (31)

gi(x) = ln p(x|ωi) + lnP (ωi) (32)
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Discriminants

Visualizing Discriminants
Decision Regions

The effect of any decision rule is to divide the feature space into
decision regions.

Denote a decision region Ri for ωi.

One not necessarily connected region is created for each category and
assignments is according to:

If gi(x) > gj(x) ∀j != i, then x is in Ri . (33)

Decision boundaries separate the regions; they are ties among the
discriminant functions.
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Discriminants

Visualizing Discriminants
Decision Regions
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FIGURE 2.6. In this two-dimensional two-category classifier, the probability densities
are Gaussian, the decision boundary consists of two hyperbolas, and thus the decision
region R2 is not simply connected. The ellipses mark where the density is 1/e times
that at the peak of the distribution. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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Discriminants

Two-Category Discriminants
Dichotomizers

In the two-category case, one considers single discriminant

g(x) = g1(x)− g2(x) . (34)

What is a suitable decision rule?

The following simple rule is then used:

Decide ω1 if g(x) > 0; otherwise decide ω2. (35)

Various manipulations of the discriminant:

g(x) = P (ω1|x)− P (ω2|x) (36)

g(x) = ln
p(x|ω1)

p(x|ω2)
+ ln

P (ω1)

P (ω2)
(37)
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The Normal Density

Entropy

Entropy is the uncertainty in the random samples from a distribution.

H(p(x)) = −
∫

p(x) ln p(x)dx (44)

The normal density has the maximum entropy for all distributions
have a given mean and variance.

What is the entropy of the uniform distribution?

The uniform distribution has maximum entropy (on a given interval).
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The Normal Density

The Covariance Matrix

Σ ≡ E [(x− µ)(x− µ)T] =

∫
(x− µ)(x− µ)Tp(x)dx

Symmetric.

Positive semi-definite (but DHS only considers positive definite so
that the determinant is strictly positive).

The diagonal elements σii are the variances of the respective
coordinate xi.

The off-diagonal elements σij are the covariances of xi and xj .

What does a σij = 0 imply?

That coordinates xi and xj are statistically independent.

What does Σ reduce to if all off-diagonals are 0?

The product of the d univariate densities.
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The Normal Density

Simple Case: Statistically Independent Features
with Same Variance

What do the decision boundaries look like if we assume Σi = σ2I?

They are hyperplanes.
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FIGURE 2.10. If the covariance matrices for two distributions are equal and proportional to the identity
matrix, then the distributions are spherical in d dimensions, and the boundary is a generalized hyperplane of
d − 1 dimensions, perpendicular to the line separating the means. In these one-, two-, and three-dimensional
examples, we indicate p(x|ωi) and the boundaries for the case P(ω1) = P(ω2). In the three-dimensional case,
the grid plane separates R1 from R2. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

Let’s see why...
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The Normal Density

General Case: Arbitrary Σi

decision boundary

FIGURE 2.15. Arbitrary three-dimensional Gaussian distributions yield Bayes decision boundaries that are
two-dimensional hyperquadrics. There are even degenerate cases in which the decision boundary is a line.
From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John
Wiley & Sons, Inc.
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The Normal Density

General Case for Multiple Categories

R3

R2

R1

R4

R4

FIGURE 2.16. The decision regions for four normal distributions. Even with such a low
number of categories, the shapes of the boundary regions can be rather complex. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.

Quite A Complicated Decision Surface!
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Receiver Operating Characteristics

Signal Detection Theory

The detector uses x∗ to decide if the external signal is present.

Discriminability characterizes how difficult it will be to decide if the
external signal is present without knowing x∗.

d′ =
|µ2 − µ1|

σ
(63)

Even if we do not know µ1, µ2, σ, or x
∗, we can find d′ by using a

receiver operating characteristic or ROC curve, as long as we know
the state of nature for some experiments
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Receiver Operating Characteristics

Receiver Operating Characteristics
Definitions

A Hit is the probability that the internal signal is above x∗ given that
the external signal is present

P (x > x∗|x ∈ ω2) (64)

A Correct Rejection is the probability that the internal signal is
below x∗ given that the external signal is not present.

P (x < x∗|x ∈ ω1) (65)

A False Alarm is the probability that the internal signal is above x∗

despite there being no external signal present.

P (x > x∗|x ∈ ω1) (66)

A Miss is the probability that the internal signal is below x∗ given
that the external signal is present.

P (x < x∗|x ∈ ω2) (67)
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Missing or Bad Features

Missing Features

Suppose we have built a classifier on multiple features, for example
the lightness and width.

What do we do if one of the features is not measurable for a
particular case? For example the lightness can be measured but the
width cannot because of occlusion.

Marginalize!

Let x be our full feature feature and xg be the subset that are
measurable (or good) and let xb be the subset that are missing (or
bad/noisy).

We seek an estimate of the posterior given just the good features
xg.
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Missing or Bad Features

Missing Features

P (ωi|xg) =
p(ωi,xg)

p(xg)
(68)

=

∫
p(ωi,xg,xb)dxb

p(xg)
(69)

=

∫
p(ωi|x)p(x)dxb

p(xg)
(70)

=

∫
gi(x)p(x)dxb∫

p(x)dxb
(71)

We will cover the Expectation-Maximization algorithm later.

This is normally quite expensive to evaluate unless the densities are
special (like Gaussians).
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Bayesian Belief Networks

Statistical Independence

Two variables xi and xj are independent if

p(xi, xj) = p(xi)p(xj) (72)

x1

x2

x3

FIGURE 2.23. A three-dimensional distribution which obeys p(x1, x3) = p(x1)p(x3);
thus here x1 and x3 are statistically independent but the other feature pairs are not. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.
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Bayesian Belief Networks

Simple Example of Conditional Independence
From Russell and Norvig

Consider a simple example consisting of four variables: the weather,
the presence of a cavity, the presence of a toothache, and the
presence of other mouth-related variables such as dry mouth.

The weather is clearly independent of the other three variables.

And the toothache and catch are conditionally independent given the
cavity (one as no effect on the other given the information about the
cavity).

Weather Cavity

Toothache Catch
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Bayesian Belief Networks

Näıve Bayes Rule

If we assume that all of our individual features xi, i = 1, . . . , d are
conditionally independent given the class, then we have

p(ωk|x) ∝
d∏

i=1

p(xi|ωk) (73)

Circumvents issues of dimensionality.

Performs with surprising accuracy even in cases violating the
underlying independence assumption.
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