Kernel Density Estimation Practical Concerns
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Parzen Windows

@ Let's temporarily assume the region R is a d-dimensional hypercube
with h,, being the length of an edge.
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@ Let's temporarily assume the region R is a d-dimensional hypercube
with h,, being the length of an edge.

@ The volume of the hypercube is given by

V, = he . (11)



Parzen Windows

@ Let's temporarily assume the region R is a r— '
with h,, being the length of an edge.

® The volume of the hypercube is given by

an derive afd analytic expression for ky,:
e Define a -windowing function:

~
1< 1/2 T=—JN —
0 otherwise

e This windowing functign ¢ defines a unit hypercube centered at the

4 equal to unity if x; falls within the hypercube
1 2t x, and is zero otherwise.




Kernel Density Estimation Parzen Windows

(13)
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Kernel Density Estimation Parzen Windows

@ The number of samples in this hypercube is therefore given by

b — Z_:l ; (x l:nxi)

@ Substituting in equation (7),

(13)

e estimate

(14)

J. Corso (SUNY at Buffalo) Nonparametric Methods 19 / 49



Kernel Density Estimation Parzen Windows

@ The number of samples in this hypercube is therefore given by

ky = f: 0 (X ;nx'i) . (13)

@ Substituting in equation (7), pn(x) = k,/(nV,,) yields the estimate

(14)

@ Hence, the windowing function ¢, in th led a Parzen
window, tells us how to weight all of the samples in D to determine
p(x) at a particular x.
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Parzen Windows
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Parzen Windows
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@ But, what undesirable traits from histograms are inherited by Parzen
window density estimates of the form we've just defined?



Parzen Windows
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A =0.04 | h = 0.005
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@ But, what undesirable traits from histograms are inherited by Parzen
window density estimates of the form we've just defined?

@ Discontinuities...

@ Dependence on the bandwidth.
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Parzen Windows

@ What if we allow a more general class of windowing functions rather
than the hypercube?

@ If we think of the windowing function as an interpolator, rather than
considering the window function about x only, we can visualize it as a
kernel sitting on each data sample x; in D.



Generalizing the Kernel Function

@ What if we allow a more general class of windowing functions rather
than the hypercube?

o If we think of the windowing function as an interpolator, rather than
considering the window function about x only, we can visualize it as a
kernel sitting on each data sample x; in D.

@ And, if we require the following two conditions on the kernel function
¢, then we can be assured that the resulting density p,,(x) will be
proper: non-negative and integrate to 1.

p(x) >0 (15)

/gp(u)du =1 (16)

@ For our previous case of V,, = h¢, then it follows p,(x) will also
satisfy these conditions.
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Parzen Windows

@ A popular choice of the kernel is the Gaussian kernel:

@ [he rese

@ It will give us smoother estimates withot —ehseontartes from the
hypercube kernel.
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Parzen Windows

@ An important question is what effect does the window width h,, have
on p(x)?
@ Define d,(x) as

(19)

(20)



Parzen Windows
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Parzen Windows

@ h, clearly affects both the amplitude and the width of 4, (x).
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@ But, for any value of h,,, the distribution is nopmalized:

/5(x — X;)dx = / Vin (x }::Q) dx /cp(u)du =1 ] (21)
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Parzen Windows

e But, for any value of h,,, the distribution is normalized:

/ 5(x — x;)dx = / Vinso (X ;n"i) dx = / plu)du=1 (21)

e If V,, is too large, the estimate will suffer from too little resolution.
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Effect of Window Width (And, hence, Volume V)

@ But, for any value of h,,, the distribution is normalized:

/ 5(x — x;)dx = / Vinso (X ,:nxi) dx = / plu)du=1 (21)

e If V, is too large, the estimate will suffer from too little resolution.

e If V,, is too small, the estimate will suffer from too much variability.

@ In theory (with an unlimited number of samples), we can let V,, slowly
approach zero as n increases and then p,(x) will converge to the
unknown p(x). But, in practice, we can, at best, seek some
compromise.
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Parzen Windows
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Parzen Windows
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Parzen Windows

@ Estimate the densities for each category.

@ Classify a query point by the label corresponding to the maximum
posterior (i.e., one can include priors).



Parzen Windows

@ Estimate the densities for each category.

@ Classify a query point by the label corresponding to the maximum
posterior (i.e., one can include priors).

@ As you guessed it, the decision regions for a Parzen window-based
classifier depend upon the kernel function.

A A




Parzen Windows

@ During training, we can make the error arbitrarily low by making the
window sufficiently small, but this will have an ill-effect during testing
(which is our ultimate need).

@ Think of any possibilities for system rules of choosing the kernel?

= 7 = = E DAl

BTN CTETTCONE Nowerometric Methods s



Parzen Window-Based Classifiers

@ During training, we can make the error arbitrarily low by making the
window sufficiently small, but this will have an ill-effect during testing
(which is our ultimate need).

@ Think of any possibilities for system rules of choosing the kernel?

@ One possibility is to use cross-validation. Break up the data into a
training set and a validation set. Then, perform training on the
training set with varying bandwidths. Select the bandwidth that
minimizes the error on the validation set.
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Parzen Window-Based Classifiers

@ During training, we can make the error arbitrarily low by making the
window sufficiently small, but this will have an ill-effect during testing
(which is our ultimate need).

@ Think of any possibilities for system rules of choosing the kernel?

@ One possibility is to use cross-validation. Break up the data into a
training set and a validation set. Then, perform training on the
training set with varying bandwidths. Select the bandwidth that
minimizes the error on the validation set.

@ There is little theoretical justification for choosing one window width
over another.

J. Corso (SUNY at Buffalo) Nonparametric Methods 29 / 49



k Nearest Neighbors

@ Selecting the best window / bandwidth is a severe limiting factor for
Parzen window estimators.

@ k,-NN methods circumvent this problem by making the window size a
function of the actual training data.



k, Nearest Neighbor Methods

@ Selecting the best window / bandwidth is a severe limiting factor for
Parzen window estimators.

@ k,-NN methods circumvent this problem by making the window size a
function of the actual training data.

@ The basic idea here is to center our window around x and let it grow
until it captures k,, samples, where k,, is a function of n.

o These samples are the k,, nearest neighbors of x.

o If the density is high near x then the window will be relatively small

eading to good resolution.

e If the density is low near x, the window will grow large, but it will stop
soon after it enters regions of higher density.
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k, Nearest Neighbor Methods

@ Selecting the best window / bandwidth is a severe limiting factor for
Parzen window estimators.

@ k,-NN methods circumvent this problem by making the window size a
function of the actual training data.

@ The basic idea here is to center our window around x and let it grow
until it captures k,, samples, where k,, is a function of n.

o These samples are the k,, nearest neighbors of x.

o If the density is high near x then the window will be relatively small

eading to good resolution.

e If the density is low near x, the window will grow large, but it will stop
soon after it enters regions of higher density.

o In either case, we estimate p,(x) according to

kn

= (22)

Pn(x)
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Kernel Density Estimation k Nearest Neighbors

e We want k,, to go to infinity as n goes to infinity thereby assuring us
that k&, /n will be a good estimate of the probability that a point will
fall in the window of volume V/,.
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Kernel Density Estimation k Nearest Neighbors

e We want k,, to go to infinity as n goes to infinity thereby assuring us
that k&, /n will be a good estimate of the probability that a point will
fall in the window of volume V/,.

e But, we also want k,, to grow sufficiently slowly so that the size of
our window will go to zero.
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Kernel Density Estimation k Nearest Neighbors

e We want k,, to go to infinity as n goes to infinity thereby assuring us
that k&, /n will be a good estimate of the probability that a point will
fall in the window of volume V/,.

e But, we also want k,, to grow sufficiently slowly so that the size of
our window will go to zero.

@ Thus, we want k,,/n to go to zero.

@ Recall these conditions from the earlier discussion: these will ensure
that p, (x) converges to p(x) as n approaches infinity.
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k Nearest Neighbors

@ Notice the discontinuities in the slopes of the estimate.

px)

b

p(x)




k Nearest Neighbors

@ We don't expect the density estimate from 1 sample to be very good,
but in the case of k-NN it will diverge!

e Withn =1 and k, = v/n = 1, the estimate for p,(x) is

1




Kernel Density Estimation k Nearest Neighbors
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k Nearest Neighbors

@ The k,-NN Estimator suffers from an analogous flaw from which the
Parzen window methods suffer. What is it?
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@ How do we specify the k,,7

@ We saw earlier that the specification of k,, can lead to radically
different density estimates (in practical situations where the number
of training samples is limited).
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Limitations

@ The k,-NN Estimator suffers from an analogous flaw from which the
Parzen window methods suffer. What is it?

@ How do we specify the k,,7

@ We saw earlier that the specification of k,, can lead to radically
different density estimates (in practical situations where the number
of training samples is limited).

@ One could obtain a sequence of estimates by taking &k, = k14/n and
choose different values of k.

@ But, like the Parzen window size, one choice is as good as another
absent any additional information.
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Limitations

@ The k,-NN Estimator suffers from an analogous flaw from which the
Parzen window methods suffer. What is it?

@ How do we specify the k,,7

@ We saw earlier that the specification of k,, can lead to radically
different density estimates (in practical situations where the number
of training samples is limited).

@ One could obtain a sequence of estimates by taking &k, = k14/n and
choose different values of k.

@ But, like the Parzen window size, one choice is as good as another
absent any additional information.

@ Similarly, in classification scenarios, we can base our judgement on
classification error.
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Kernel Density-Based Classification

@ We can directly apply the k-NN methods to estimate the posterior
probabilities P(w;|x) from a set of n labeled samples.
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Kernel Density-Based Classification

@ We can directly apply the k-NN methods to estimate the posterior
probabilities P(w;|x) from a set of n labeled samples.

@ Place a window of volume V' around x and capture k£ samples, with
k; turning out to be of label w;.

@ The estimate for the joint probability is thus

ki
n s Wo | — 24
Pn (X, w;) - (24)

iyl
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Kernel Density-Based Classification

@ We can directly apply the k-NN methods to estimate the posterior
probabilities P(w;|x) from a set of n labeled samples.

@ Place a window of volume V' around x and capture k£ samples, with
k; turning out to be of label w;.

@ The estimate for the joint probability is thus

@ A reasonable estimate f




Kernel Density-Based Classification
k-NN Posterior Estimation for Classification

@ We can directly apply the k-NN methods to estimate the posterior
probabilities P(w;|x) from a set of n labeled samples.

@ Place a window of volume V' around x and capture k samples, with
k; turning out to be of label w;.

@ [he estimate for the joint probability is thus

ki
nV

@ A reasonable estimate for the posterior is thus

pn(Xawi) — (24)

Pn(wz-|x) _ pn(Xawi) _ @ (25)

ZC pn(Xa wC) k
@ Hence, the posterior probability for w; is simply the fraction of

samples within the window that are labeled w;. This is a simple and
Intuitive result.
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Example: Figure-Ground Discrimination

Example: Figure-Ground Discrimination
Source: Zhao and Davis. Iterative Figure-Ground Discrimination. ICPR 2004.

@ Figure-ground discrimination is an important low-level vision task.

@ Want to separate the pixels that contain some foreground object
(specified in some meaningful way) from the background.

Input
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This paper presents a method for figure-ground discrimination based
on non-parametric densities for the foreground and background.

"hey use a subset of the pixels from each of the two regions.

"hey propose an algorithm called iterative sampling-expectation
for performing the actual segmentation.

The required input is simply a region of interest (mostly) containing
the object.



@ Given a set of n samples S = {x;} where each x; is a d-dimensional
vector.

@ We know the kernel density estimate is defined as

py) = - S 11+ (Yj ;j"”) (26)

i=1 j=1

where the same kernel ¢ with different bandwidth o; is used in each
dimension.



@ The representation used here is a function of RGB:

r=R/(R+ G+ B) (27)
g=G/(R+G + B) (28)
s=(R+G+B)/3 (29)

@ Separating the chromaticity from the brightness allows them to us a
wider bandwidth in the brightness dimension to account for variability
due to shading effects.

@ And, much narrower kernels can be used on the r and g chromaticity
channels to enable better discrimination.



@ Given a sample of pixels S = {x; = (74, g;, S;) }, the color density
estimate iIs given by

p( Tg, ZKar o ag(g QZ)K ( _Si) (30)

where we have simplified the kernel definition:

Kolt) = o () (31)

o)

@ They use Gaussian kernels

Ky (t) = ——exp |~ 2 (3) (32)

with a different bandwidth in each dimension.D ~ )
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@ The bandwidth for each channel is calculated directly from the image
based on sample statistics.

o~ 1.066n" /3 (33)

2

where o< Is the sample variance.



Example: Figure-Ground Discrimination

Initialization: Choosing the Initial Scale

Source: Zhao and Davis. Iterative Figure-Ground Discrimination. ICPR 2004.

@ For initialization, they compute a distance between the foreground
and background distribution by varying the scale of a single Gaussian
kernel (on the foreground).

@ To evaluate the “significance” of a particular scale, they compute the
normalized KL-divergence:

— anl pfg(xi) log ]?fg(Xi)
(2 Pbg (Xz) (34)
Z?:l Pfg(Xi)

where ﬁfg and Pbg are the density estimates for the foreground and
background regions respectively. To compute each, they use about
6% of the pixels (using all of the pixels would lead to quite slow
performance).

”Kl—(pngpbg) —
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Example: Figure-Ground Discrimination

nklL-diergence
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@ Given the initial segmentation, they need to refine the models and
labels to adapt better to the image.

@ However, this is a chicken-and-egg problem. If we know the labels, we
could compute the models, and if we knew the models, we could

compute the best labels.



Example: Figure-Ground Discrimination

Iterative Sampling-Expectation Algorithm

Source: Zhao and Davis. Iterative Figure-Ground Discrimination. ICPR 2004.

@ Given the initial segmentation, they need to refine the models and
labels to adapt better to the image.

@ However, this is a chicken-and-egg problem. If we know the labels, we
could compute the models, and if we knew the models, we could
compute the best labels.

@ They propose an EM algorithm for this. The basic idea is to alternate
between estimating the probability that each pixel is of the two
classes, and then given this probability to refine the underlying
models.

@ EM is guaranteed to converge (but only to a local minimum).
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Example: Figure-Ground Discrimination

© Initialize using the normalized KL-divergence.
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Example: Figure-Ground Discrimination

© Initialize using the normalized KL-divergence.

@ Uniformly sample a set of pixel from the image to use in the kernel
density estimation. This is essentially the ‘M’ step (because we have

a non-parametric density).
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Example: Figure-Ground Discrimination

© Initialize using the normalized KL-divergence.

@ Uniformly sample a set of pixel from the image to use in the kernel
density estimation. This is essentially the ‘M’ step (because we have

a non-parametric density).
© Update the pixel assignment based on maximum likelihood (the ‘E’
step).
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Example: Figure-Ground Discrimination

© Initialize using the normalized KL-divergence.

@ Uniformly sample a set of pixel from the image to use in the kernel
density estimation. This is essentially the ‘M’ step (because we have
a non-parametric density).

© Update the pixel assignment based on maximum likelihood (the ‘E’
step).
@ Repeat until stable.

@ One can use a hard assignment of the pixels and the kernel density
estimator we've discussed, or a soft assignment of the pixels and then
a weighted kernel density estimate (the weight is between the
different classes).
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Example: Figure-Ground Discrimination

© Initialize using the normalized KL-divergence.

@ Uniformly sample a set of pixel from the image to use in the kernel
density estimation. This is essentially the ‘M’ step (because we have
a non-parametric density).

© Update the pixel assignment based on maximum likelihood (the ‘E’
step).

@ Repeat until stable.

@ One can use a hard assignment of the pixels and the kernel density
estimator we've discussed, or a soft assignment of the pixels and then
a weighted kernel density estimate (the weight is between the
different classes).

@ The overall probability of a pixel belonging to the foreground class

Prg(y ;Pfg Xi) ﬁ ( > (35)
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Example: Figure-Ground Discrimination

Results: Stability

Source: Zhao and Davis. lterative Figure-Ground Discrimination. ICPR 2004.
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Example: Figure-Ground Discrimination

Results

Source: Zhao and Davis. Iterative Figure-Ground Discrimination. ICPR 2004.

Input
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Example: Figure-Ground Discrimination

Results

Source: Zhao and Davis. Iterative Figure-Ground Discrimination. ICPR 2004.
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