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Previously, we've assumed that the forms of the underlying densities
were of some particular known parametric form.

But, what if this is not the case?

Indeed, for most real-world pattern recognition scenarios this
assumption Is suspect.

For example, most real-world entities have multimodal distributions
whereas all classical parametric densities are unimodal.

We will examine nonparametric procedures that can be used with
arbitrary distributions and without the assumption that the underlying

form of the densities are known.

Pnsity Estimation / Parzen Windows.
st Neighbor Density Estimation.
o Real Example in Figure-Ground Segmentation

|
|









p(X,Y)

X
p(Y)







@ Consider a single continuous variable x and let's say we have a set D
of N of them {x1,...,xn}. Our goal is to model p(x) from D.



@ Consider a single continuous variable x and let's say we have a set D
of N of them {z1,...,zx}. Our goal is to model p(x) from D.
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and then count the number n; of observations x falling into bin 3.



@ Consider a single continuous variable = and let's say we have a set D
of N of them {z1,...,xn}. Our goal is to model p(z) from D.

@ Standard histograms simply partition x into distinct bins of width A;
and then count the number n; of observations z falling into bin .

@ To turn this count into a normalized probability density, we simply
divide by the total number of observations NV and by the width A; of
the bins.

@ This gives us:
, Lj' J { pi= (1)
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Histogram Density Representation

@ Consider a single continuous variable x and let's say we have a set D
of N of them {xy,...,zx}. Our goal is to model p(x) from D.

@ Standard histograms simply partition x into distinct bins of width A;
and then count the number n; of observations x falling into bin 2.

@ To turn this count into a normalized probability density, we simply
divide by the total number of observations N and by the width A; of
the bins.

@ This gives us:

Uz

=~ NA. (1)

Di

@ Hence the model for the density p(x) is constant over the width of
each bin. (And often the bins are chosen to have the same width

A; = A)
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Bin Number 0 1 2 X

BinCount 3 6 7
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@ The green curve is the underlying true
density from which the samples were

@ When A is very small (top), the
resulting density Is quite spiky and
hallucinates a lot of structure not
present in p(x).
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@ The green curve is the underlying true 5

A =0.04 |
density from which the samples were 2 ﬂ\
drawn. It is a mixture of two Gaussians. (5)0 . 0.5 !

= 0.08

@ When A is very small (top), the 0 _A_A
. . . . . 0 0.5 1

resulting density Is quite spiky and S .
hallucinates a lot of structure not OA—d
present in p(x). ! 3 !

@ When A is very big (bottom), the resulting density is quite smooth
and consequently fails to capture the bimodality of p(x).



@ The green curve is the underlying true

A =0.04 '
density from which the samples were 2 ﬂ \
0

drawn. It is a mixture of two Gaussians. 0 05 |

@ When A is very small (top), the
resulting density is quite spiky and
hallucinates a lot of structure not
present in p(x).

@ When A is very big (bottom), the resulting density is quite smooth
and consequently fails to capture the bimodality of p(x).

@ It appears that the best results are obtained for some intermediate
value of A, which is given in the middle figure.
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Histogram Density as a Function of Bin Width

@ The green curve is the underlying true J—
density fro.m WhI.Ch the samples were | sBa RN
drawn. It is a mixture of two Gaussians. A 03 !
= 0.08
@ When A is very small (top), the NS
» . . : : 0 0.5 1
resulting density Is quite spiky and S ,
hallucinates a lot of structure not L .
present in p(x). 0 03 !

@ When A is very big (bottom), the resulting density is quite smooth

and consequently fails to capture the bimodality of p(x).

@ It appears that the best results are obtained for some intermediate

value of A, which is given in the middle figure.

@ In principle, a histogram density model is also dependent on the
choice of the edge location of each bin.
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@ What are the advantages and disadvantages of the histogram density
estimator?



@ What are the advantages and disadvantages of the histogram density
estimator?

@ Advantages:

e Simple to evaluate and simple to use.
e One can throw away D once the histogram is computed.
e Can be computed sequentially if data continues to come in.



@ What are the advantages and disadvantages o
estimator?
@ Advantages:

e Simple to evaluate and simple to use.
e One can throw away D once the histogram is computed.
e Can be computed sequentially if data continues to come in.

@ Disadvantages:

o The estimated density has discontinuities due to the bin.edges rather

—

than any property of the underlying density.
o Scales poorly (curse of dimensionality): we would have M bihs if we



@ Lesson 1: To estimate the probability density at a particular location,

we sh
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ould consider the data points that lie within some local
borhood of that point.

"his requires we define some distance measure.

"here is a natural smoothness parameter describing the spatial extent

of the regions (this was the bin width for the histograms).
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of the regions (this was the bin width for the histograms).

@ Lesson 2: The value of the smoothing parameter should neither be
too large or too small in order to obtain good results.



What can we learn from Histogram Density
Estimation?

@ Lesson 1: To estimate the probability density at a particular location,
we should consider the data points that lie within some local
neighborhood of that point.

e This requires we define some distance measure.

e There is a natural smoothness parameter describing the spatial extent
of the regions (this was the bin width for the histograms).

@ Lesson 2: The value of the smoothing parameter should neither be
too large or too small in order to obtain good results.

@ With these two lessons in mind, we proceed to kernel density
estimation and nearest neighbor density estimation, two closely
related methods for density estimation.
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e Consider again samples x from underlying density p(x).

@ Let R denote a small region containing x.
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@ Consider again samples x from underlying density p(x).
@ Let 'R denote a small region containing x.

@ T he probability mass associated with R is given by

P = /R p(x')dx (2)



e Consider again samples x from underlying density p(x).
@ Let R denote a small region containing x.

@ The probability mass associated with R is given by
P (x")dx' (2)

@ Suppose we have n samples x . The probability of each sample
falling into R is P.

@ How will the total number of k points falling into R be distributed?
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e Consider again samples x from underlying density p(x).
@ Let R denote a small region containing x.

@ The probability mass associated with R is given by

= /R p(x)dx 2)

mples x € D. The probability of each sample

@ Suppose we ha
falling into R @
@ How will the total number of k£ points falling into R be distributed?

@ T his will be a binomial distribution:

P, = (’,j) PH(1 - Pyt 3)
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@ The expected value for k is thus

Elk] =nP (4)



@ The expected value for k is thus
E[k] = nP (4)

@ The binomial for k peaks very sharply about the mean. So, we expect
k/n to be a very good estimate for the probability P (and thus for
the space-averaged density).
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@ The expected value for k is thus

Elk] =nP (4)

@ The binomial for k£ peaks very sharply about the mean. So, we expect
k/n to be a very good estimate for the probability P (and thus for
the space-averaged density).

@ This estimate Is increasingly accurate as n increases.

relative
probability
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@ Assuming continuous p(x) and that R is so small that p(x) does not

appreciably vary within_it—we-can_write:

(5)
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@ Assuming continuous p(x) and that R is so small that p(x) does not
appreciably vary with#t1t, we can write:

/ p(x)dx’ = p(x)V (5)
R

where X is a point within.X_and V _is thewvoltime enclosed by R.

@ After some rearranging, we get the followi

O < = : =
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@ Simulated an example of example the density at 0.5 for an underlying
zero-mean, unit variance Gaussian.

@ Varied the volume used to estimate the density.
@ Red=1000, Gree ue=3000, Yellow=4000, Black=5000.

and p(x) is 0.352065 x is 0.500000 affd p(x) is 0.352065

0.9¢ 0.9

0.8*1 0.8

0 0.1 0.2 0.3 0.4 0.5 02, 01 0.2 0.3 0.4 0.5



Practical Concerns

@ The validity of our estimate depends on two contradictory
assumptions:

@ The region R must be sufficiently small the the density is
approximately constant over the region.

@ The region R must be sufficiently large that the number £ of points
falling inside it is sufficient to yield a sharply peaked binomial.



Practical Concerns

@ The validity of our estimate depends on two contradictory
assumptions:

© The region R must be sufficiently small the the density is
approximately constant over the region.

@ The region R must be sufficiently large that the number £ of points
falling inside it is sufficient to yield a sharply peaked binomial.

@ Another way of looking it is to fix the volume V' and increase the
number of training samples. Then, the ratio k/n will converge as
desired. But, this will only yield an estimate of the space-averaged

density (P/V).
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Practical Concerns

@ The validity of our estimate depends on two contradictory
assumptions:

© The region R must be sufficiently small the the density is
approximately constant over the region.

@ The region R must be sufficiently large that the number £ of points
falling inside it is sufficient to yield a sharply peaked binomial.

@ Another way of looking it is to fix the volume V' and increase the
number of training samples. Then, the ratio k/n will converge as
desired. But, this will only yield an estimate of the space-averaged
density (P/V).

e We want p(x), so we need to let V' approach 0. However, with a
fixed n, R will become so small, that no points will fall into it and
our estimate would be useless: p(x) ~ 0.

J. Corso (SUNY at Buffalo) Nonparametric Methods 14 / 49



Practical Concerns

@ The validity of our estimate depends on two contradictory
assumptions:

© The region R must be sufficiently small the the density is
approximately constant over the region.

@ The region R must be sufficiently large that the number £ of points
falling inside it is sufficient to yield a sharply peaked binomial.

@ Another way of looking it is to fix the volume V' and increase the
number of training samples. Then, the ratio k/n will converge as
desired. But, this will only yield an estimate of the space-averaged
density (P/V).

e We want p(x), so we need to let V' approach 0. However, with a
fixed n, R will become so small, that no points will fall into it and
our estimate would be useless: p(x) ~ 0.

@ Note that in practice, we cannot let V' to become arbitrarily small
because the number of samples is always limited.
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Kernel Density Estimation Practical Concerns

How can we skirt these limitations when an unlimited number of samples
if available?

@ To estimate the density at x, form a sequence of regions R, Ra,...
containing x with the ’R; having 1 sample, R having 2 samples and
SO on.
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Kernel Density Estimation Practical Concerns

How can we skirt these limitations when an unlimited number of samples
if available?

@ To estimate the density at x, form a sequence of regions R, Rao, ...
containing x with the 1 having 1 sample, R2 having 2 samples and
SO on.

@ Let V,, be the volume of R, k,, be the number of samples falling in
Ry, and p,(x) be the nth estimat
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Kernel De s Estimation Practical Concerns

How can we skirt these limitations when an unlimited number of samples
if available?

nce of regions R1,Ro,...
2 having 2 samples and

@ To estimate the density at x, form a seq
containing x with the R1 having 1 sample,
SO on.

@ Let V,, be the volume ff R., kn be the number of samples falling in

, and-p,, (x) be/the nth estimate for p(x):
,_/"
kn

\ ] me=p (7)

o \f&(x) Ls"_/aconverge to p(x) we need the following three conditions

‘]./ : lim V,, =0 (8)

n—oo
nlglgokn = 50 (9)
nh_xgokn/n =0 (10)
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Kernel Density Estimation Practical Concerns

@ lim,_ .- V;, = 0 ensures that our space-averaged density will converge
to p(x).
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Kernel Density Estimation Practical Concerns

@ lim,_ .- V;, = 0 ensures that our space-averaged density will converge

to p(x).
@ lim,,_,~ k, = o0 basically ensures that the frequency ratio will

converge to the probability P (the binomial will be sufficiently
peaked).
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Kernel Density Estimation Practical Concerns

@ lim,_ .- V;, = 0 ensures that our space-averaged density will converge
to p(x).

@ lim,,_,~ k, = o0 basically ensures that the frequency ratio will
converge to the probability P (the binomial will be sufficiently
peaked).

@ lim,, o k,/n = 0 is required for p,(x) to converge at all. It also says
that although a huge number of samples will fall within the region
R, they will form a negligibly small fraction of the total number of
samples.
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Kernel Density Estimation Practical Concerns

@ lim,_ .- V;, = 0 ensures that our space-averaged density will converge
to p(x).
@ lim,,_,~ k, = o0 basically ensures that the frequency ratio will

converge to the probability P (the binomial will be sufficiently
peaked).

@ lim,, o k,/n = 0 is required for p,(x) to converge at all. It also says
that although a huge number of samples will fall within the region
R, they will form a negligibly small fraction of the total number of
samples.

@ There are two common ways of obtaining regions that satisfy these
conditions:

@ Shrink an initial region by specifying the volume V,, as some function
of n such as V;, = 1/4/n. Then, we need to show that p, (x) converges
to p(x). (This is like the Parzen window we'll talk about next.)
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Kernel Density Estimation Practical Concerns

lim,, s~ Vi, = 0 ensjires that our space-averaged density will converge
D P X).

lim,, ,~ k,, = o0 basically ensures that the frequency ratio will

converge to the probability P (the binomial will be sufficiently
peaked).

lim,, s~ kn/n = 0 is required for p, (x) to converge at all. It also says
that although a huge number of samples will fall within the region
R,., they will form a negligibly small fraction of the total number of
samples.

There are two common ways of obtaining regions that satisfy these
conditions:

@ Shrink an initial region by specifying the volume V,, as some function
of n such as V,, = 1/y/n. Then, we need to show that p,, (x) converges
to p(x). (This is like the Parzen window we'll talk about next.)

@ Specify k,, as some function of n such as k, = \/n. Then, we grow the
volume V,, until it encloses k,, neighbors of x. (This is the
k-nearest-neighbor).
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Kernel Density Estimation Practical Concerns

lim,,_,~ Vi, = 0 ensures that our space-averaged density will converge
to p(x).

lim,, o0 k, = 00 basically ensures that the frequency ratio will
converge to the probability P (the binomial will be sufficiently
peaked).

lim,, o0 krn /1 = 0 is required for p,(x) to converge at all. It also says
that although a huge number of samples will fall within the region
R, they will form a negligibly small fraction of the total number of
samples.

There are two common ways of obtaining regions that satisfy these
conditions:

@ Shrink an initial region by specifying the volume V,, as some function
of n such as V;, = 1/4/n. Then, we need to show that p, (x) converges
to p(x). (This is like the Parzen window we'll talk about next.)

@ Specify k,, as some function of n such as k,, = v/n. Then, we grow the
volume V,, until it encloses k,, neighbors of x. (This is the
k-nearest-neighbor).

Both of these methods converge...
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Kernel Density Estimation Practical Concerns

V., =1/n DO O] .."';""*
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