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@ Covering Chapter 2 of DHS.

@ Bayesian Decision Theory is a fundamental statistical approach to the
problem of pattern classification.

@ Quantifies the tradeoffs between various classifications using
probability and the costs that accompany such classifications.

@ Assumptions:

e Decision problem is posed in probabilistic terms.
o All relevant probability values are known.



@ Recall our example from the first
lecture on classifying two fish as salmon
or sea bass.

@ And recall our agreement that any
given fish is either a salmon or a sea
bass; DHS call this the state of nature
of the fish.

@ Let's define a (probabilistic) variable w
that describes the state of nature.

w=w; fdr sea bass (1)

w = wy fer salmon (2)

@ Let's assume this two class case.
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@ The a priori or prior probability reflects our knowledge of how likely
we expect a certain state of nature before we can actually observe
. said state of nature.
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Prior Probability

@ The a priori or prior probability reflects our knowledge of how likely
we expect a certain state of nature before we can actually observe
said state of nature.

@ In the fish example, it is the probability that we will see either a

salmon or a sea bass next on the conveyor belt.

@ Note: The prior may vary depending on the situation.
o If we get equal numbers of salmon and sea bass in a catch, then the

priors are equal, or uniform.
e Depending on the season, we may get more salmon than sea bass, for

example.
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The a priori or prior probability reflects our knowledge of how likely

we expect a certain state of nature before we can actually observe
said state of nature.

In the fish example, it is the probability that we will see either a
salmon or a sea bass next on the conveyor belt.
Note: The prior may vary depending on the situation.

o |f we get equal numbers of salmon and sea bass in a catch, then the
priors are equal, or uniform.

e Depending on the season, we may get more salmon than sea bass, for
example.

We write P(w = wy) or just P(wy) for the prior the next is a sea bass.
The priors must exhibit exclusivity and exhaustivity. For c states of

nature, or classes:
1= Plw) === 0
i=1
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@ A decision rule prescribes what action to take based on observed
Input.
@ IDEA CHECK: What is a reasonable Decision Rule if

e the only available information is the prior, and
e the cost of any incorrect classification is equal?
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@ A decision rule prescribes what action to take based on observed
Input.

@ IDEA CHECK: What is a reasonable Decision Rule if

e the only available information is the prior, and
e the cost of any incorrect classification is equal?

@ Decide wy if P(w1) > P(ws); otherwise decide 3
e What we sty-abouT this-decision rule?
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Decision Rule From Only Priors

@ A decision rule prescribes what action to take based on observed

Input.

@ IDEA CHECK: What is a reasonable Decision Rule if

e the only available information is the prior, and
e the cost of any incorrect classification is equal?

@ Decide wq if P(w1) > P(ws); otherwise decide ws.

@ What can we say about this decision ru

e Seems reasonable, but it will always ¢
e If the priors are uniform, this rule will

e?

nehave poorly.

hoose the same fish.

o Under the given assumptions, no other rule can do better! (We will see

this later on.)
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@ A feature is an observable variable.

@ A feature space is a set from which we can sample or observe values.

@ Examples of features:

e Length
Width

(" ]
e Lightness
@ Location of Dorsal Fin

For simplicity, let's assume that our features are all continuous values.
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@ The class-conditional probability density function is the probability
density function for x, our feature, given that the state of nature is w:

p(x|w) (4)

@ Here is the hypothetical class-conditional density p(z|w) for lightness

values of sea bass and salmon.
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@ If we know the prior distribution and the class-conditional density,
how does this affect our decision rule?

@ Posterior probability is the probability of a certair state pf natur
given our observables: P(w|x). é E[])( N
|

~
o Use Bayes Formula: P()( - »J

f
P(w,x) = P(w[x)p(x) =‘p(><¢’(w) ] (5)




@ Notice the likelihood and the prior govern the posterior. The p(x)
evidence term is a scale-factor to normalize the density.

@ For the case of P(w;) = 2/3 and P(wy) = 1/3 the posterior is

P(w|x)
] ' 8




@ For a given observation x, we would be inclined to let the posterior
govern our decision:

w* = arg max P(w;|x) (8)

7

@ What is our probability of error?



@ For a given observation x, we would be inclined to let the posterior
govern our decision:

w* = arg max P(w;|x) (8)

@ What is our probability of error?

@ For the two class situation, we have

P(w1|x) if we decide wo

P(error|x) = { (9)

P(w2|x) if we decide wq
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@ We can minimize the probability of error by following the posterior:

Decide wq if P(wl\x) > P(wg‘X)

(10)



@ We can minimize the probability of error by following the posterior:
Decide wq if P(wl\x) > P((A)Q‘X) (].O)

@ And, this minimizes the average probability of error too:

P(error) = /OO P(error|x)p(x)dx (11)

— OO

(Because the integral will be minimized when we can ensure each
P(error|x) is as small as possible.)



@ Decide w; if P(w1|x) > P(ws|x); otherwise decide ws

@ Probability of error becomes

P(error|x) = min [P(w1|x), P(ws|x)] (12)



@ Decide w; if P(w1|x) > P(wﬂx);@ide w2
@ Probability of error becomes

P(error|x) = min [P(w1|x), P(w2|x)] (12)

e Equivalently, Decide wy if p(x|wy)P(wy) > p(x|w2)P(w2); otherwise
decide w» e ———

@ l.e., the evidence term is not used in decision making.
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Bayes Decision Rule (with Equal Costs)

@ Decide wy if P(wi|x) > P(ws|x); otherwise decide wo

@ Probability of error becomes
P(error|x) = min [P(w1|x), P(ws|x)] (12)

o Equivalently, Decide wy if p(x|wy)P(w1) > p(x|wz)P(w2); otherwise
decide wo

@ |l.e., the evidence term is not used in decision making.

o If we have p(x|wy) = p(x|w2), then the decision will rely exclusively
on the priors.

@ Conversely, if we have uniform priors, then the decision will rely
exclusively on the likelihoods.
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Bayes Decision Rule (with Equal Costs)

@ Decide wy if P(wi|x) > P(ws|x); otherwise decide wo

@ Probability of error becomes
P(error|x) = min [P(w1|x), P(ws|x)] (12)

o Equivalently, Decide wy if p(x|wy)P(w1) > p(x|wz)P(w2); otherwise
decide wo
@ |l.e., the evidence term is not used in decision making.

o If we have p(x|wy) = p(x|w2), then the decision will rely exclusively
on the priors.

@ Conversely, if we have uniform priors, then the decision will rely
exclusively on the likelihoods.

@ Take Home Message: Decision making relies on both the priors
and the likelihoods and Bayes Decision Rule combines them to
achieve the minimum probability of error.
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@ A loss function states exactly how costly each action is.

@ As earlier, we have c classes {wi,...,w.}.
@ We also have a possible actions {ay,...,aq}.

@ The loss function A\(«;|w;) is the loss incurred for taking action
when the class is w;.

Qs



A loss function states exactly how costly each action is.

As earlier, we have c classes {w1, ... ,we}.
We also have a possible actions {aq,...,a,}.

The loss function A(cv;|w;) is the loss incurred for taking action «;
when the class is w;.

The Zero-One Loss Function is a particularly common one:

: 5 (13)

It assigns no loss to a correct decision and uniform unit loss to an
Incorrect decision.



@ We can consider the loss that would be incurred from taking each
possible action in our set.
@ The expected loss or conditional risk is by definition

R(] 2_2/\ ai|w; ) P(w;|x) (14)

@ The zero—one/conditional risdis

R(o;|x) = ZP w;|x) (15)
JF#1
=1 — P(w;|x) (16)

@ Hence, for an observation x, we can minimize the expected loss by
selecting the action that minimizes the conditional risk.
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@ We can consider the loss that would be incurred from taking each
possible action in our set.

@ The expected loss or conditional risk is by definition

R(a;|x) = Z AMag|w;i) P(wj|x) (14)

@ [ he zero-one conditional risk is

R(a;|x) = ZP (wj]x) (15)
JF#u
=1 — P(w;|x) (16)

@ Hence, for an observation x, we can minimize the expected loss by
selecting the action that minimizes the conditional risk.

@ (Teaser) You guessed it: this is what Bayes Decision Rule does!
O = = = = A
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@ Let a(x) denote a decisiof rule, a mappiag from the input feature

space to an action, R?

@ T his is what we want to [éarn.
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@ Let a(x) denote a decision rule, a mapping from the input feature
space to an action, R% — {aq,..., .},
e This is what we want to learn.
@ The overall risk is the expected loss associated with a given decision
rule.

(17)
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@ Bayes Decision Rule gives us a method for minimizing the overall risk.

@ Select the action that minimizes the conditional risk:

ok = arg min R (o |x) (18)
= argmin Z Ao |w;i) P(wj|x) (19)

j=1
@ The Bayes Risk is the best we can do. ,
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@ Consider two classes and two actions, «v; when the true class is wq

and ao for ws.
@ Writing out the conditional risks %és \//
"_—3 R(Ozl X) = /\11P(w1 X) +fA19 (wg X)

R(Ozz X) = /\21P(w1 X) A )\QQP(U)Q X) ;

@ Fundamental rule is decide w1 if m

R(a1|x) < R(az|x) . (22)
@ In terms of posteriors, decide w; if
Moy
The more likely State-efnature | iffefences in loss

(which are generally positive).



@ Or, expanding via Bayes Rule, decide wy if
G ..

(A21 — A11)p(x|w1) P(w1) > (A12 — A22)p(x|w2) P(w2) (24)

@ Or, assuming Ag; >

(25)

@ LHS is called the likelihood ratio.

@ Thus, we can say the Bayes Decision Rule says to decide w; if the
likelihood ratio exceeds a threshold that is independent of the
observation x.
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@ Discriminant Functions are a useful way of representing pattern
classifiers.

@ Let's say g;(x) is a discriminant function for the ith class.

@ This classifier will assign a class w; to the feature vector x if

or, equivalently

-

[/

g9i(x) > g;j(x)

= arg max g;(x) ,
(/

VjF i,
decide w;* .
O )

(26)



Discriminants as a Network

@ We can view the discriminant classifier as a network (for ¢ classes and
a d-dimensional input vector).

action

(e.g., classification)

COS1tS

discriminant
functions
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@ General case with risks

@ Can we prove that this is correct?

(27)

(28)
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@ General case with risks

||
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(27)

= = Z Mo |w;) P(w;|x) (28)

gi(x)

@ Can we prove that this is correct?

) Yes! The minimum conditional risk corresponds to the maximum
discriminant.



@ In the case of zero-one loss function, the Bayes Discriminant can be

further simplified:

gi(x) = Plwilx) .

(29)



@ Is the choice of discriminant functions unique?





