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Overview and Plan

Covering Chapter 2 of DHS.

Bayesian Decision Theory is a fundamental statistical approach to the
problem of pattern classification.

Quantifies the tradeoffs between various classifications using
probability and the costs that accompany such classifications.

Assumptions:

Decision problem is posed in probabilistic terms.
All relevant probability values are known.
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Preliminaries

Prior Probability

The a priori or prior probability reflects our knowledge of how likely
we expect a certain state of nature before we can actually observe
said state of nature.

In the fish example, it is the probability that we will see either a
salmon or a sea bass next on the conveyor belt.
Note: The prior may vary depending on the situation.

If we get equal numbers of salmon and sea bass in a catch, then the
priors are equal, or uniform.
Depending on the season, we may get more salmon than sea bass, for
example.

We write P (ω = ω1) or just P (ω1) for the prior the next is a sea bass.

The priors must exhibit exclusivity and exhaustivity. For c states of
nature, or classes:

1 =
c∑

i=1

P (ωi) (3)
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Preliminaries

Decision Rule From Only Priors

A decision rule prescribes what action to take based on observed
input.

Idea Check: What is a reasonable Decision Rule if

the only available information is the prior, and
the cost of any incorrect classification is equal?

Decide ω1 if P (ω1) > P (ω2); otherwise decide ω2.

What can we say about this decision rule?

Seems reasonable, but it will always choose the same fish.
If the priors are uniform, this rule will behave poorly.
Under the given assumptions, no other rule can do better! (We will see
this later on.)
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Decision Theory

Probability of Error

For a given observation x, we would be inclined to let the posterior
govern our decision:

ω∗ = argmax
i

P (ωi|x) (8)

What is our probability of error?

For the two class situation, we have

P (error|x) =
{
P (ω1|x) if we decide ω2

P (ω2|x) if we decide ω1

(9)
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Decision Theory

Probability of Error

We can minimize the probability of error by following the posterior:

Decide ω1 if P (ω1|x) > P (ω2|x) (10)

And, this minimizes the average probability of error too:

P (error) =

∫ ∞

−∞
P (error|x)p(x)dx (11)

(Because the integral will be minimized when we can ensure each
P (error|x) is as small as possible.)
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Decision Theory

Bayes Decision Rule (with Equal Costs)

Decide ω1 if P (ω1|x) > P (ω2|x); otherwise decide ω2

Probability of error becomes

P (error|x) = min [P (ω1|x), P (ω2|x)] (12)

Equivalently, Decide ω1 if p(x|ω1)P (ω1) > p(x|ω2)P (ω2); otherwise
decide ω2

I.e., the evidence term is not used in decision making.

If we have p(x|ω1) = p(x|ω2), then the decision will rely exclusively
on the priors.

Conversely, if we have uniform priors, then the decision will rely
exclusively on the likelihoods.

Take Home Message: Decision making relies on both the priors
and the likelihoods and Bayes Decision Rule combines them to
achieve the minimum probability of error.
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Decision Theory

Loss Functions

A loss function states exactly how costly each action is.

As earlier, we have c classes {ω1, . . . ,ωc}.
We also have a possible actions {α1, . . . ,αa}.
The loss function λ(αi|ωj) is the loss incurred for taking action αi

when the class is ωj .

The Zero-One Loss Function is a particularly common one:

λ(αi|ωj) =

{
0 i = j

1 i != j
i, j = 1, 2, . . . , c (13)

It assigns no loss to a correct decision and uniform unit loss to an
incorrect decision.
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Decision Theory

Expected Loss
a.k.a. Conditional Risk

We can consider the loss that would be incurred from taking each
possible action in our set.

The expected loss or conditional risk is by definition

R(αi|x) =
c∑

j=1

λ(αi|ωj)P (ωj |x) (14)

The zero-one conditional risk is

R(αi|x) =
∑

j $=i

P (ωj |x) (15)

= 1− P (ωi|x) (16)

Hence, for an observation x, we can minimize the expected loss by
selecting the action that minimizes the conditional risk.

(Teaser) You guessed it: this is what Bayes Decision Rule does!
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Discriminants

Pattern Classifiers Version 1: Discriminant Functions

Discriminant Functions are a useful way of representing pattern
classifiers.

Let’s say gi(x) is a discriminant function for the ith class.

This classifier will assign a class ωi to the feature vector x if

gi(x) > gj(x) ∀j != i , (26)

or, equivalently

i∗ = argmax
i

gi(x) , decide ωi∗ .
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Discriminants

Discriminants as a Network

We can view the discriminant classifier as a network (for c classes and
a d-dimensional input vector).

discriminant
functions

input

g1(x) g2(x) gc(x). . .

x1
x2 xd. . .x3

costs

action
(e.g., classification)

FIGURE 2.5. The functional structure of a general statistical pattern classifier which
includes d inputs and c discriminant functions gi(x). A subsequent step determines
which of the discriminant values is the maximum, and categorizes the input pattern
accordingly. The arrows show the direction of the flow of information, though frequently
the arrows are omitted when the direction of flow is self-evident. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.
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Discriminants

Bayes Discriminants
Minimum Conditional Risk Discriminant

General case with risks

gi(x) = −R(αi|x) (27)

= −
c∑

j=1

λ(αi|ωj)P (ωj |x) (28)

Can we prove that this is correct?

Yes! The minimum conditional risk corresponds to the maximum
discriminant.
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Discriminants

Minimum Error-Rate Discriminant

In the case of zero-one loss function, the Bayes Discriminant can be
further simplified:

gi(x) = P (ωi|x) . (29)
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Discriminants

Uniqueness Of Discriminants

Is the choice of discriminant functions unique?

No!

Multiply by some positive constant.

Shift them by some additive constant.

For monotonically increasing function f(·), we can replace each gi(x)
by f(gi(x)) without affecting our classification accuracy.

These can help for ease of understanding or computability.
The following all yield the same exact classification results for
minimum-error-rate classification.

gi(x) = P (ωi|x) =
p(x|ωi)P (ωi)∑
j p(x|ωj)P (ωj)

(30)

gi(x) = p(x|ωi)P (ωi) (31)

gi(x) = ln p(x|ωi) + lnP (ωi) (32)

J. Corso (SUNY at Buffalo) Bayesian Decision Theory 23 / 59




