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N
Introduction

@ When covering Bayesian Decision Theory, we assumed the full probabilistic
structure of the problem was know.

@ However, this iIs rarely the case in practice.

@ Instead, we have some knowledge of the problem and some example data
and we must estimate the probabilities.

@ In the discriminants chapter, we learned how to estimate linear boundaries
separating the data, assuming nothing about the specific structure of the
data. Here, we resort to assuming some structure to the data and estimate
the parameters of this structure.

@ Focus of this lecture is to study a pair of techniques for estimating the
parameters of the likelihood models (given a particular form of the density,
such as a Gaussian).
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@ However, this iIs rarely the case in practice.

@ Instead, we have some knowledge of the problem and some example data
and we must estimate the probabilities.

@ In the discriminants chapter, we learned how to estimate linear boundaries
separating the data, assuming nothing about the specific structure of the
data. Here, we resort to assuming some structure to the data and estimate
the parameters of this structure.

@ Focus of this lecture is to study a pair of techniques for estimating the
parameters of the likelihood models (given a particular form of the density,
such as a Gaussian).

@ Parametric Models — For a particular class w;, we consider a set of
parameters 0; to fully define the likelihood model.

o For the Guassian, 8; = (u,;, ;).

@ Supervised Learning — we are working in a supervised situation where we

have an set of training data:

D = {(Xaw)lv(xaw)27"'(Xaw)N} (1)
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@ Intuitive Problem: Given a set of training data, D, containing labels
for ¢ classes, train the likelihood models p(x|w;, 8;) by estimating the
parameters @; for: =1,...,c.



@ Intuitive Problem: Given a set of training data, D, containing labels
for ¢ classes, train the likelihood models p(x|w;, 8;) by estimating the
parameters @; for: =1,...,c.

@ Maximum Likelihood Parameter Estimation

e Views the parameters as quantities that are fixed by unknown.
e The best estimate of their value is the one that maximizes the
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o
Overview of the Methods

@ Intuitive Problem: Given a set of training data, D, containing labels
for ¢ classes, train the likelihood models p(x|w;, 8;) by estimating the
parameters @; for: =1,...,c.

@ Maximum Likelihood Parameter Estimation

e Views the parameters as quantities that are fixed by unknown.
e The best estimate of their value is the one that maximizes the
probability of obtaining the samples in D.

@ Bayesian Parameter Estimation

e Views the parameters as random variables having some known prior
distribution.

e The samples convert this prior into a posterior and revise our estimate
of the distribution over the parameters.

o We shall typically see that the posterior is increasingly peaked for larger
‘D — Bayesian Learning.
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@ Underlying model is assumed to be a Gaussian of particular variance
but unknown mean.
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@ Separate our training data according to class; i.e., we have ¢ data sets

Dy, ..., D,.

@ Assume that samples (n D; g)ve no information for @, for all i # j.
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Maximum Likelihood Estimation

Preliminaries

@ Separate our training data according to class; i.e., we have ¢ data sets
Dz 5.on.4 s,
@ Assume that samples in D; give no information for 8; for all 7 # j.

@ Assume the samples in D; have begy according
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@ Separate our training data according to class; i.e., we have ¢ data sets
Dy,...,D,.

@ Assume that samples in D; give no information for 6; for all ¢ # j.

@ Assume the samples in D; have been drawn independently according
to the (unknown but) fixed density p(x|w;).

e We say these samples are i.i.d. — independent and identically
distributed.

@ Assume p(x|w;) has some fixed parametric form and is fully described
by 8;; hence we write p(x|w;,0;).



Preliminaries

@ Separate our training data according to class; i.e., we have ¢ data sets
Dq,...,D..
@ Assume that samples in D; give no information for 6; for all 7 # j.

@ Assume the samples in D; have been drawn independently according
to the (unknown but) fixed density p(x|w;).

e We say these samples are i.i.d. — Independent and identically
distributed.

@ Assume p(x|w;) has some fixed parametric form and is fully described
by 6;; hence we write p(x|w;,0;).

@ We thus have c separate problems of the form:

Definition
Use a set D = {x1,...,X,} of training samples drawn independently from
the density p(x|@) to estimate the unknown parameter vector 6.
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@ Because we assume i.1.d. we have

n

L(?\[ JAL, T pDIo) = (2)

k=1
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@ Because we assume i.1.d. we have

p(D|6) = | [ p(xx[6) . (2)
k=1

@ The log-likelihood is typically eastar to work with both analytically
and numerically.

(3)
(4)
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e The maximum likelihood estimate of 6 is the value 6 that
maximizes p(D|0) or equivalently maximizes Ip(8).

0 = arg max Ip(0) (5)

p(D|0)
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o For p parameters, @ = [0, 62 ... 6,]~
PRI - 2 (0. 0
@ Let Vg be the gradient operator, then Vg = 1550 .- 34

]T
maximum likelihood
win p equations:

@ The set of necessary conditions for
estimate of @ are obtained f

(6)
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@ For p parameters, 6 = [91 b ... 0,
-
@ Let Vg be the gradient operator, then Vg = [8%1 a%p} .

@ The set of necessary conditions for the maximum likelihood
estimate of O are obtained from the following system of p equations:

Vol =) Vglnp(x;|6) =0 (6)
k=1

o A solution 0 to (6) can be a true global maximum, a local maximum
or minimum or an inflection point of [(9).



Necessary Conditions for MLE

@ For p parameters, 6 = [6’1 6y ... Hp}T.

-
: : 0 0

@ Let Vg be the gradient operator, then Vg = [5—91 8—919} .

@ The set of necessary conditions for the maximum likelihood

estimate of O are obtained from the following system of p equations:

Vol = Z Vo lnp(x;|0) =0 (6)
k=1

o A solution @ to (6) can be a true global maximum, a local maximum
or minimum or an inflection point of [(8).

o Keep in mind that 8 is only an estimate. Only in the limit of an
infinitely large number of training samples can we expect it to be the
true parameters of the underlying density.
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@ For a single sample point xp:

1

Inp(ocels) = —5 In [ @2m) || — 2

—oxe =) T xp =) (7)

ViInp(xelp) = 271 (xp, — p) (8)

@ We see that the ML-estimate must satisfy

Z > Xk — =0 (9)



@ For a single sample point xp:

1

Inp(ocels) = —5 In [ @2m) || — 2

—oxe =) T xp =) (7)

ViInp(xelp) = 271 (xp, — p) (8)

@ We see that the ML-estimate must satisfy

ZZ Xk — =0 (9)
@ And we get the sample mean!
N (10
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o Let 8 = (u,0°). The log-likelihood of z, is

1

1
In p(z|0) = — In 2m0”] > (z1, — ) (11)
- ]
2\ Lk — W
Vo lnp(zy|0) = 12( | (mk—L)2 (12)
202 202
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@ The following conditions are defined:

S L (- i) = (13)

D IE T P (14)
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@ After some manipulation we have the following:

=3 f; (15)
k=1

52 =~ (e — )2 (16)
k=l

0O —

@ These are encouraging results — even in the case of unknown 1 and
o? the ML-estimate of y corresponds to the sample mean.
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@ The maximum likelihood estimate for the variance o2 is biased.

@ The expected value over datasets of size n of the sample variance is

not equal to the true-vamans

7

(17)

@ In other words, the ML- te of the variance systematically
underestimates the variance of the distribution.

@ As n — oo the problem of bias is reduced or removed, but bias
remains a problem of the ML-estimator.

@ An unbiased ML-estimator of the variance is

n

. 1 "
G anbiased = — > (wk — 1) (18)
k=1

0> <5 2 : =
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@ The form of the density p(x|@) is assumed to be known (e.g., it is a
Gaussian).



@ The form of the density p(x|@) is assumed to be known (e.g., it is a
Gaussian).

@ The values of the parameter vector @ are not exactly known.
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@ The form of the density p(x|@) is assumed to be known (e.g., it is a
Gaussian).

@ The values of the parameter vector @ are not exactly known.

@ Our initial knowledge about the parameters is summarized in a prior
distribution p(8).

@ The rest of our knowledge about 0 is contained in a set D of n i.i.d.
samples x1,...,X, drawn according to fixed p(x).

Our ultimate goal is to estimate p(x|D), which is as close as we can come
to estimating the unknown p(x).

O = = = £ DA

~ J. Corso (SUNY at Buffalo) | e PIEToNS Tatoly potc TorTe TS 15 / 39



@ How do we relate the prior distribution on the parameters to the
samples?

= 7 = = E DAl
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@ How do we relate the prior distribution on the parameters to the
samples?

@ Missing Data! The samples will convert our prlor p(0) to a posterior
p(0|D), by integrating the Jomt/denSIt er 6

./ p(x, 0|D )do (19)

x|9 D)p 0|D)d6 (20)
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@ How do we relate the prior distribution on the parameters to the
samples?

@ Missing Data! The samples will convert our prior p(@) to a posterior
p(0|D), by integrating the joint density over 0:

p(x|D) = / p(x, 6|D)d0 (19)
_ / p(x|6, D)p(6|D)d6 (20)

@ And, because the distribution of x is known given the parameters 0,
we simplify to




p(x|D) = / p(x|6)p(6]D)d6

@ We can see the link between the likelihood p(x|0) and the posterior
for the unknown parameters p(0|D).



@ We can see the link between the likelihood p(x|@) and thf posterior
for the unknown parameters p(@|D).

A

o If the posterior p(6|D) peaks very sharply for sample poiif 8, then we

obtain

(22)
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Linking Likelihood and the Parameter Distribution

p(x|D) = / p(x|6)p(6]D)d6

@ We can see the link between the likelihood p(x|@) and the posterior
for the unknown parameters p(6|D).

o If the posterior p(8|D) peaks very sharply for sample point 0, then we
obtain

p(x|D) = p(x|0) . (22)

@ And, we will see that during Bayesian parameter estimation, the
distribution over the parameters will get increasingly “peaky” as the
number of samples increases.
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p(x|D) = / p(x|6)p(6]D)d6

@ We can see the linkbetween the likelihood p(x|@) and the posterior
for the unknown parameters p(@|D).

o If the posterior p(@|D) peaks very sharply for sample point 0, then we
obtain

p(x|D) ~ p(x6) . (22)

@ And, we will see that during Bayesian parameter estimation, the
distribution over the parameters will get increasingly “peaky” as the
number of samples increases.

® What if the integral is not readily analytically computed?

It
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@ The primary task in Bayesian Parameter Estimation s the

computation of the posterior density p(6
@ By Bayes formula \é

—t:g(flﬂp(ﬂ \?( ,D 3)

z~ [ p(Dl6)s(6)d0 (24)

@ Z is a normalizing constant:
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@ The primary task in Bayesian Parameter Estimation is the
computation of the posterior density p(8|D).

@ By Bayes formula

p(6|D) = (23)
@ Z is a normalizing constant:
z~ [ p(Dl6)s(6)a (24)
@ And, by the independence assumption on D:
(25)






