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Plan 

•  What are local image features and why are they useful.!
•  Local Image Feature Detection!
•  Invariance!
•  Local Image Feature Description!
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Goal:  
Identify interesting regions from the 
images (edges, corners, blobs…) 

Descriptors 

Matching / 
Indexing / 

Recognition 

e.g. SIFT 

Source: Savarese Slides!

Change to be more comprehensive and integrated with this lecture…! 3 



Application: Image Stitching 
4 

Sources for this example: I. Kokkinos, D. Frolova, D. Simakov. !



Application: Image Stitching 
5 

1.  Detect feature points in both images.!

Sources for this example: I. Kokkinos, D. Frolova, D. Simakov. !



Application: Image Stitching 
6 

1.  Detect feature points in both images.!
2.  Find corresponding pairs of feature points.!

Sources for this example: I. Kokkinos, D. Frolova, D. Simakov. !



Application: Image Stitching 

1.  Detect feature points in both images.!
2.  Find corresponding pairs of feature points.!
3.  Use the pairs the align the images.!
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Sources for this example: I. Kokkinos, D. Frolova, D. Simakov. !



Application: Estimating Fundamental Matrix 

1.  Detect feature points in both images.!
2.  Find corresponding pairs of feature points.!
3.  Use the pairs to estimate epipolar geometry across images.!
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Sources for this example: S. Savarese. !



Application: Detect Object Instances 

1.  Detect feature points in both images.!
2.  Find corresponding pairs of feature points.!
3.  Use the pairs to match object instances.!
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Sources for this example:  S. Savarese.!

A a 



Local Image Point Applications 

•  Image alignment (stitching, mosaics)!
•  3D reconstruction!
•  Motion tracking!
•  Object recognition!
•  Indexing and database retrieval!
•  Robot navigation!
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Advantages of local features 

Locality  
–  features are local, so robust to occlusion and clutter 

Distinctiveness:  
–  can differentiate a large database of objects 

Quantity 
–  hundreds or thousands in a single image 

Efficiency 
–  real-time performance achievable 

Generality 
–  exploit different types of features in different situations 

Source: S. Seitz slides. !

11 



Challenges 

•  Repeatability!
•  Uniqueness!
•  Invariance!
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UPDATE!

Descriptors 
Sources for this example: I. Kokkinos, D. Frolova, D. Simakov, S. Seitz. !



What makes a good feature? 
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Source for this example: S. Seitz. !



Scale  
invariance 

Pose invariance 
• Rotation 
• Affine 

Illumination  
invariance 

Repeatability 

Source for this example: Savarese. !
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•  Saliency! J 
L 

• Locality! L J 

Source for this example: Savarese. !
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One criterion is uniqueness 

Look for image regions that are unusual 
–  Lead to unambiguous matches in other images 

How to define “unusual”? 

Source: S. Seitz. !
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Local measures of uniqueness 

Suppose we only consider a small window of pixels 
–  What defines whether a feature is a good or bad candidate? 

Sources: I. Kokkinos, D. Frolova, D. Simakov, S. Seitz. !
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Feature detection 

“flat” region: 
no change in all 
directions 

“edge”:   
no change along 
the edge direction 

“corner”: 
significant change 
in all directions 

Local measure of feature uniqueness 
–  How does the window change when you shift it? 
–  Shifting the window in any direction causes a big change 

Sources: I. Kokkinos, D. Frolova, D. Simakov, S. Seitz. !
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Consider shifting the window W by (u,v) 
•  how do the pixels in W change? 
•  compare each pixel before and after by 

summing up the squared differences (SSD) 
•  this defines an SSD “error” of E(u,v): 

Feature detection:  the math 

W 

Source: S. Seitz. !
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•  Taylor Series expansion of!

•  If the motion is small, then the first order approx. is good:!

•  Plug this back into the objective function.!

Small motion assumption 

Source: S. Seitz. !

shorthand!
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Consider shifting the window W by (u,v) 
•  how do the pixels in W change? 
•  compare each pixel before and after by 

summing up the squared differences 
•  this defines an “error” of E(u,v): 

Feature detection:  the math 

W 

Source: S. Seitz. !
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Feature detection:  the math 
This can be rewritten: 
 
 
 
 
 
 
 

For the example above 
•  You can move the center of the window to anywhere on the blue 

unit circle 
•  Which directions will result in the largest and smallest E values? 
•  We can find these directions by looking at the eigenvectors of H 

Source: S. Seitz. !
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Quick eigenvalue/eigenvector review 

The eigenvectors of a matrix A are the vectors x that satisfy: 
 
 
The scalar λ is the eigenvalue corresponding to x 

–  The eigenvalues are found by solving: 

–  In our case, A = H is a 2x2 matrix, so we have 

 
–  The solution: 

 
Once you know λ, you find x by solving 

Source: S. Seitz. !
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Feature detection:  the math 
This can be rewritten: 
 
 
 
 
 
 
 

Eigenvalues and eigenvectors of H 
•  Define shifts with the smallest and largest change (E value) 
•  x+ = direction of largest increase in E.  
•  λ+ = amount of increase in direction x+ 

•  x- = direction of smallest increase in E.  
•  λ- = amount of increase in direction x+ 

 x- 

 x+ 

Source: S. Seitz. !
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Feature detection:  the math 
How are λ+, x+, λ-, and x+ relevant for feature detection? 

•  What’s our feature scoring function? 
 
 

Source: S. Seitz. !
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Feature detection: the math 

λ1 

λ2 

“Corner” 
λ1 and λ2 are large, 
 λ1 ~ λ2; 
E increases in all 
directions 

λ1 and λ2 are small; 
E is almost constant 
in all directions 

“Edge”  
λ1 >> λ2 

“Edge”  
λ2 >> λ1 

“Flat” 
region 

Classification of 
image points using 
eigenvalues of M:!

Source: Kokkinos, Saverese.!
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Feature detection:  the math 
How are λ+, x+, λ-, and x+ relevant for feature detection? 

•  What’s our feature scoring function? 
 
Want E(u,v) to be large for small shifts in all directions 

•  the minimum of E(u,v) should be large, over all unit vectors [u v] 
•  this minimum is given by the smaller eigenvalue (λ-) of H 

Source: S. Seitz. !
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Feature detection summary 
Here’s what you do 

•  Compute the gradient at each point in the image 
•  Create the H matrix from the entries in the gradient 
•  Compute the eigenvalues.  
•  Find points with large response (λ- > threshold) 
•  Choose those points where λ- is a local maximum as features 

Source: S. Seitz. !
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Feature detection summary 
Here’s what you do 

•  Compute the gradient at each point in the image 
•  Create the H matrix from the entries in the gradient 
•  Compute the eigenvalues.  
•  Find points with large response (λ- > threshold) 
•  Choose those points where λ- is a local maximum as features 

Source: S. Seitz. !
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The Harris operator 
λ- is a variant of the “Harris operator” for feature detection 

•  The trace is the sum of the diagonals, i.e., trace(H) = h11 + h22 

•  Very similar to λ- but less expensive (no square root) 
•  Called the “Harris Corner Detector” or “Harris Operator” 
•  Lots of other detectors, this is one of the most popular 

Source: S. Seitz. !

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.“ 
Proceedings of the 4th Alvey Vision Conference: pages 147--151.  1988.    !
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The Harris operator 

Harris  
operator 

Source: S. Seitz. !
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Harris detector example 

Source: S. Seitz. !
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f value (red high, blue low) 

Source: S. Seitz. !
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Threshold (f > value)  

Source: S. Seitz. !
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Find local maxima of f 

Source: S. Seitz. !
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Harris features (in red) 
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Towards Invariance 

Suppose you rotate the image by some angle 
–  Will you still pick up the same features? 

 
What if you change the brightness? 
 
Scale? 
 
Invariance defined: 

 Suppose we are comparing two images I and J. 
 J may be a transformed version of I 
 We want to detect the same features from I and J regardless 
of the transformation: this is transformational invariance. 

Source: S. Seitz. !
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Harris Detector: Some Properties 

•  Is the Harris detector rotationally invariant?!

Corner response R is invariant to image rotation 

doesn’t change! 

Source: S. Savarese. !
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Harris Detector: Some Properties 

•  Is it scale invariant?!

All points will be 
classified as edges 

Corner !!

Corner response R is not scale invariant! 

Source: S. Savarese. !
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Harris Detector: Some Properties 

•  Partial invariance to affine intensity changes!

•  invariance to intensity shift I → I + b   (why?) 

  

R 

x (image coordinate) 

threshold 

R 

x (image coordinate) 

 (only derivatives are used)!
!

•  Not invariant to intensity scale: I → a I!

I → s I + b!

Source: S. Savarese. !
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Invariance 

Detector Illumination Rotation Scale View 
point 

Harris corner partial Yes No No 

Source: S. Savarese. !
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Scale invariant detection 
Suppose you’re looking for corners 
 
 
 
 
 
 
 
Key idea:  find scale that gives local maximum of  

–     is a local maximum in both position and scale 
–  Common definition of    :  Laplacian 

(or difference between two Gaussian filtered images with different sigmas) 

Source: S. Seitz. !
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Slide from Tinne Tuytelaars 

Lindeberg et al, 1996 

Slide from Tinne Tuytelaars 

Lindeberg et al., 1996 
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=                   DoG filter!

Scale-Invariant Feature Detection Example 
•  Recall: Edges…!

Source: S. Seitz. !
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Edge detection 

Edge 

Derivative 
of Gaussian 

Edge = maximum 
of derivative 

Source: S. Seitz. !
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Edge detection as zero crossing 

Edge 

Second derivative 
of Gaussian  
(Laplacian) 

Edge = zero crossing 
of second derivative 

Source: S. Seitz. !
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Edge detection as zero crossing 

edge edge 

*!

=!

Source: S. Seitz. !
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From edges to blobs 

•  Blob = superposition of nearby edges!

Magnitude of the Laplacian response achieves a maximum at the center of the blob, 
provided the scale of the Laplacian is “matched” to the scale of the blob 

maximum 

*!

=!

*!

=!

*!

=!

Source: S. Seitz. !
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From edges to blobs 

•  Blob = superposition of nearby edges!

maximum 

*!

=!

*!

=!

*!

=!

What if the blob is slightly thicker or slimmer?   
Source: S. Seitz. !
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Scale selection 

•  We want to find the characteristic scale of the blob by 
convolving it with Laplacians at several scales and looking 
for the maximum response!

Why does this happen? 

• However, Laplacian response decays as scale increases:!

increasing σ 

Source: S. Seitz. !
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Scale selection 

•  We want to find the characteristic scale of the blob by 
convolving it with Laplacians at several scales and looking 
for the maximum response!

This should 
give the max 
response L 

• However, Laplacian response decays as scale increases:!

increasing σ 

original signal 
(radius=8) 

Source: S. Seitz. !
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Scale normalization 

•  The response of a derivative of Gaussian filter to a 
perfect step edge decreases as σ increases!

Source: S. Seitz. !
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Scale normalization 

•  To keep response the same (scale-invariant), must multiply 
Gaussian derivative by σ!

•  Laplacian is the second Gaussian derivative, so it must be 
multiplied by σ2!

Source: S. Seitz, S. Savarese. !
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Effect of scale normalization 

Scale-normalized Laplacian response 

Unnormalized Laplacian response Original signal 

Maximum J  
Source: S. Seitz, S. Savarese. !

61 



Blob detection in 2D 

2

2

2

2
2
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∂
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∂
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•  Laplacian of Gaussian: Circularly symmetric 
operator for blob detection in 2D!

Source: S. Seitz, S. Savarese. !
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Blob detection in 2D 

•  Laplacian of Gaussian: Circularly symmetric 
operator for blob detection in 2D!

⎟⎟
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gg σScale-normalized: 

Source: S. Seitz, S. Savarese. !
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Scale selection 

2/r

!
•  For a binary circle of radius    , the Laplacian 

achieves a maximum at !

r 

image 

La
pl

ac
ia

n 
re

sp
on

se
 

scale (σ) 

Source: S. Seitz, S. Savarese. !
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Characteristic scale 

•  We define the characteristic scale as the scale that 
produces peak of Laplacian response!

characteristic scale 
T. Lindeberg (1998). "Feature detection with automatic scale selection." International 
Journal of Computer Vision 30 (2): pp 77--116.  

Source: S. Seitz, S. Savarese. !
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Scale-space blob detector 

1.  Convolve image with scale-normalized Laplacian 
at several scales!

2.  Find maxima of squared Laplacian response in 
scale-space!

3.  This indicates if a blob has!
been detected!
!

4.  And what is its !
intrinsic scale!

Source: S. Seitz, S. Savarese. !
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Scale-space blob detector: example 

Source: S. Seitz, S. Savarese. !
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Scale-space blob detector: example 

Source: S. Seitz, S. Savarese. !
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Scale-space blob detector: example 

Source: S. Seitz, S. Savarese. !
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Difference of Gaussians Approximations to Laplacian 

•  Approximating the Laplacian with a difference of 
Gaussians:!

( )2 ( , , ) ( , , )xx yyL G x y G x yσ σ σ= +

( , , ) ( , , )DoG G x y k G x yσ σ= −

Laplacian 

Difference of Gaussians 
    or 
Difference of gaussian blurred  
images at scales k σ and σ 

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), 04!

Source: S. Seitz, S. Savarese. !
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Output: location, scale, orientation (more later) 

k  

Source: S. Seitz, S. Savarese. !

Difference of Gaussians (DoG) 
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Invariance 

Detector Illumination Rotation Scale View point 

Harris corner Yes Yes No No 

Lowe ’99 
(DoG) 

Yes Yes Yes No 

Source: S. Savarese. !
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Harris-Laplace  
 [Mikolajczyk & Schmid ’01] 

•  Collect locations (x,y) of detected Harris features !
    for σ = σ1… σ2  (the sigma is here comes from gx, gy) !

•  For each detected location (x,y) and for each σ, reject 
detection if Laplacian(x,y, σ) is not a local maximum!

Output: location, scale 
Source: S. Savarese. !
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Invariance 

Detector Illumination Rotation Scale View point 

Harris corner Yes Yes No No 

Lowe ’99 
(DoG) 

Yes Yes Yes No 

Mikolajczyk & 
Schmid ’01 

Yes Yes Yes No 

Source: S. Savarese. !
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Repeatability!

Scale  
invariance 

Pose invariance 
• Rotation 
• Affine 

Illumination  
invariance 

Source: S. Savarese. !
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Affine invariance 

Similarly to characteristic scale selection, detect 
the characteristic shape of the local feature  

K. Mikolajczyk and C. Schmid, 
Scale and Affine invariant interest point detectors, IJCV 60(1):63-86, 2004. !

Source: S. Savarese. !
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Affine invariance 

(λmax)-1/2!

(λmin)-1/2!

We can visualize M as an ellipse with axis lengths determined by the 
eigenvalues and orientation determined by R 

 

 The second moment ellipse can be viewed as the 
“characteristic shape” of a region!

Source: S. Savarese. !
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Affine adaptation 

1. Detect initial region with Harris Laplace 
2. Estimate affine shape with M 
3. Normalize the affine region to a circular one 
4. Re-detect the new location and scale in the normalized 

image 
5. Go to step 2 if the eigenvalues of the M for the new point 

are not equal [detector not yet adapted to the characteristic shape] 

Source: S. Savarese. !
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Without affine invariance 

Scale-invariant regions (blobs) 

Source: S. Savarese. !
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With affine invariance 

Affine-adapted blobs 
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Invariance 

Detector Illumination Rotation Scale View point 

Harris corner Yes Yes No No 

Lowe ’99 
(DoG) 

Yes Yes Yes No 

Mikolajczyk & 
Schmid ’01 

Yes Yes Yes No 

Mikolajczyk & 
Schmid ’02 

Yes Yes Yes Yes 

Source: S. Savarese. !
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Detector Illumination Rotation Scale View point 

Harris corner Yes Yes No No 

Lowe ’99 
(DoG) 

Yes Yes Yes Yes 

Mikolajczyk & 
Schmid ’01, 

‘02 

Yes Yes Yes Yes 

Tuytelaars, ‘00 Yes Yes No  (Yes ’04 ) Yes 

Kadir & Brady, 
01 

Yes Yes Yes no 

Matas, ’02 Yes Yes Yes no 

Source: S. Savarese. !
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Feature Descriptors 

Overview!



Application: Image Stitching 
84 

Sources for this example: I. Kokkinos, D. Frolova, D. Simakov. !



Application: Image Stitching 
85 

1.  Detect feature points in both images.!

Sources for this example: I. Kokkinos, D. Frolova, D. Simakov. !



Application: Image Stitching 
86 

1.  Detect feature points in both images.!
2.  Find corresponding pairs of feature points.!

Sources for this example: I. Kokkinos, D. Frolova, D. Simakov. !



Application: Image Stitching 

1.  Detect feature points in both images.!
2.  Find corresponding pairs of feature points.!
3.  Use the pairs the align the images.!
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Sources for this example: I. Kokkinos, D. Frolova, D. Simakov. !



Application: Estimating Fundamental Matrix 

1.  Detect feature points in both images.!
2.  Find corresponding pairs of feature points.!
3.  Use the pairs to estimate epipolar geometry across images.!

88 

Source: S. Savarese. !



Application: Detect Object Instances 

1.  Detect feature points in both images.!
2.  Find corresponding pairs of feature points.!
3.  Use the pairs to match object instances.!

89 

A a 
Source: S. Savarese. !



•  Invariant w.r.t:!
• Illumination!
• Pose!
• Scale !
• Intraclass variability!

A a 
•  Highly distinctive (allows a single feature to find its correct match with 
good probability in a large database of features)!

Depending on the application a descriptor must 
incorporate information that is: !

Source: S. Savarese. !

Challenges 
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Illumination normalization 

•  Affine intensity change:!

   I →  I + b  

I 

x (image coordinate) 

• Make each patch zero mean:!

• Then make unit variance:!

 → a I + b 

Source: S. Savarese. !
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Pose normalization 

NOTE: location, scale, rotation & affine pose are given  by the detector or 
calculated  within the  detected  regions!

Unit circle!

Source: S. Savarese. !
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Pose normalization 

•  Keypoints are transformed in order to be 
invariant to translation, rotation, scale, and 
other geometrical parameters [Lowe 2000]!

C
ourtesy of D

. Low
e 

Change of scale, pose, illumination… 
Source: S. Savarese. !
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 w= [                                                                  ]   … 

1 x NM vector of pixel intensities 

N 

M 

)ww(
)ww(wn −

−
= Makes the descriptor invariant with respect to affine 

transformation of the illumination condition 
Source: S. Savarese. !

The simplest descriptor 
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!
•  Sensitive to small variation of:!

•  location!
•  Pose!
•  Scale!
•  intra-class variability!

•  Poorly distinctive!

Source: S. Savarese. !

Why not? 
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Sensitive to pose variations 

Normalized Correlation: 

)ww)(ww(
)ww)(ww(ww nn ʹ′−ʹ′−

ʹ′−ʹ′−
=ʹ′⋅

Norm. corr 

Source: S. Savarese. !
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Detector Illumination Pose Intra-class 
variab. 

PATCH Good Poor Poor 

Source: S. Savarese. !
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filter responses 

Bank of filters 

… 

image 

descriptor 

filter bank  

More robust but still quite 
sensitive to pose variations 

Source: S. Savarese. !
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Detector Illumination Pose Intra-class 
variab. 

PATCH Good Poor Poor 

FILTERS Good Medium Medium 

Source: S. Savarese. !
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SIFT descriptor 
•  Alternative representation for image patches!
•  Location and characteristic scale s given by DoG detector!

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), 04!

s 

Source: S. Savarese. !
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SIFT descriptor 
•  Alternative representation for image patches!
•  Location and characteristic scale s given by DoG detector!

• Compute gradient at each pixel 

Δθ1 Δθ1 ΔθM 

•  N x N spatial bins!

•  Compute an histogram of M 
orientations for each bin!

Source: S. Savarese. !

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), 04!
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SIFT descriptor 
•  Alternative representation for image patches!
•  Location and characteristic scale s given by DoG detector!

• Compute gradient at each pixel 

Δθ1 Δθ1 ΔθM 

•  N x N spatial bins!

•  Compute an histogram of M 
orientations for each bin!
•  Gaussian center-weighting!

Source: S. Savarese. !

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), 04!
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SIFT descriptor 
•  Alternative representation for image patches!
•  Location and characteristic scale s given by DoG detector!

• Compute gradient at each pixel 
•  N x N spatial bins!

•  Compute an histogram of M 
orientations for each bin!
•  Gaussian center-weighting!

Typically M = 8; N= 4 
1 x 128 descriptor 

•  Normalized unit norm!

Source: S. Savarese. !

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), 04!
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!
•  Robust w.r.t. small variation in:!

•  Illumination (thanks to gradient & normalization) !
•  Pose (small affine variation thanks to orientation histogram )!
•  Scale (scale is fixed by DOG)!
•  Intra-class variability (small variations thanks to histograms)!

Source: S. Savarese. !

SIFT Descriptor 
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Rotational Invariance 

•  Find dominant orientation by building smoothed 
orientation histogram!

•  Rotate all orientations by the dominant orientation!

0 2 π 

This makes the SIFT descriptor rotational invariant 
Source: S. Savarese. !
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Source: S. Savarese. !

SIFT Rotational Invariance Example 
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Rotation invariance (Alternate) 

Find dominant orientation of the image patch 
–  This is given by x+, the eigenvector of H corresponding to λ+ 

•  λ+ is the larger eigenvalue 

–  Rotate the patch according to this angle 

Figure by Matthew Brown 
Source: S. Seitz. !
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SIFT Rotational Invariance Example 

Source: S. Savarese. !
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Source: S. Savarese. !

Matching Using SIFT 
David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), 04!
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Matching Using SIFT 
David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), 04!

Source: S. Savarese. !
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Detector Illumination Pose Intra-class 
variab. 

PATCH Good Poor Poor 

FILTERS Good Medium Medium 

SIFT Good Good Medium 

Source: S. Savarese. !
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Next Lecture: Segmentation and Clustering 

•  Readings:   FP 6.2, 9;  SZ 5.2-5.4 !
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