
MSRI Workshop on Nonlinear Estimation and Classification, 2002.

The Boosting Approach to Machine Learning
An Overview

Robert E. Schapire
AT&T Labs� Research

Shannon Laboratory
180 Park Avenue, Room A203
Florham Park, NJ 07932 USA

www.research.att.com/�schapire

December 19, 2001

Abstract

Boosting is a general method for improving the accuracy of any given
learning algorithm. Focusing primarily on the AdaBoost algorithm, this
chapter overviews some of the recent work on boosting including analyses
of AdaBoost’s training error and generalization error; boosting’s connection
to game theory and linear programming; the relationship between boosting
and logistic regression; extensions of AdaBoost for multiclass classification
problems; methods of incorporating human knowledge into boosting; and
experimental and applied work using boosting.

1 Introduction

Machine learning studies automatic techniques for learning to make accurate pre-
dictions based on past observations. For example, suppose that we would like to
build an email filter that can distinguish spam (junk) email from non-spam. The
machine-learning approach to this problem would be the following: Start by gath-
ering as many examples as posible of both spam and non-spam emails. Next, feed
these examples, together with labels indicating if they are spam or not, to your
favorite machine-learning algorithm which will automatically produce a classifi-
cation or prediction rule. Given a new, unlabeled email, such a rule attempts to
predict if it is spam or not. The goal, of course, is to generate a rule that makes the
most accurate predictions possible on new test examples.

1

Building a highly accurate prediction rule is certainly a difficult task. On the
other hand, it is not hard at all to come up with very rough rules of thumb that
are only moderately accurate. An example of such a rule is something like the
following: “If the phrase ‘buy now’ occurs in the email, then predict it is spam.”
Such a rule will not even come close to covering all spam messages; for instance,
it really says nothing about what to predict if ‘buy now’ does not occur in the
message. On the other hand, this rule will make predictions that are significantly
better than random guessing.

Boosting, the machine-learning method that is the subject of this chapter, is
based on the observation that finding many rough rules of thumb can be a lot easier
than finding a single, highly accurate prediction rule. To apply the boosting ap-
proach, we start with a method or algorithm for finding the rough rules of thumb.
The boosting algorithm calls this “weak” or “base” learning algorithm repeatedly,
each time feeding it a different subset of the training examples (or, to be more pre-
cise, a different distribution or weighting over the training examples1). Each time
it is called, the base learning algorithm generates a new weak prediction rule, and
after many rounds, the boosting algorithm must combine these weak rules into a
single prediction rule that, hopefully, will be much more accurate than any one of
the weak rules.

To make this approach work, there are two fundamental questions that must be
answered: first, how should each distribution be chosen on each round, and second,
how should the weak rules be combined into a single rule? Regarding the choice
of distribution, the technique that we advocate is to place the most weight on the
examples most often misclassified by the preceding weak rules; this has the effect
of forcing the base learner to focus its attention on the “hardest” examples. As
for combining the weak rules, simply taking a (weighted) majority vote of their
predictions is natural and effective.

There is also the question of what to use for the base learning algorithm, but
this question we purposely leave unanswered so that we will end up with a general
boosting procedure that can be combined with any base learning algorithm.

Boosting refers to a general and provably effective method of producing a very
accurate prediction rule by combining rough and moderately inaccurate rules of
thumb in a manner similar to that suggested above. This chapter presents an
overview of some of the recent work on boosting, focusing especially on the Ada-
Boost algorithm which has undergone intense theoretical study and empirical test-
ing.

1A distribution over training examples can be used to generate a subset of the training examples
simply by sampling repeatedly from the distribution.

2

Given: �x�� y��� � � � � �xm� ym� wherexi � X, yi � Y � f�����g
Initialize D��i� � ��m.
For t � �� � � � � T :

� Train base learner using distributionDt.
� Get base classifierht � X � R.
� Choose�t � R.
� Update:

Dt���i� �
Dt�i� exp���tyiht�xi��

Zt

whereZt is a normalization factor (chosen so thatDt�� will be a distribu-
tion).

Output the final classifier:

H�x� � sign

�
TX
t��

�tht�x�

�
�

Figure 1: The boosting algorithm AdaBoost.

2 AdaBoost

Working in Valiant’s PAC (probably approximately correct) learning model [75],
Kearns and Valiant [41, 42] were the first to pose the question of whether a “weak”
learning algorithm that performs just slightly better than random guessing can be
“boosted” into an arbitrarily accurate “strong” learning algorithm. Schapire [66]
came up with the first provable polynomial-time boosting algorithm in 1989. A
year later, Freund [26] developed a much more efficient boosting algorithm which,
although optimal in a certain sense, nevertheless suffered like Schapire’s algorithm
from certain practical drawbacks. The first experiments with these early boosting
algorithms were carried out by Drucker, Schapire and Simard [22] on an OCR task.

The AdaBoost algorithm, introduced in 1995 by Freund and Schapire [32],
solved many of the practical difficulties of the earlier boosting algorithms, and is
the focus of this paper. Pseudocode for AdaBoost is given in Fig. 1 in the slightly
generalized form given by Schapire and Singer [70]. The algorithm takes as input
a training set�x�� y��� � � � � �xm� ym� where eachxi belongs to somedomain or
instance space X, and eachlabel yi is in some label setY . For most of this paper,
we assumeY � f�����g; in Section 7, we discuss extensions to the multiclass
case. AdaBoost calls a givenweak or base learning algorithm repeatedly in a series

3

of roundst � �� � � � � T . One of the main ideas of the algorithm is to maintain a
distribution or set of weights over the training set. The weight of this distribution on
training examplei on roundt is denotedDt�i�. Initially, all weights are set equally,
but on each round, the weights of incorrectly classified examples are increased so
that the base learner is forced to focus on the hard examples in the training set.

The base learner’s job is to find abase classifier ht � X � R appropriate
for the distributionDt. (Base classifiers were also called rules of thumb or weak
prediction rules in Section 1.) In the simplest case, the range of eachht is binary,
i.e., restricted tof�����g; the base learner’s job then is to minimize theerror

�t � Pri�Dt
�ht�xi� �� yi� �

Once the base classifierht has been received, AdaBoost chooses a parameter
�t � R that intuitively measures the importance that it assigns toht. In the figure,
we have deliberately left the choice of�t unspecified. For binaryht, we typically
set

�t �
�
� ln

�
�� �t
�t

�
(1)

as in the original description of AdaBoost given by Freund and Schapire [32]. More
on choosing�t follows in Section 3. The distributionDt is then updated using the
rule shown in the figure. Thefinal or combined classifier H is a weighted majority
vote of theT base classifiers where�t is the weight assigned toht.

3 Analyzing the training error

The most basic theoretical property of AdaBoost concerns its ability to reduce
the training error, i.e., the fraction of mistakes on the training set. Specifically,
Schapire and Singer [70], in generalizing a theorem of Freund and Schapire [32],
show that the training error of the final classifier is bounded as follows:

�

m
jfi � H�xi� �� yigj �

�

m

X
i

exp��yif�xi�� �
Y
t

Zt (2)

where henceforth we define

f�x� �
X
t

�tht�x� (3)

so thatH�x� � sign�f�x��. (For simplicity of notation, we write
P

i and
P

t as
shorthand for

Pm
i�� and

PT
t��, respectively.) The inequality follows from the fact

thate�yif�xi� � � if yi �� H�xi�. The equality can be proved straightforwardly by
unraveling the recursive definition ofDt.

4

Eq. (2) suggests that the training error can be reduced most rapidly (in a greedy
way) by choosing�t andht on each round to minimize

Zt �
X
i

Dt�i� exp���tyiht�xi��� (4)

In the case of binary classifiers, this leads to the choice of�t given in Eq. (1) and
gives a bound on the training error of

Y
t

Zt �
Y
t

�
�
q
�t��� �t�

�
�
Y
t

q
�� 	��t � exp

�
��
X
t

��t

�
(5)

where we define�t � ��� � �t. This bound was first proved by Freund and
Schapire [32]. Thus, if each base classifier is slightly better than random so that
�t � � for some� �
, then the training error drops exponentially fast inT since
the bound in Eq. (5) is at moste��T�

�

. This bound, combined with the bounds
on generalization error given below prove that AdaBoost is indeed a boosting al-
gorithm in the sense that it can efficiently convert a true weak learning algorithm
(that can always generate a classifier with a weak edge for any distribution) into
a strong learning algorithm (that can generate a classifier with an arbitrarily low
error rate, given sufficient data).

Eq. (2) points to the fact that, at heart, AdaBoost is a procedure for finding a
linear combinationf of base classifiers which attempts to minimize

X
i

exp��yif�xi�� �
X
i

exp

�
�yi

X
t

�tht�xi�

�
� (6)

Essentially, on each round, AdaBoost choosesht (by calling the base learner) and
then sets�t to add one more term to the accumulating weighted sum of base classi-
fiers in such a way that the sum of exponentials above will be maximally reduced.
In other words, AdaBoost is doing a kind of steepest descent search to minimize
Eq. (6) where the search is constrained at each step to follow coordinate direc-
tions (where we identify coordinates with the weights assigned to base classifiers).
This view of boosting and its generalization are examined in considerable detail
by Duffy and Helmbold [23], Mason et al. [51, 52] and Friedman [35]. See also
Section 6.

Schapire and Singer [70] discuss the choice of�t andht in the case thatht
is real-valued (rather than binary). In this case,ht�x� can be interpreted as a
“confidence-rated prediction” in which the sign ofht�x� is the predicted label,
while the magnitudejht�x�j gives a measure of confidence. Here, Schapire and
Singer advocate choosing�t andht so as to minimizeZt (Eq. (4)) on each round.

5

4 Generalization error

In studying and designing learning algorithms, we are of course interested in per-
formance on examplesnot seen during training, i.e., in the generalization error, the
topic of this section. Unlike Section 3 where the training examples were arbitrary,
here we assume that all examples (both train and test) are generated i.i.d. from
some unknown distribution onX � Y . The generalization error is the probability
of misclassifying a new example, while the test error is the fraction of mistakes on
a newly sampled test set (thus, generalization error is expected test error). Also,
for simplicity, we restrict our attention to binary base classifiers.

Freund and Schapire [32] showed how to bound the generalization error of the
final classifier in terms of its training error, the sizem of the sample, the VC-
dimension2 d of the base classifier space and the number of roundsT of boosting.
Specifically, they used techniques from Baum and Haussler [5] to show that the
generalization error, with high probability, is at most3

�Pr �H�x� �� y� � �O

�
�
s
Td

m

�
A

where�Pr ��� denotes empirical probability on the training sample. This bound sug-
gests that boosting will overfit if run for too many rounds, i.e., asT becomes large.
In fact, this sometimes does happen. However, in early experiments, several au-
thors [8, 21, 59] observed empirically that boosting often doesnot overfit, even
when run for thousands of rounds. Moreover, it was observed that AdaBoost would
sometimes continue to drive down the generalization error long after the training
error had reached zero, clearly contradicting the spirit of the bound above. For
instance, the left side of Fig. 2 shows the training and test curves of running boost-
ing on top of Quinlan’s C4.5 decision-tree learning algorithm [60] on the “letter”
dataset.

In response to these empirical findings, Schapire et al. [69], following the work
of Bartlett [3], gave an alternative analysis in terms of themargins of the training
examples. The margin of example�x� y� is defined to be

marginf �x� y� �
yf�x�X
t

j�tj
�

y
X
t

�tht�x�X
t

j�tj
�

2The Vapnik-Chervonenkis (VC) dimension is a standard measure of the “complexity” of a space
of binary functions. See, for instance, refs. [6, 76] for its definition and relation to learning theory.

3The “soft-Oh” notation�O ���, here used rather informally, is meant to hide all logarithmic and
constant factors (in the same way that standard “big-Oh” notation hides only constant factors).

6

10 100 1000
0

5

10

15

20

er
ro

r

rounds
-1 -0.5 0.5 1

0.5

1.0

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

margin

Figure 2: Error curves and the margin distribution graph for boosting C4.5 on
the letter dataset as reported by Schapire et al. [69].Left: the training and test
error curves (lower and upper curves, respectively) of the combined classifier as
a function of the number of rounds of boosting. The horizontal lines indicate the
test error rate of the base classifier as well as the test error of the final combined
classifier.Right: The cumulative distribution of margins of the training examples
after 5, 100 and 1000 iterations, indicated by short-dashed, long-dashed (mostly
hidden) and solid curves, respectively.

It is a number in������� and is positive if and only ifH correctly classifies the
example. Moreover, as before, the magnitude of the margin can be interpreted as a
measure of confidence in the prediction. Schapire et al. proved that larger margins
on the training set translate into a superior upper bound on the generalization error.
Specifically, the generalization error is at most

�Pr
h
marginf �x� y� � �

i
� �O

�
�
s

d

m��

�
A

for any� �
 with high probability. Note that this bound is entirely independent
of T , the number of rounds of boosting. In addition, Schapire et al. proved that
boosting is particularly aggressive at reducing the margin (in a quantifiable sense)
since it concentrates on the examples with the smallest margins (whether positive
or negative). Boosting’s effect on the margins can be seen empirically, for instance,
on the right side of Fig. 2 which shows the cumulative distribution of margins of the
training examples on the “letter” dataset. In this case, even after the training error
reaches zero, boosting continues to increase the margins of the training examples
effecting a corresponding drop in the test error.

Although the margins theory gives a qualitative explanation of the effectiveness
of boosting, quantitatively, the bounds are rather weak. Breiman [9], for instance,

7

shows empirically that one classifier can have a margin distribution that is uni-
formly better than that of another classifier, and yet be inferior in test accuracy. On
the other hand, Koltchinskii, Panchenko and Lozano [44, 45, 46, 58] have recently
proved new margin-theoretic bounds that are tight enough to give useful quantita-
tive predictions.

Attempts (not always successful) to use the insights gleaned from the theory
of margins have been made by several authors [9, 37, 50]. In addition, the margin
theory points to a strong connection between boosting and the support-vector ma-
chines of Vapnik and others [7, 14, 77] which explicitly attempt to maximize the
minimum margin.

5 A connection to game theory and linear programming

The behavior of AdaBoost can also be understood in a game-theoretic setting as
explored by Freund and Schapire [31, 33] (see also Grove and Schuurmans [37]
and Breiman [9]). In classical game theory, it is possible to put any two-person,
zero-sum game in the form of a matrixM. To play the game, one player chooses a
row i and the other player chooses a columnj. The loss to the row player (which
is the same as the payoff to the column player) isMij . More generally, the two
sides may play randomly, choosing distributionsP andQ over rows or columns,
respectively. The expected loss then isPTMQ.

Boosting can be viewed as repeated play of a particular game matrix. Assume
that the base classifiers are binary, and letH � fh�� ���� hng be the entire base
classifier space (which we assume for now to be finite). For a fixed training set
�x�� y��� � � � � �xm� ym�, the game matrixM hasm rows andn columns where

Mij �

	
� if hj�xi� � yi

 otherwise.

The row player now is the boosting algorithm, and the column player is the base
learner. The boosting algorithm’s choice of a distributionDt over training exam-
ples becomes a distributionP over rows ofM, while the base learner’s choice of a
base classifierht becomes the choice of a columnj ofM.

As an example of the connection between boosting and game theory, consider
von Neumann’s famous minmax theorem which states that

max
Q

min
P
PTMQ � min

P
max
Q
PTMQ

for any matrixM. When applied to the matrix just defined and reinterpreted in
the boosting setting, this can be shown to have the following meaning: If, for any

8

distribution over examples, there exists a base classifier with error at most�����,
then there exists a convex combination of base classifiers with a margin of at least
�� on all training examples. AdaBoost seeks to find such a final classifier with
high margin on all examples by combining many base classifiers; so in a sense, the
minmax theorem tells us that AdaBoost at least has the potential for success since,
given a “good” base learner, there must exist a good combination of base classi-
fiers. Going much further, AdaBoost can be shown to be a special case of a more
general algorithm for playing repeated games, or for approximately solving matrix
games. This shows that, asymptotically, the distribution over training examples as
well as the weights over base classifiers in the final classifier have game-theoretic
intepretations as approximate minmax or maxmin strategies.

The problem of solving (finding optimal strategies for) a zero-sum game is
well known to be solvable using linear programming. Thus, this formulation of the
boosting problem as a game also connects boosting to linear, and more generally
convex, programming. This connection has led to new algorithms and insights as
explored by R¨atsch et al. [62], Grove and Schuurmans [37] and Demiriz, Bennett
and Shawe-Taylor [17].

In another direction, Schapire [68] describes and analyzes the generalization
of both AdaBoost and Freund’s earlier “boost-by-majority” algorithm [26] to a
broader family of repeated games called “drifting games.”

6 Boosting and logistic regression

Classification generally is the problem of predicting the labely of an examplex
with the intention of minimizing the probability of an incorrect prediction. How-
ever, it is often useful to estimate theprobability of a particular label. Friedman,
Hastie and Tibshirani [34] suggested a method for using the output of AdaBoost to
make reasonable estimates of such probabilities. Specifically, they suggested using
a logistic function, and estimating

Prf �y � �� j x� �
ef�x�

ef�x� � e�f�x�
(7)

where, as usual,f�x� is the weighted average of base classifiers produced by Ada-
Boost (Eq. (3)). The rationale for this choice is the close connection between the
log loss (negative log likelihood) of such a model, namely,

X
i

ln

� � e��yif�xi�

�
(8)

9

and the function that, we have already noted, AdaBoost attempts to minimize:X
i

e�yif�xi�� (9)

Specifically, it can be verified that Eq. (8) is upper bounded by Eq. (9). In addition,
if we add the constant�� ln � to Eq. (8) (which does not affect its minimization),
then it can be verified that the resulting function and the one in Eq. (9) have iden-
tical Taylor expansions around zero up to second order; thus, their behavior near
zero is very similar. Finally, it can be shown that, for any distribution over pairs
�x� y�, the expectations

E
h
ln

� � e��yf�x�

�i
and

E
h
e�yf�x�

i
are minimized by the same (unconstrained) functionf , namely,

f�x� � �
� ln

�
Pr �y � �� j x�

Pr �y � �� j x�

�
�

Thus, for all these reasons, minimizing Eq. (9), as is done by AdaBoost, can be
viewed as a method of approximately minimizing the negative log likelihood given
in Eq. (8). Therefore, we may expect Eq. (7) to give a reasonable probability
estimate.

Of course, as Friedman, Hastie and Tibshirani point out, rather than minimiz-
ing the exponential loss in Eq. (6), we could attempt instead to directly minimize
the logistic loss in Eq. (8). To this end, they propose their LogitBoost algorithm.
A different, more direct modification of AdaBoost for logistic loss was proposed
by Collins, Schapire and Singer [13]. Following up on work by Kivinen and War-
muth [43] and Lafferty [47], they derive this algorithm using a unification of logis-
tic regression and boosting based on Bregman distances. This work further con-
nects boosting to the maximum-entropy literature, particularly the iterative-scaling
family of algorithms [15, 16]. They also give unified proofs of convergence to
optimality for a family of new and old algorithms, including AdaBoost, for both
the exponential loss used by AdaBoost and the logistic loss used for logistic re-
gression. See also the later work of Lebanon and Lafferty [48] who showed that
logistic regression and boosting are in fact solving the same constrained optimiza-
tion problem, except that in boosting, certain normalization constraints have been
dropped.

For logistic regression, we attempt to minimize the loss functionX
i

ln

� � e�yif�xi�

�
(10)

10

which is the same as in Eq. (8) except for an inconsequential change of constants
in the exponent. The modification of AdaBoost proposed by Collins, Schapire and
Singer to handle this loss function is particularly simple. In AdaBoost, unraveling
the definition ofDt given in Fig. 1 shows thatDt�i� is proportional (i.e., equal up
to normalization) to

exp ��yift���xi��

where we define

ft�x� �
tX

t���

�t�ht��x��

To minimize the loss function in Eq. (10), the only necessary modification is to
redefineDt�i� to be proportional to

�

� � exp �yift���xi��
�

A very similar algorithm is described by Duffy and Helmbold [23]. Note that in
each case, the weight on the examples, viewed as a vector, is proportional to the
negative gradient of the respective loss function. This is because both algorithms
are doing a kind of functional gradient descent, an observation that is spelled out
and exploited by Breiman [9], Duffy and Helmbold [23], Mason et al. [51, 52] and
Friedman [35].

Besides logistic regression, there have been a number of approaches taken to
apply boosting to more general regression problems in which the labelsyi are real
numbers and the goal is to produce real-valued predictions that are close to these la-
bels. Some of these, such as those of Ridgeway [63] and Freund and Schapire [32],
attempt to reduce the regression problem to a classification problem. Others, such
as those of Friedman [35] and Duffy and Helmbold [24] use the functional gradient
descent view of boosting to derive algorithms that directly minimize a loss func-
tion appropriate for regression. Another boosting-based approach to regression
was proposed by Drucker [20].

7 Multiclass classification

There are several methods of extending AdaBoost to the multiclass case. The most
straightforward generalization [32], called AdaBoost.M1, is adequate when the
base learner is strong enough to achieve reasonably high accuracy, even on the
hard distributions created by AdaBoost. However, this method fails if the base
learner cannot achieve at least 50% accuracy when run on these hard distributions.

11

For the latter case, several more sophisticated methods have been developed.
These generally work by reducing the multiclass problem to a larger binary prob-
lem. Schapire and Singer’s [70] algorithm AdaBoost.MH works by creating a set
of binary problems, for each examplex and each possible labely, of the form:
“For examplex, is the correct labely or is it one of the other labels?” Freund
and Schapire’s [32] algorithm AdaBoost.M2 (which is a special case of Schapire
and Singer’s [70] AdaBoost.MR algorithm) instead creates binary problems, for
each examplex with correct labely and eachincorrect labely� of the form: “For
examplex, is the correct labely or y�?”

These methods require additional effort in the design of the base learning algo-
rithm. A different technique [67], which incorporates Dietterich and Bakiri’s [19]
method of error-correcting output codes, achieves similar provable bounds to those
of AdaBoost.MH and AdaBoost.M2, but can be used with any base learner that
can handle simple, binary labeled data. Schapire and Singer [70] and Allwein,
Schapire and Singer [2] give yet another method of combining boosting with error-
correcting output codes.

8 Incorporating human knowledge

Boosting, like many machine-learning methods, is entirely data-driven in the sense
that the classifier it generates is derived exclusively from the evidence present in
the training data itself. When data is abundant, this approach makes sense. How-
ever, in some applications, data may be severely limited, but there may be human
knowledge that, in principle, might compensate for the lack of data.

In its standard form, boosting does not allow for the direct incorporation of such
prior knowledge. Nevertheless, Rochery et al. [64, 65] describe a modification of
boosting that combines and balances human expertise with available training data.
The aim of the approach is to allow the human’s rough judgments to be refined,
reinforced and adjusted by the statistics of the training data, but in a manner that
does not permit the data to entirely overwhelm human judgments.

The first step in this approach is for a human expert to construct by hand a
rule p mapping each instancex to an estimated probabilityp�x� � �
� �� that is
interpreted as the guessed probability that instancex will appear with label��.
There are various methods for constructing such a functionp, and the hope is that
this difficult-to-build function need not be highly accurate for the approach to be
effective.

Rochery et al.’s basic idea is to replace the logistic loss function in Eq. (10)

12

with one that incorporates prior knowledge, namely,

X
i

ln

� � e�yif�xi�

�
� �

X
i

RE

�
p�xi� k

�

� � e�f�xi�

�

whereRE�p k q� � p ln�p�q� � �� � p� ln��� � p���� � q�� is binary relative
entropy. The first term is the same as that in Eq. (10). The second term gives a
measure of the distance from the model built by boosting to the human’s model.
Thus, we balance the conditional likelihood of the data against the distance from
our model to the human’s model. The relative importance of the two terms is
controlled by the parameter�.

9 Experiments and applications

Practically, AdaBoost has many advantages. It is fast, simple and easy to pro-
gram. It has no parameters to tune (except for the number of roundT). It requires
no prior knowledge about the base learner and so can be flexibly combined with
any method for finding base classifiers. Finally, it comes with a set of theoretical
guarantees given sufficient data and a base learner that can reliably provide only
moderately accurate base classifiers. This is a shift in mind set for the learning-
system designer: instead of trying to design a learning algorithm that is accurate
over the entire space, we can instead focus on finding base learning algorithms that
only need to be better than random.

On the other hand, some caveats are certainly in order. The actual performance
of boosting on a particular problem is clearly dependent on the data and the base
learner. Consistent with theory, boosting can fail to perform well given insufficient
data, overly complex base classifiers or base classifiers that are too weak. Boosting
seems to be especially susceptible to noise [18] (more on this in Sectionsec:exps).

AdaBoost has been tested empirically by many researchers, including [4, 18,
21, 40, 49, 59, 73]. For instance, Freund and Schapire [30] tested AdaBoost on a
set of UCI benchmark datasets [54] using C4.5 [60] as a base learning algorithm,
as well as an algorithm that finds the best “decision stump” or single-test decision
tree. Some of the results of these experiments are shown in Fig. 3. As can be seen
from this figure, even boosting the weak decision stumps can usually give as good
results as C4.5, while boosting C4.5 generally gives the decision-tree algorithm a
significant improvement in performance.

In another set of experiments, Schapire and Singer [71] used boosting for text
categorization tasks. For this work, base classifiers were used that test on the pres-
ence or absence of a word or phrase. Some results of these experiments comparing

13

0 5 10 15 20 25 30
0

5

10

15

20

25

30
C

4.
5

0 5 10 15 20 25 30
0

5

10

15

20

25

30

boosting stumps boosting C4.5

Figure 3: Comparison of C4.5 versus boosting stumps and boosting C4.5 on a set
of 27 benchmark problems as reported by Freund and Schapire [30]. Each point
in each scatterplot shows the test error rate of the two competing algorithms on
a single benchmark. They-coordinate of each point gives the test error rate (in
percent) of C4.5 on the given benchmark, and thex-coordinate gives the error rate
of boosting stumps (left plot) or boosting C4.5 (right plot). All error rates have
been averaged over multiple runs.

AdaBoost to four other methods are shown in Fig. 4. In nearly all of these ex-
periments and for all of the performance measures tested, boosting performed as
well or significantly better than the other methods tested. As shown in Fig. 5, these
experiments also demonstrated the effectiveness of using confidence-rated predic-
tions [70], mentioned in Section 3 as a means of speeding up boosting.

Boosting has also been applied to text filtering [72] and routing [39], “ranking”
problems [28], learning problems arising in natural language processing [1, 12, 25,
38, 55, 78], image retrieval [74], medical diagnosis [53], and customer monitoring
and segmentation [56, 57].

Rochery et al.’s [64, 65] method of incorporating human knowledge into boost-
ing, described in Section 8, was applied to two speech categorization tasks. In this
case, the prior knowledge took the form of a set of hand-built rules mapping key-
words to predicted categories. The results are shown in Fig. 6.

The final classifier produced by AdaBoost when used, for instance, with a
decision-tree base learning algorithm, can be extremely complex and difficult to
comprehend. With greater care, a more human-understandable final classifier can
be obtained using boosting. Cohen and Singer [11] showed how to design a base

14

0

2

4

6

8

10

12

14

16

3 4 5 6

%
 E

rr
or

Number of Classes

AdaBoost
Sleeping-experts

Rocchio
Naive-Bayes

PrTFIDF
5

10

15

20

25

30

35

4 6 8 10 12 14 16 18 20

%
 E

rr
or

Number of Classes

AdaBoost
Sleeping-experts

Rocchio
Naive-Bayes

PrTFIDF

Figure 4: Comparison of error rates for AdaBoost and four other text categoriza-
tion methods (naive Bayes, probabilistic TF-IDF, Rocchio and sleeping experts)
as reported by Schapire and Singer [71]. The algorithms were tested on two text
corpora — Reuters newswire articles (left) and AP newswire headlines (right) —
and with varying numbers of class labels as indicated on thex-axis of each figure.

learning algorithm that, when combined with AdaBoost, results in a final classifier
consisting of a relatively small set of rules similar to those generated by systems
like RIPPER [10], IREP [36] and C4.5rules [60]. Cohen and Singer’s system,
called SLIPPER, is fast, accurate and produces quite compact rule sets. In other
work, Freund and Mason [29] showed how to apply boosting to learn a generaliza-
tion of decision trees called “alternating trees.” Their algorithm produces a single
alternating tree rather than an ensemble of trees as would be obtained by running
AdaBoost on top of a decision-tree learning algorithm. On the other hand, their
learning algorithm achieves error rates comparable to those of a whole ensemble
of trees.

A nice property of AdaBoost is its ability to identifyoutliers, i.e., examples
that are either mislabeled in the training data, or that are inherently ambiguous and
hard to categorize. Because AdaBoost focuses its weight on the hardest examples,
the examples with the highest weight often turn out to be outliers. An example of
this phenomenon can be seen in Fig. 7 taken from an OCR experiment conducted
by Freund and Schapire [30].

When the number of outliers is very large, the emphasis placed on the hard ex-
amples can become detrimental to the performance of AdaBoost. This was demon-
strated very convincingly by Dietterich [18]. Friedman, Hastie and Tibshirani [34]
suggested a variant of AdaBoost, called “Gentle AdaBoost” that puts less emphasis
on outliers. Rätsch, Onoda and M¨uller [61] show how to regularize AdaBoost to
handle noisy data. Freund [27] suggested another algorithm, called “BrownBoost,”
that takes a more radical approach that de-emphasizes outliers when it seems clear
that they are “too hard” to classify correctly. This algorithm, which is an adaptive

15

10

20

30

40

50

60

70

1 10 100 1000 10000

%
 E

rr
or

Number of rounds

discrete AdaBoost.MR
discrete AdaBoost.MH

real AdaBoost.MH

10

20

30

40

50

60

70

1 10 100 1000 10000

%
 E

rr
or

Number of rounds

discrete AdaBoost.MR
discrete AdaBoost.MH

real AdaBoost.MH

Figure 5: Comparison of the training (left) and test (right) error using three boost-
ing methods on a six-class text classification problem from the TREC-AP collec-
tion, as reported by Schapire and Singer [70, 71]. Discrete AdaBoost.MH and
discrete AdaBoost.MR are multiclass versions of AdaBoost that require binary
(f�����g-valued) base classifiers, while real AdaBoost.MH is a multiclass ver-
sion that uses “confidence-rated” (i.e., real-valued) base classifiers.

version of Freund’s [26] “boost-by-majority” algorithm, demonstrates an intrigu-
ing connection between boosting and Brownian motion.

10 Conclusion

In this overview, we have seen that there have emerged a great many views or
interpretations of AdaBoost. First and foremost, AdaBoost is a genuine boosting
algorithm: given access to a true weak learning algorithm that always performs a
little bit better than random guessing on every distribution over the training set, we
can prove arbitrarily good bounds on the training error and generalization error of
AdaBoost.

Besides this original view, AdaBoost has been interpreted as a procedure based
on functional gradient descent, as an approximation of logistic regression and as
a repeated-game playing algorithm. AdaBoost has also been shown to be re-
lated to many other topics, such as game theory and linear programming, Breg-
man distances, support-vector machines, Brownian motion, logistic regression and
maximum-entropy methods such as iterative scaling.

All of these connections and interpretations have greatly enhanced our under-
standing of boosting and contributed to its extension in ever more practical di-
rections, such as to logistic regression and other loss-minimization problems, to
multiclass problems, to incorporate regularization and to allow the integration of
prior background knowledge.

16

0 200 400 600 800 1000 1200 1400 1600
74

76

78

80

82

84

86

88

90

92

Training Sentences

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

data

knowledge

knowledge + data

0 500 1000 1500 2000 2500 3000
45

50

55

60

65

70

75

80

85

90

Training Examples

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

data

knowledge

knowledge + data

Figure 6: Comparison of percent classification accuracy on two spoken language
tasks (“How may I help you” on the left and “Help desk” on the right) as a func-
tion of the number of training examples using data and knowledge separately or
together, as reported by Rochery et al. [64, 65].

We also have discussed a few of the growing number of applications of Ada-
Boost to practical machine learning problems, such as text and speech categoriza-
tion.

References

[1] Steven Abney, Robert E. Schapire, and Yoram Singer. Boosting applied to tagging
and PP attachment. InProceedings of the Joint SIGDAT Conference on Empirical
Methods in Natural Language Processing and Very Large Corpora, 1999.

[2] Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Reducing multiclass to
binary: A unifying approach for margin classifiers.Journal of Machine Learning
Research, 1:113–141, 2000.

[3] Peter L. Bartlett. The sample complexity of pattern classification with neural net-
works: the size of the weights is more important than the size of the network.IEEE
Transactions on Information Theory, 44(2):525–536, March 1998.

[4] Eric Bauer and Ron Kohavi. An empirical comparison of voting classification algo-
rithms: Bagging, boosting, and variants.Machine Learning, 36(1/2):105–139, 1999.

[5] Eric B. Baum and David Haussler. What size net gives valid generalization?Neural
Computation, 1(1):151–160, 1989.

[6] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth.
Learnability and the Vapnik-Chervonenkis dimension.Journal of the Association for
Computing Machinery, 36(4):929–965, October 1989.

17

4:1/0.27,4/0.17 5:0/0.26,5/0.17 7:4/0.25,9/0.18 1:9/0.15,7/0.15 2:0/0.29,2/0.19 9:7/0.25,9/0.17

3:5/0.28,3/0.28 9:7/0.19,9/0.19 4:1/0.23,4/0.23 4:1/0.21,4/0.20 4:9/0.16,4/0.16 9:9/0.17,4/0.17

4:4/0.18,9/0.16 4:4/0.21,1/0.18 7:7/0.24,9/0.21 9:9/0.25,7/0.22 4:4/0.19,9/0.16 9:9/0.20,7/0.17

Figure 7: A sample of the examples that have the largest weight on an OCR task as
reported by Freund and Schapire [30]. These examples were chosen after 4 rounds
of boosting (top line), 12 rounds (middle) and 25 rounds (bottom). Underneath
each image is a line of the formd:	��w�,	��w�, whered is the label of the exam-
ple, 	� and	� are the labels that get the highest and second highest vote from the
combined classifier at that point in the run of the algorithm, andw�, w� are the
corresponding normalized scores.

[7] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm
for optimal margin classifiers. InProceedings of the Fifth Annual ACM Workshop on
Computational Learning Theory, pages 144–152, 1992.

[8] Leo Breiman. Arcing classifiers.The Annals of Statistics, 26(3):801–849, 1998.

[9] Leo Breiman. Prediction games and arcing classifiers.Neural Computation,
11(7):1493–1517, 1999.

[10] William Cohen. Fast effective rule induction. InProceedings of the Twelfth Interna-
tional Conference on Machine Learning, pages 115–123, 1995.

[11] William W. Cohen and Yoram Singer. A simple, fast, and effective rule learner. In
Proceedings of the Sixteenth National Conference on Artificial Intelligence, 1999.

[12] Michael Collins. Discriminative reranking for natural language parsing. InProceed-
ings of the Seventeenth International Conference on Machine Learning, 2000.

[13] Michael Collins, Robert E. Schapire, and Yoram Singer. Logistic regression, Ada-
Boost and Bregman distances.Machine Learning, to appear.

[14] Corinna Cortes and Vladimir Vapnik. Support-vector networks.Machine Learning,
20(3):273–297, September 1995.

18

[15] J. N. Darroch and D. Ratcliff. Generalized iterative scaling for log-linear models.
The Annals of Mathematical Statistics, 43(5):1470–1480, 1972.

[16] Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Inducing features
of random fields. IEEE Transactions Pattern Analysis and Machine Intelligence,
19(4):1–13, April 1997.

[17] Ayhan Demiriz, Kristin P. Bennett, and John Shawe-Taylor. Linear programming
boosting via column generation.Machine Learning, 46(1/2/3):225–254, 2002.

[18] Thomas G. Dietterich. An experimental comparison of three methods for construct-
ing ensembles of decision trees: Bagging, boosting, and randomization.Machine
Learning, 40(2):139–158, 2000.

[19] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via
error-correcting output codes.Journal of Artificial Intelligence Research, 2:263–286,
January 1995.

[20] Harris Drucker. Improving regressors using boosting techniques. InMachine Learn-
ing: Proceedings of the Fourteenth International Conference, pages 107–115, 1997.

[21] Harris Drucker and Corinna Cortes. Boosting decision trees. InAdvances in Neural
Information Processing Systems 8, pages 479–485, 1996.

[22] Harris Drucker, Robert Schapire, and Patrice Simard. Boosting performance in neural
networks. International Journal of Pattern Recognition and Artificial Intelligence,
7(4):705–719, 1993.

[23] Nigel Duffy and David Helmbold. Potential boosters? InAdvances in Neural Infor-
mation Processing Systems 11, 1999.

[24] Nigel Duffy and David Helmbold. Boosting methods for regression.Machine Learn-
ing, 49(2/3), 2002.

[25] Gerard Escudero, Llúis Màrquez, and German Rigau. Boosting applied to word
sense disambiguation. InProceedings of the 12th European Conference on Machine
Learning, pages 129–141, 2000.

[26] Yoav Freund. Boosting a weak learning algorithm by majority.Information and
Computation, 121(2):256–285, 1995.

[27] Yoav Freund. An adaptive version of the boost by majority algorithm.Machine
Learning, 43(3):293–318, June 2001.

[28] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient boost-
ing algorithm for combining preferences. InMachine Learning: Proceedings of the
Fifteenth International Conference, 1998.

[29] Yoav Freund and Llew Mason. The alternating decision tree learning algorithm. In
Machine Learning: Proceedings of the Sixteenth International Conference, pages
124–133, 1999.

19

[30] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In
Machine Learning: Proceedings of the Thirteenth International Conference, pages
148–156, 1996.

[31] Yoav Freund and Robert E. Schapire. Game theory, on-line prediction and boosting.
In Proceedings of the Ninth Annual Conference on Computational Learning Theory,
pages 325–332, 1996.

[32] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting.Journal of Computer and System Sciences,
55(1):119–139, August 1997.

[33] Yoav Freund and Robert E. Schapire. Adaptive game playing using multiplicative
weights.Games and Economic Behavior, 29:79–103, 1999.

[34] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression:
A statistical view of boosting.The Annals of Statistics, 38(2):337–374, April 2000.

[35] Jerome H. Friedman. Greedy function approximation: A gradient boosting machine.
The Annals of Statistics, 29(5), October 2001.

[36] Johannes F¨urnkranz and Gerhard Widmer. Incremental reduced error pruning. In
Machine Learning: Proceedings of the Eleventh International Conference, pages 70–
77, 1994.

[37] Adam J. Grove and Dale Schuurmans. Boosting in the limit: Maximizing the mar-
gin of learned ensembles. InProceedings of the Fifteenth National Conference on
Artificial Intelligence, 1998.

[38] Masahiko Haruno, Satoshi Shirai, and Yoshifumi Ooyama. Using decision trees to
construct a practical parser.Machine Learning, 34:131–149, 1999.

[39] Raj D. Iyer, David D. Lewis, Robert E. Schapire, Yoram Singer, and Amit Singhal.
Boosting for document routing. InProceedings of the Ninth International Conference
on Information and Knowledge Management, 2000.

[40] Jeffrey C. Jackson and Mark W. Craven. Learning sparse perceptrons. InAdvances
in Neural Information Processing Systems 8, pages 654–660, 1996.

[41] Michael Kearns and Leslie G. Valiant. Learning Boolean formulae or finite automata
is as hard as factoring. Technical Report TR-14-88, Harvard University Aiken Com-
putation Laboratory, August 1988.

[42] Michael Kearns and Leslie G. Valiant. Cryptographic limitations on learning Boolean
formulae and finite automata.Journal of the Association for Computing Machinery,
41(1):67–95, January 1994.

[43] Jyrki Kivinen and Manfred K. Warmuth. Boosting as entropy projection. InProceed-
ings of the Twelfth Annual Conference on Computational Learning Theory, pages
134–144, 1999.

20

[44] V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding the
generalization error of combined classifiers.The Annals of Statistics, 30(1), February
2002.

[45] Vladimir Koltchinskii, Dmitriy Panchenko, and Fernando Lozano. Further explana-
tion of the effectiveness of voting methods: The game between margins and weights.
In Proceedings 14th Annual Conference on Computational Learning Theory and 5th
European Conference on Computational Learning Theory, pages 241–255, 2001.

[46] Vladimir Koltchinskii, Dmitriy Panchenko, and Fernando Lozano. Some new bounds
on the generalization error of combined classifiers. InAdvances in Neural Informa-
tion Processing Systems 13, 2001.

[47] John Lafferty. Additive models, boosting and inference for generalized divergences.
In Proceedings of the Twelfth Annual Conference on Computational Learning The-
ory, pages 125–133, 1999.

[48] Guy Lebanon and John Lafferty. Boosting and maximum likelihood for exponential
models. InAdvances in Neural Information Processing Systems 14, 2002.

[49] Richard Maclin and David Opitz. An empirical evaluation of bagging and boost-
ing. In Proceedings of the Fourteenth National Conference on Artificial Intelligence,
pages 546–551, 1997.

[50] Llew Mason, Peter Bartlett, and Jonathan Baxter. Direct optimization of margins
improves generalization in combined classifiers. InAdvances in Neural Information
Processing Systems 12, 2000.

[51] Llew Mason, Jonathan Baxter, Peter Bartlett, and Marcus Frean. Functional gradi-
ent techniques for combining hypotheses. In Alexander J. Smola, Peter J. Bartlett,
Bernhard Sch¨olkopf, and Dale Schuurmans, editors,Advances in Large Margin Clas-
sifiers. MIT Press, 1999.

[52] Llew Mason, Jonathan Baxter, Peter Bartlett, and Marcus Frean. Boosting algorithms
as gradient descent. InAdvances in Neural Information Processing Systems 12, 2000.

[53] Stefano Merler, Cesare Furlanello, Barbara Larcher, and Andrea Sboner. Tuning cost-
sensitive boosting and its application to melanoma diagnosis. InMultiple Classifier
Systems: Proceedings of the 2nd International Workshop, pages 32–42, 2001.

[54] C. J. Merz and P. M. Murphy. UCI repository of machine learning databases, 1999.
www.ics.uci.edu/�mlearn/MLRepository.html.

[55] Pedro J. Moreno, Beth Logan, and Bhiksha Raj. A boosting approach for confidence
scoring. InProceedings of the 7th European Conference on Speech Communication
and Technology, 2001.

[56] Michael C. Mozer, Richard Wolniewicz, David B. Grimes, Eric Johnson, and Howard
Kaushansky. Predicting subscriber dissatisfaction and improving retention in the
wireless telecommunications industry.IEEE Transactions on Neural Networks,
11:690–696, 2000.

21

[57] Takashi Onoda, Gunnar R¨atsch, and Klaus-Robert M¨uller. Applying support vector
machines and boosting to a non-intrusive monitoring system for household electric
appliances with inverters. InProceedings of the Second ICSC Symposium on Neural
Computation, 2000.

[58] Dmitriy Panchenko. New zero-error bounds for voting algorithms. Unpublished
manuscript, 2001.

[59] J. R. Quinlan. Bagging, boosting, and C4.5. InProceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence, pages 725–730, 1996.

[60] J. Ross Quinlan.C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[61] G. Rätsch, T. Onoda, and K.-R. M¨uller. Soft margins for AdaBoost.Machine Learn-
ing, 42(3):287–320, 2001.

[62] Gunnar Rätsch, Manfred Warmuth, Sebastian Mika, Takashi Onoda, Steven Lemm,
and Klaus-Robert M¨uller. Barrier boosting. InProceedings of the Thirteenth Annual
Conference on Computational Learning Theory, pages 170–179, 2000.

[63] Greg Ridgeway, David Madigan, and Thomas Richardson. Boosting methodology
for regression problems. InProceedings of the International Workshop on AI and
Statistics, pages 152–161, 1999.

[64] M. Rochery, R. Schapire, M. Rahim, N. Gupta, G. Riccardi, S. Bangalore, H. Al-
shawi, and S. Douglas. Combining prior knowledge and boosting for call classifica-
tion in spoken language dialogue. Unpublished manuscript, 2001.

[65] Marie Rochery, Robert Schapire, Mazin Rahim, and Narendra Gupta. BoosTexter for
text categorization in spoken language dialogue. Unpublished manuscript, 2001.

[66] Robert E. Schapire. The strength of weak learnability.Machine Learning, 5(2):197–
227, 1990.

[67] Robert E. Schapire. Using output codes to boost multiclass learning problems. In
Machine Learning: Proceedings of the Fourteenth International Conference, pages
313–321, 1997.

[68] Robert E. Schapire. Drifting games.Machine Learning, 43(3):265–291, June 2001.

[69] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the
margin: A new explanation for the effectiveness of voting methods.The Annals of
Statistics, 26(5):1651–1686, October 1998.

[70] Robert E. Schapire and Yoram Singer. Improved boosting algorithms using
confidence-rated predictions.Machine Learning, 37(3):297–336, December 1999.

[71] Robert E. Schapire and Yoram Singer. BoosTexter: A boosting-based system for text
categorization.Machine Learning, 39(2/3):135–168, May/June 2000.

[72] Robert E. Schapire, Yoram Singer, and Amit Singhal. Boosting and Rocchio ap-
plied to text filtering. InProceedings of the 21st Annual International Conference on
Research and Development in Information Retrieval, 1998.

22

[73] Holger Schwenk and Yoshua Bengio. Training methods for adaptive boosting of
neural networks. InAdvances in Neural Information Processing Systems 10, pages
647–653, 1998.

[74] Kinh Tieu and Paul Viola. Boosting image retrieval. InProceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2000.

[75] L. G. Valiant. A theory of the learnable.Communications of the ACM, 27(11):1134–
1142, November 1984.

[76] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative
frequencies of events to their probabilities.Theory of Probability and its applications,
XVI(2):264–280, 1971.

[77] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

[78] Marilyn A. Walker, Owen Rambow, and Monica Rogati. SPoT: A trainable sentence
planner. InProceedings of the 2nd Annual Meeting of the North American Chapter
of the Associataion for Computational Linguistics, 2001.

23

