
YouCook Dataset

Chenliang Xu, Pradipto Das, Richard F. Doell, Philip Rosebrough and Jason J. Corso
Department of Computer Science and Engineering

SUNY at Buffalo
Buffalo, NY 14260-2500

{chenlian,pdas3,rfdoell,psr2,jcorso}@buffalo.edu

Document Dated: 4 June 2013 version 1

Abstract

The YouCook dataset contains videos of people cooking various recipes. The
videos were downloaded from YouTube and are all in the third-person viewpoint;
they represent a significantly more challenging visual problem than existing cook-
ing and kitchen datasets (the background kitchen/scene is different for many and
most videos have dynamic camera changes). In addition, frame-by-frame ob-
ject and action annotations are provided for training data (as well as a number
of precomputed low-level features). Finally, each video has a number of human
provided natural language descriptions (on average, there are eight different de-
scriptions per video). This dataset has been created to serve as a benchmark in
describing complex real-world videos with natural language descriptions.

1 Description of the YouCook dataset

The YouCook dataset consists of 88 videos downloaded from YouTube and roughly uniformly split
into six different cooking styles: baking, grilling, making breakfast, making sandwich, preparing
salad and cooking in general. The videos all have a third-person viewpoint, take place in different
kitchen environments, and frequently display dynamic camera changes. The training set consists
of 49 videos with object and action annotations. The test set consists of 39 videos. All videos are
annotated with multiple human descriptions obtained from Amazon Mechanical Turk.

When you use the YouCook dataset, please use the following citation:

P. Das, C. Xu, R. F. Doell, J. J. Corso. “A Thousand Frames in Just a Few Words: Lingual Descrip-
tion of Videos through Latent Topics and Sparse Object Stitching.” Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition. 2013.

@inproceedings{DaXuDoCVPR2013,
author = {Das, P. and Xu, C. and Doell, R. F. and Corso J. J.},
booktitle = {{Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition}},
title = {A Thousand Frames in Just a Few Words: Lingual Description

of Videos through Latent Topics and Sparse Object Stitching},
year = {2013}

}

1

2 Organization of the YouCook dataset

The YouCook dataset is available for download at http://www.cse.buffalo.edu/∼jcorso/r/youcook/. The
primary download contains the original videos, annotations, and some features (details described
below). This primary download is about 1.6GB. Due to the size of data, YouCook/VideoFrames and
YouCook/Features/HOG3D/feature vectors are optional for download (6GB and 2.8GB respec-
tively).

The dataset is organized as follows:

YouCook/Videos
It contains 88 videos in MPEG-4 format. See Table 3 for training and test splits.

YouCook/VideoFrames
It contains the extracted frames for the 49 training videos. The IDs of frames are
used in annotations of object tracks and actions. Download the package from
http://www.cse.buffalo.edu/∼jcorso/r/youcook/youcook videoframes.tbz and extract the con-
tents (from the root directory). Frame extracted can be reproduced with mmreader or
ffmpeg (more details follow).

YouCook/Annotations
It contains following three kinds of annotations.

YouCook/Annotations/Object Tracks Object tracks for the training set. See Section 3.1 for details.

YouCook/Annotations/Actions Actions for the training set. See Section 3.2 for details.

YouCook/Annotations/Human Descriptions Human descriptions for all 88 videos. See Section
3.3 for details.

YouCook/Features
It contains two kinds of precomputed features: HOG3D and color histogram.

YouCook/Features/HOG3D
YouCook/Features/HOG3D/feature vectors contains precomputed HOG3D features. Download

the package from http://www.cse.buffalo.edu/∼jcorso/r/youcook/youcook hog3dfeatures.tbz and
extract the contents (from the root directory).

YouCook/Features/HOG3D/codebook 1000.txt HOG3D codebook with 1K means obtained from
the training videos.

YouCook/Features/HOG3D/hist contains 1000 dimensional histograms for each video extracted
using the codebook.

YouCook/Features/ColorHist contains precomputed 512 dimensional color histogram features. See
Section 4.2 for detail.

YouCook/Features/Code contains code to compute HOG3D (Matlab) and ColorHist (Java).

YouCook/Evaluation
It contains the ROUGE [Lin and Hovy, 2003] evaluation. See Section 5 for details.

YouCook/Evaluation/ROUGE-1.5.5 contains ROUGE evaluation tool.

YouCook/Evaluation/config.txt configuration file of ROUGE.

YouCook/Evaluation/summaries
It consists of files that are used for evaluating lingual descriptions generated for test videos
by comparing them against the human descriptions.

YouCook/Evaluation/summaries/human descriptions contains human descriptions of the text set.

YouCook/Evaluation/summaries/cvpr2013 contains the system output of our CVPR2013 paper
[Das et al., 2013].

2

http://www.cse.buffalo.edu/~jcorso/r/youcook/
http://www.cse.buffalo.edu/~jcorso/r/youcook/youcook_videoframes.tbz
http://www.cse.buffalo.edu/~jcorso/r/youcook/youcook_hog3dfeatures.tbz

Dairy Count Meats Count Bowls Count
butter 6 chicken 7 bowl 100
milk 3 fish 4 Total 100
yogurt 2 hen 2
Total 11 meat 2 Veg./Fruits Count

salmon 2 lettuce 3
Utensils Count turkey 2 apple 2
knife 13 steak 1 carrot 2
pan 9 Total 20 cucumber 2
plate 9 brocolli 1
spreader 9 Misc Ing. Count corn 1
cup 8 oil 6 onion 1
spatula 8 bread 5 Total 12
spoon 7 egg 5
whisk 7 tomato 5 Condiments Count
tongs 6 lemon 3 pepper 4
blender 2 chocolate 1 salt 2
brush 1 croutons 1 creamcheese 1
fork 1 doughnut 1 jelly 1
pitcher 1 flour 1 mustard 1
pot 1 sugar 1 peanutbutter 1

Total 82 Total 29 Total 10

Table 1: Annotated objects in seven categories.

3 Annotations

3.1 Object Tracks

The objects for YouCook are in the categories of bowls (38%), utensils (31%), misc ingredients
(11%), meats (8%), dairy (4%), vegetables/fruits (4%) and condiments (4%) as shown in Figure 1.

38%$

31%$
4%$

4%$
8%$

4%$
11%$

Bowls

Utensils

Dairy

Veg./Fruits

Meats

Condiments

Misc Ing.

Figure 1: Pie chart of object categories.

The specific objects in each category are listed
in Table 1.

Files containing object tracks are stored in Mat-
lab format and placed in YouCook/Annotations/
Objects. Filenames are in the format of
“VideoID ObjectName Num.mat”, in which
“Num” is used to identify the tracks of same
object names in a video. In each annotation file,
there is a matrix that records the corresponding
object track in a video. The columns map to the
extracted frames of the video (see VideoFrames
in Section 2). The first four rows are used to
capture the object bounding boxes and are in the order of “x min, y min, width, height”, and the
fifth binary row marks the object presented in current frame (1) or not (0).

3.2 Actions
Actions ID
empty 0

stir 1
pick up 2

put down 3
season 4

flip 5
pour 6

Table 2: List of actions.

The annotated action types are in seven categories: stir,
pick up, put down, season, flip, pour and empty (no de-
sired actions are happening at this time), and each has
an ID as shown in Table 2. Action annotations are in
YouCook/Annotations/Actions, and organized by video
names. For each annotation file, it has a matrix that
records the time intervals of actions in a video. Columns

3

store actions in a sorted order by time. Rows are “Action ID, Start Frame, End Frame”. All frames
have an action annotation (and it may be the empty(0) action).

3.3 Human Descriptions

We use Amazon Mechanical Turk to obtain multiple human descriptions for each video. The an-
notators are shown an example video with a sample description focusing on the actions and objects
therein. Participants in MTurk are instructed to watch a cooking video as many times as required to
lingually describe the video in at least three sentences totaling a minimum of 15 words. We set our
minimum due to the complex nature of the videos in this dataset.

Annotation files of lingual descriptions are in YouCook/Annotations/Human Descriptions, and of
the format “VideoID DescriptionID.txt”. The descriptions are provided with the format obtained
from the human annotator, without any processing. Table 3 shows the statistics of the human de-
scription annotations.

VideoID
Num+of+
Descrip.

Ave+
Word

Ave+
Sent. VideoID

Num+of+
Descrip.

Ave+
Word

Ave+
Sent.

0002 1 136 10 0003 8 75.6 5.8
0004 7 63 4.6 0008 10 75.2 5.5
0005 8 49.3 3.9 0009 7 129.1 7.9
0006 9 62.8 4.9 0010 7 87.3 9
0007 9 51.4 3.7 0011 10 43.8 3.3
0014 10 48.2 5.8 0012 8 54.9 5
0015 10 39.3 3.7 0013 8 48.9 4.3
0018 10 39.4 3.4 0016 10 76.5 5.9
0019 10 39.3 3.5 0017 9 75 5.8
0020 10 44.6 3.5 0021 8 66 5
0025 10 48.6 3.8 0022 4 63.5 5.8
0026 8 34.9 3.9 0023 7 45.9 4.4
0028 9 45.3 4.6 0024 9 56.1 4.6
0029 9 63.6 4.4 0027 5 62.8 5.2
0030 9 63.6 5.8 0033 9 69.3 4.9
0032 10 54.4 4.6 0034 8 89 6.6
0052 10 57.2 4.6 0035 7 80.9 8.4
0054 10 41.3 3.6 0036 10 65.4 4.7
0065 7 35.1 4.1 0037 8 51.4 4.1
0066 9 46.1 4.1 0048 10 47.4 4.9
0067 7 53.1 4.4 0050 5 78.6 7.8
0068 6 48.2 4.3 0051 9 73.3 6.8
0071 5 47.8 3.6 0053 7 61.9 5.3
0072 10 42.9 4.6 0055 10 31.6 3.6
0073 8 50.8 3.4 0056 10 60 5.4
0074 9 43.7 3.8 0057 10 62 4.6
0075 9 56.6 5 0058 6 93.7 6.2
0076 10 49.2 4.3 0059 5 103.2 7.4
0077 10 84.8 5.8 0060 10 56.6 4.3
0078 8 50.3 4.5 0061 7 110.9 8
0079 10 42.8 3.7 0062 6 56.7 4.3
0080 9 36.3 3.4 0063 9 80.9 7
0081 10 58.2 4.4 0064 9 28.9 3.2
0085 8 46.9 3.9 0069 8 43 4
0086 10 70 5.4 0082 10 50.8 4.9
0087 10 48.7 4.2 0083 10 68.2 4.6
0088 10 59 4.6 0084 10 52.1 4.3
0090 9 38.8 3.4 0097 10 63.7 6.5
0091 9 39.4 3.7 0098 9 39.4 3.6
0092 10 50.9 3.9
0093 10 46.6 3.8
0094 10 43.4 3.8
0095 10 51.1 4.1
0099 7 50.3 4.7
0100 10 36.5 3.8
0101 3 35.7 3.7
0102 10 33.2 3.2
0103 6 35.7 4
0104 8 44.9 4.5

Train Test

Table 3: Statistics of human descriptions. The left part is the training set and the right part is the test
set. We record the number of lingual descriptions per-video (Num of Descrip.), average word count
per-description per-video (Ave Word) and average sentences per-description per-video (Ave Sent.).

4

4 Precomputed Features

4.1 HOG3D Features

The low level HOG3D features for our YouCook videos are obtained using the open source software
provided by Kläser et al. [Kläser et al., 2008]1. The codebook (1000 Words) is computed in a
standard way using the K-Means algorithm2. We outline the main steps in Algo. 1:

Algorithm 1 Codebook computation: a general outline
1: Compute HOG3D features from frames sampled from the videos in the training set. Listings 1

and 2 show the Matlab code for extracting the feature vectors corresponding to a sample training
video using the method described in [Kläser et al., 2008].

2: Compute K-Means over the HOG3D features of the training dataset (see Listing 3). A maximum
of 10,000 feature vectors (each a 300-dimensional descriptor) for each video is obtained and
concatenated for all videos in the training set to form the initial dataset for K-Means clustering.
After this, clustering is performed for a maximum of 100 iterations and the codebook vectors
are saved.

3: A K-dimensional histogram of HOG3D features are computed for each video (training or test)
using the codebook obtained in Step 2 and its HOG3D feature descriptor (see Listing 4).

After the first step in Algo. 1, we obtain large feature files for each video where each line in output of
the HOG3D feature extractor corresponds to a frame of the video and consists of a 308-dimensional
vector in the following format:

<x> <y> <frame> <x-norm.> <y-norm.> <t-norm.> <xy-scale> <t-scale>
<descriptor>

The “descriptor” is the actual 300-dimensional action descriptor that is ultimately used in codebook
computation. The stride for the spatial scale is set to nine and that for the temporal scale is set to
five. We spatially rescale the video such that the larger of its width and height is 160 pixels.

There is also a [xy/t]-max-scale option that controls at which spatial/temporal scale the sampling is
stopped. We set this option’s value to one to reduce computational time.

4.2 Color Histogram Features

The low level color histogram features are computed in an efficient way from the frames obtained
by using the ffmpeg command:

ffmpeg -i <movie-file> -y <output-directory>/frame%05d.jpg

Listing 5 in appendix shows the Java code for extracting color histogram for an image using an user
specified number of bins for each of the red, green and blue components. We set the number of such
bins for each component to be eight for a total of 512-dimensional color histogram for each frame
of the video. Histograms from all such frames are concatenated to form the color histogram for the
entire video. The text file containing concatenated features for a video are stored on disk in g-zipped
format. For use in topic models, we use the average of the values of the color combinations (i.e. the
bins) from all of these histograms as the color histogram descriptor of a single video.

When we use the color histogram features in the topic model, we only use the bins that contain val-
ues within the 15th to 85th percentile of the values in the bins. The higher values need to be removed
since they often increase the magnitude of the slopes around the fixed points in the fixed point iter-
ations of the local (video document specific) E-step in variational Bayes optimization framework to
be more than one and thus leading to non-convergence [Conte and Boor, 1980] and possible degen-
eration of the proportions of a few topic components. The lower values are removed to offset the
bias in removing the higher band. The rest of the bin values are normalized to lie in [0, 200].

1http://lear.inrialpes.fr/people/klaeser/software 3d video descriptor
2http://crcv.ucf.edu/source/K-Means

5

http://lear.inrialpes.fr/people/klaeser/software_3d_video_descriptor
http://crcv.ucf.edu/source/K-Means

5 Evaluating the Natural Language Descriptions

The primary purpose of the YouCook dataset is to serve as a challenging benchmark for the natural
language video description problem.

We use the ROUGE [Lin and Hovy, 2003] tool to evaluate the generated lingual descriptions for
all the test videos to the corresponding ground truth human descriptions that we obtained through
M-Turk. The tool is included for convenience or can be downloaded from http://www.berouge.com/.

ROUGE is an n-gram recall oriented tool which measures the coverage of information need between
summaries manually written by annotators and that automatically generated by systems. ROUGE-1
(unigram) recall is the best option to use for comparing descriptions based only on predicted key-
words. ROUGE-2 (bigram) and ROUGE-SU4 (skip-4 bigram) is best suited to evaluate summaries
w.r.t. coherence and fluency.

We now show an example of how to run the ROUGE scorer on a sample of lingual descriptions
obtained from the low level multi-modal topic model only.

The ROUGE command is run from the YouCook/Evaluation directory as:

perl ./ROUGE-1.5.5/ROUGE-1.5.5.pl -e ./ROUGE-1.5.5/data
-n 2 -x -m -2 4 -u -c 95 -r 1000 -f A -p 0.5 -t 0 -a -d -l 67
./config.txt > ./rouge.out

The command line options specified here (“-n 2 -x -m -2 4 -u -c 95 -r 1000 -f A -p 0.5 -t 0 -a
-d”) consist of the standard set of parameters used in text summarization conferences3. We add
the extra parameter “-l 67” to indicate a cut-off length of 67 words for system summaries prior
to evaluation. The summaries generated from the low level of our system are stored in the direc-
tory YouCook/Evaluation/summaries/cvpr2013. Each file, for e.g. YouCook/Evaluation/summaries/
cvpr2013/0003-summary.txt, consists of a single lingual description of a test video in a sentence-
per-line (SPL) format (see file “config.txt” for details). Further, the lingual descriptions are gen-
erated using predicted keywords from the MMLDA model using an asymmetric topic proportion
prior [Das et al., 2013] with twenty topics and using discrete visual features—HOG3D and color
histogram (chist).

The human description files are similarly stored in the directory YouCook/Evaluation/summaries/
human descriptions, where there can be multiple descriptions corresponding to a single test video.

6 Final Remarks

We thank the anonymous annotators for their contribution to the YouCook dataset. If you run into
any problems, have any suggestions, or make any improvements, please contact us via email.

6.1 Reproducibility

Note that the extracted frames depend on the extraction tool and version. We use mmreader in
Matlab to extract VideoFrames and the following ffmpeg to extract frames for precomputed low
level features.

FFmpeg version 0.6.6-4:0.6.6-0ubuntu0.11.04.1, Copyright (c) 2000-2010 the Libav developers
built on Jun 12 2012 16:35:16 with gcc 4.5.2

3http://www-nlpir.nist.gov/projects/duc/duc2005/

6

http://www.berouge.com/
http://www-nlpir.nist.gov/projects/duc/duc2005/

References

[Conte and Boor, 1980] Conte, S. D. and Boor, C. W. D. (1980). Elementary Numerical Analysis:
An Algorithmic Approach. McGraw-Hill Higher Education, 3rd edition. 5

[Das et al., 2013] Das, P., Xu, C., Doell, R., and Corso, J. J. (2013). A thousand frames in just a few
words: lingual description of videos through latent topics and sparse object stitching. In IEEE
Conference on Computer Vision and Pattern Recognition. 2, 6

[Kläser et al., 2008] Kläser, A., Marszalek, M., and Schmid, C. (2008). A spatio-temporal descrip-
tor based on 3d-gradients. In BMVC. 5, 8

[Lin and Hovy, 2003] Lin, C.-Y. and Hovy, E. (2003). Automatic evaluation of summaries using
n-gram co-occurrence statistics. In NAACL HLT. 2, 6

7

A Code Snippets

Listing 1: Driver for obtaining HOG3D histogram

1cookingVidPaths = [’Videos/0002.mp4’]; % add more here
2tmpPath=’ffprobe_tmp.txt’;
3featureDir=’Features/HOG3D/feature_vectors’;
4
5c = cellstr(cookingVidPaths);
6nVids = size(c);
7mkdir(featureDir);
8for i = 1: nVids
9videoPath = c{i};
10HOG3DExtractor(videoPath, tmpPath, featureDir);
11end

Listing 2: Extracting HOG3D features for a video using the static executable in [Kläser et al., 2008]

1function xyscale = HOG3DExtractor(videoPath, tmpPath, featureDir)
2% videoPath: path to the input video
3% tmpPath: output of "ffprob -show_streams videoPath > tmpPath".
4% featureDir: Directory that you want to save feature.
5
6% extract width and height
7[˜, name, ˜] = fileparts(videoPath);
8fprintf(’Processing video %s.... \n’, videoPath);
9system(sprintf(’ffprobe -show_streams %s > %s’, videoPath, tmpPath));
10[˜, grep_width] = system(sprintf(’grep "width=*" %s’, tmpPath));
11[˜, grep_height] = system(sprintf(’grep "height=*" %s’, tmpPath));
12width = sscanf(grep_width, ’width=%d’);
13height = sscanf(grep_height, ’height=%d’);
14max_w_h = max(width, height);
15xyscale = -1;
16if(any (size(max_w_h) == 0))
17fprintf(’!!! error in ffprobe of %s. !!!\n’, name);
18return;
19end
20xy_srtride = 9;
21t_stride = 5;
22
23% compute rescaling ratio
24xyscale = 160 / max_w_h;
25featurePath = sprintf(’%s/%s.txt’, featureDir, name);
26% need to specify the path to HOG3D code
27system(sprintf(’path/to/HOG3D_code/extractFeatures_static --simg %f --xy-

stride %d --xy-max-scale 1 --t-stride %d --t-max-scale 1 %s > %s’,
xyscale, xy_srtride, t_stride, videoPath, featurePath));

28featureInfo = dir(featurePath);
29if(˜exist(featurePath, ’file’) || featureInfo.bytes == 0)
30fprintf(’!!! error in feature extraction of file %s. !!!\n’, name);
31return;
32end
33fprintf(’video %s was processed successfully.\n\n’, videoPath);
34ffprobe_file = tmpPath
35delete(ffprobe_file);

Listing 3: Computing HOG3D codebook vectors using K-Means

1cookingHOG3DPaths = [’Features/HOG3D/feature_vectors/0002.txt’]; % add
more here

2
3c = cellstr(cookingHOG3DPaths);
4nVids = size(c);

8

5
6D = [];
7nFrames = 10000;
8for i = 1: nVids
9HOG3DPath = c{i};
10fprintf(’loading file %s\n’,HOG3DPath);
11A = load(HOG3DPath);
12P = A(:,9:308)’;
13[row, col] = size(P);
14if (col > nFrames)
15interval = floor(col/nFrames);
16else
17interval = 1;
18end
19index = [0:interval:col-1]+1;
20D = [D P(:,index)];
21end
22
23nClusters = 1000;
24[CX, sse] = vgg_kmeans(D, nClusters, ’maxiters’, 100);
25
26dlmwrite(’Features/HOG3D/codebook_1000.txt’, CX’);

Listing 4: Quantizing a video using a pre-computed HOG3D K-means codebook

1function xyscale = quantizeVideo(videoPath, tmpPath, featureDir,
codebookFile, wordDir, histDir)

2% videoPath: path to the input video
3% tmpPath: output of "ffprob -show_streams videoPath > tmpPath".
4% featureDir: Directory that you want to save feature.
5% codebookPath: address of the coreword
6% wordDir: directory to save the quantized feature
7% histDir: directort to save the global histogram of HOG3D
8
9addpath(’path/to/VGG_KMeans’); % path to K-means code
10
11scanFormat = ’%d %d %d %f %f %f %d %d ’;
12for i = 1 : 300
13if i ˜= 300
14scanFormat = [scanFormat, ’%f ’];
15else
16scanFormat = [scanFormat, ’%f’];
17end
18end
19
20% read codeword dictionary
21clusterCen = load(codebookFile);
22
23% extract width and height
24[pathstr, name, ext] = fileparts(videoPath);
25
26fprintf(’Processing video %s.... \n’, videoPath);
27system(sprintf(’ffprobe -show_streams %s > %s’, videoPath, tmpPath));
28
29[status grep_width] = system(sprintf(’grep "width=*" %s’, tmpPath));
30[status grep_height] = system(sprintf(’grep "height=*" %s’, tmpPath));
31
32width = sscanf(grep_width, ’width=%d’);
33height = sscanf(grep_height, ’height=%d’);
34
35max_w_h = max(width, height);
36
37xyscale = -1;
38if(any (size(max_w_h) == 0))

9

39fprintf(’!!! error in ffprobe of %s. !!!\n’, name);
40return;
41end
42
43xy_srtride = 9;
44t_stride = 5;
45% compute rescaling ratio
46xyscale = 160 / max_w_h;
47
48
49featureFile = sprintf(’%s/%s.txt’, featureDir, name);
50if exist(featureFile, ’file’)
51system(sprintf(’rm -f %s’, featureFile));
52end
53% need to specify path to HOG3D code
54system(sprintf(’path/to/HOG3D_code/extractFeatures_static --simg %f --xy-

stride %d --xy-max-scale 1 --t-stride %d --t-max-scale 1 %s > %s’,
xyscale, xy_srtride, t_stride, videoPath, featureFile));

55
56ftrInfo = dir(featureFile);
57if(˜exist(featureFile, ’file’) || ftrInfo.bytes == 0)
58fprintf(’!!! error in feature extraction of file %s. !!!\n’, name);
59return;
60end
61
62% read features, save their indeces i.e. Quantize the extracted features

using the pre-computed words
63fid = fopen(featureFile);
64A = fscanf(fid, scanFormat, [308 100000]);
65word2 = cell(100,1);
66i = 1;
67while ˜any(size(A)==0)
68[ind d2] = vgg_nearest_neighbour(A(9:end,:), clusterCen’);
69word2{i} = [A(1:3, :)’ ind];
70i = i+1;
71A = fscanf(fid, scanFormat, [308 100000]);
72end
73words = cat(1, word2{:});
74fclose(fid);
75
76system(sprintf(’rm -f %s’, featureFile));
77
78fprintf(’saving the words.\n’);
79% compute histogram from the quantized features
80hist = zeros(size(clusterCen, 1), 1);
81for i=1:size(words,1)
82hist(words(i,4)) = hist(words(i,4)) + 1;
83end
84save_word_name = sprintf(’%s/%s.txt’, wordDir, name);
85dlmwrite(save_word_name, words);
86
87% This is what we are interested in ultimately
88save_hist_name = sprintf(’%s/%s.txt’, histDir, name);
89dlmwrite(save_hist_name, hist);
90
91fprintf(’video %s was processed successfully.\n\n’, videoPath);

Listing 5: Java code for computing color histogram from an image

1public static int[] binnedImageHistogram(BufferedImage input, int nBins)
2{
3int[] hist = new int[nBins*nBins*nBins];
4
5int interval = 256/nBins;

10

6int nBinsSquared = nBins*nBins;
7
8int W = input.getWidth(); int H = input.getHeight();
9for(int i = 0; i < W; ++i) {
10for(int j = 0; j < H; ++j) {
11int red = new Color(input.getRGB (i, j)).getRed(); // 0 to 255
12int green = new Color(input.getRGB (i, j)).getGreen(); // 0 to 255
13int blue = new Color(input.getRGB (i, j)).getBlue(); // 0 to 255
14
15int rBin = red/interval;
16int bBin = blue/interval;
17int gBin = green/interval;
18int coord = rBin*nBinsSquared + gBin*nBins + bBin;
19
20hist[coord]++;
21}
22}
23return hist;
24}

The color histogram code is run from the “code” directory as follows:

java -cp *.jar edu.buffalo.cse.VideoProcessing.ColorHistogramFromVideo
../Videos ../ColorHist

11

	Description of the YouCook dataset
	Organization of the YouCook dataset
	Annotations
	Object Tracks
	Actions
	Human Descriptions

	Precomputed Features
	HOG3D Features
	Color Histogram Features

	Evaluating the Natural Language Descriptions
	Final Remarks
	Reproducibility

	Code Snippets

