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Abstract—Boosting has been widely used for discriminative
modeling of objects in images. Conventionally, pixel- and patch-
based features have been used, but recently, features defined on
multilevel aggregate regions were incorporated into the boosting
framework, and demonstrated significant improvement in object
labeling tasks. In this paper, we further extend the boosting
on multilevel aggregates method to incorporate features based
on stereo images. Our underlying application is building facade
detection on mobile stereo vision platforms. Example features we
propose exploit the algebraic constraints of the planar building
facades and depth gradient statistics. We’ve implemented the
features and tested the framework on real stereo data.

I. INTRODUCTION

Accurate scene labeling can enable applications which rely
on the semantic information in an image to make high level
decisions. Our goal of labeling building facades is motivated
by the problem of mobile robot localization, which, in the
framework currently being developed by our group, depends
on detection of buildings within the field of view of the
cameras on a mobile platform. Within this problem, accurate
detection and labeling is critical for the high level localiza-
tion tasks. Our approach uses multilevel aggregate regions
coarsened from the image based on pixel affinities, as well
as a variety of high-level features that can be computed from
them. These aggregate features are in addition to pixel- and
patch-level features, and are all used within an AdaBoost [1]
two- or multi-class discriminative modeling framework. This
recently-proposed method, Boosting on Multilevel Aggregates
(BMA) [2], exploits the propensity of these coarsened regions
to adhere to object boundaries, which in addition to the
expanded feature set, offer less polluted statistics than patch-
based features, which may violate those boundaries.

The Boosting on Multilevel Aggregates method provides
two primary enhancements to the stock AdaBoost method.
First, adaptive coarsening groups pixels into regions of similar
intensity. Higher up the hierarchy, it groups these regions
together, such that each aggregate represents a node in a
graph with all of its associated pixels or aggregates from the
next finer level as its child nodes. The multilevel aggregate
hierarchy allows for statistics to be computed across regions
which are less likely to violate object boundaries due to the
adaptive nature of the coarsening procedure, and it enables
the modeling framework to capture the properties of each
class at various scales. Secondly, the aggregates offer a richer

set of statistical features with which to model the classes,
including shape, contextual, and hierarchical features. So in
the weak learner set, in addition to position, patch-based
histograms, and Haar-like and Gabor filters, we can include
averages, moments, and histograms over the aggregates, as
well as shape and context features for the aggregate regions
such as rectangularity and number of neighbors. Training
and classification proceed in the same manner as standard
AdaBoost, except that the graph hierarchies are built on top
of each image, and the expanded feature set is applied to the
aggregates in the hierarchy when learning the model and when
performing pixel labeling on new images.

Since many mobile robot platforms are equipped with stereo
cameras, and can thus compute a disparity map for their
field of view, our approach of using statistical features of the
disparity map is a natural extension of the BMA approach
given our intended platform. A problem-specific feature of
building facade detection is that, generally speaking, build-
ings tend to have planar surfaces on their exteriors. We can
exploit this property of our building class as a feature in our
AdaBoost framework by recognizing that planar surfaces can
be represented as linear functions in disparity space and thus
have constant spatial gradients [3]. Our primary contribution is
the expansion of the BMA framework to include hierarchical
disparity features in addition to BMA’s appearance features.
We apply all of the same pixel-, patch-, and aggregate-based
features of BMA to the disparity map, as well as a set of new
disparity-specific features intended to capture the planarity of
building facades.

A. Related Work

Other research in the area of mobile robot localization from
stereo cues includes the work of Konolige et al. [4], which
integrates appearance and disparity information for object
avoidance, and uses AdaBoost to learn color and geometry
models for ideal routes of travel along the ground. They
use stereo information for detection of the ground plane
and for distinguishing obstacles, but not for classifying and
labeling those objects. Luo and Maı̂tre [5] proposed using
the same algebraic constraint on planar surfaces, but for the
purpose of correcting disparity. Their approach relies on the
assumption that within urban scenes, all surfaces will be
planes, so their geometric properties can be used to enhance



poor disparity calculations. Instead, we are using the linear
gradient constraint on planar surfaces to identify those regions
which do, in fact, fit that planar assumption. Li et al. [6] use
disparity data in a template-based AdaBoost framework. Their
work is applied to human pose estimation, and their features
are strictly pixel-based. Perhaps the most similar approach
to ours is from Walk et al. [7], which incorporates object-
specific stereo features into a combination of classifiers for
pedestrian detection. Although these disparity features are
very different from the ones that we use, the use of object-
specific properties to drive those features is consistent with
our approach. However, their ultimate goal is for detection
of pedestrian bounding boxes, and not for pixel labeling of
those detected pedestrians. An important distinction between
the two problems is also that buildings can occupy a much
larger percentage of the pixels in the frame, and come in a
much greater range of shapes, sizes, and appearances than
humans.

II. METHODS

We implement the standard Boosting on Multilevel Ag-
gregates algorithm described in [2], but with extensions for
working with disparity maps and their associated features.
These additions include accommodations for working with
invalid data in the disparity map: areas of the scene outside
the useful range of the stereo camera, and dropouts where the
disparity can not be computed within the camera’s range due
to occlusion or insufficient similarity between the images for
a match at that point.

A. Dense Disparity

Computing the dense disparity map of a scene, given a
stereo pair, is a non-trivial problem [8]. Many commercial
stereo cameras are equipped with embedded processing for
real-time disparity map computation. Although these products
often have good resolution and do a decent job of computing
the disparity map, there are limitations inherent in both the
hardware and software. Stereo cameras generally have fixed
focal length sensors, so the range in which the cameras can
focus is limited, resulting in a finite region in which disparity
can accurately be computed. Additionally, the on-board pro-
cessors of stereo cameras can not execute the more accurate,
but computationally intensive, disparity map algorithms such
as TRW-S [9]. Even off-line computation of the disparity map
is imperfect, because occluded regions from one image will
not have a match in the other image, and thus will not have
a disparity value. Figure 1 illustrates a typical example of
a disparity map with invalid regions (shown in black). We
discuss our accomodations for these obstacles in sections II-B
and II-D.

B. Coarsening on Disparity

We perform coarsening on the disparity map in the same
manner as the image intensity coarsening procedure proposed
in [2]. Invalid disparities are first mapped to zero, and then a
hierarchy of equal height to the image-based hierachy is built.
We use the same definition of pixel affinity as [2] does for

Fig. 1. A typical image with its disparity map. Invalid regions of the disparity
map are in black.

intensity: exp[−|su − sv|] for pixels/aggregates u and v, and
their associated statistics s, which in this case is disparity. An
example of intensity and disparity hierarchies produced by this
procedure is illustrated in Figure 2. Although the coarsening
proceeds similarly for both intensity and disparity, and the
aggregates for both still tend to adhere to object boundaries,
the resulting hierarchies have somewhat different character.
The separate disparity hierarchy allows the aggregate features
to capture the statistics of regions with similar disparity values,
which may not align with regions of similar intensity.

C. Disparity Features

The BMA framework for intensity images adds a variety
of aggregate features to the pixel- and patch-based statistics
of standard boosting [2]. Aggregate spatial and photometric
statistics include averages, moments, and histograms of in-
tensities, colors, and Gabor responses. Shape features include
elongation (ratio of bounding box height to width), rectan-
gularity (amount of bounding box filled by aggregate), and
several PCA statistics. Region and context features include
adaptive Haar-like features on the aggregate bounding boxes
at each level of the hierarchy, and several measures of neighbor
similarity and region homogeneity. Other features such as
aggregate mass and number of neighbors also help to capture
some of the region-level information, in this case some of the
hierarchical properties of the aggregates. We implement all of
these pixel-, patch-, and aggregate-based features for disparity,
in addition to several disparity-specific features intended to
help discriminate between building and non-building pixels by
measuring the uniformity of the disparity gradient across an
aggregate [3]. We compute the x and y gradient images of the
disparity by filtering with directional derivatives of gaussian
kernels. From these gradient images, we compute the average
and range of the gradient in each direction, as well as the
vector gradient magnitude and angle. We also compute the
Laplacian of the disparity map and use that as a feature, as it
will have a value of zero for planar surfaces.

D. Training and Classification

When we wish to classify an image, some regions will
not have corresponding disparities; we compensate by basing
our classification scheme on two models. We use a model
that includes both image and disparity features for classifying
pixels which do have valid disparity values, and a second
model with only image features for classifying the pixels in
invalid disparity regions. We train both models on pixels and



(a) Intensity hierarchy and original image (far right)

(b) Disparity hierarchy and disparity map (far right)

Fig. 2. Intensity and disparity hierarchies. Aggregate regions are colored with random gray values.

(a) Same label in image
hierarchy.

(b) Same label in dispar-
ity hierarchy.

(c) Same label in both
hierarchies, and valid
disparity.

Fig. 3. Suitable pixels for training the image+disparity model (in white).

their corresponding aggregates from a single set of training
images; in both cases, we only use a pixel if it has a consistent
class label in all of the associated aggregates above it in
the hierarchy. This avoids training on pixels whose aggregate
statistics may be polluted at some higher level. For the model
that includes disparity, we further constrain the set of suitable
training pixels by applying the same criteria to the labels
up the disparity hierarchy, and by restricting the set to those
pixels that have valid disparity values, as in Figure 3. Since
we are using the image-only model to classify those pixels
that do not have valid disparity, we train the image model on
those pixels that have consistent labels in both hierarchies and
invalid disparity in the training data. So during classification,
given an input image and disparity map, pixels from valid
regions of the disparity map are classified using the model
incorporating both image and disparity features, and pixels in
invalid regions are classified using the model with only image
features.

III. EXPERIMENTAL RESULTS

We have implemented and tested the described system on
the two-class problem of building facade labeling. During
training, we assembled a set of approximately 7500 weak clas-
sifiers, including pixel-, patch-, and aggregate-based features
for both image and disparity statistics. During the boosting
procedure, 200 of these weak classifiers are automatically
selected for the discriminative model. For the image+disparity
model, approximately 30% of the features selected during
boosting were disparity features; about 17% were pixel- or
patch-based features. The high rate of selection of disparity
features, including several of the disparity-specific gradient

features, indicates that these features provide additional dis-
criminating power over the image features alone. The re-
mainder of this section will be devoted to analyzing the
performance of our proposed two-model approach relative to
an image-only BMA classifier.

We used a data set captured by our team of a variety
of natural scenes on a university campus. It features varied
building types and styles, and the buildings are at different
scales and orientations. Our dataset consists of 142 grayscale
stereo pairs with associated 16-bit disparity maps, which we
split into a randomly selected training set of 100 images, and
a validation set of the remaining 42 images. We trained the
two models for the image+disparity system on the training
data, as well as a standard appearance-based BMA model for
comparison.

A comparison of overall accuracy for standard BMA and
our Image+Disparity BMA model is presented in Table I.
Although the overall gains in accuracy are modest (∼2%), we
do demonstrate a significant (∼8%) increase in the accuracy of
labeling the positive case (building). The low overall improve-
ment, however, is due to some loss in accuracy with the neg-
ative, or background (BG) case. However, given our intended
application, a higher rate of false positives is tolerable, because
noisy output can be improved in post-processing. Some of
these shortcomings are likely due to the quality and quantity of
the data set. We intend to expand our data set in the future with
more captured images, and we hope to improve our existing
data with more accurate offline disparity map computation.
We are also currently pursuing some post-processing steps to
use inference to improve the results, as well as to enforce
the planar surface constraint on the labeled regions. Figure
4 presents some examples of the output for both the standard
BMA model and our image+disparity BMA model. For several
of the images, there is noticeable improvement in the labeling
accuracy (namely the last two), but for the others, there are
improvements in some areas with losses in others. In many
instances, we also note increased confidence in labeling both
classes, as shown in the probability images. Part of our desire
to develop a larger, more varied data set is to expand the
variety of building styles and textures available to us for



Fig. 4. Several examples of classification output. For each image set, the individual images are (L to R): Original Image, Standard BMA Probability,
Image+Disparity BMA Probability, Ground Truth, Standard BMA Label, Image+Disparity BMA Label

TABLE I
CONFUSION MATRICES FOR THE STANDARD BMA MODEL, AND OUR

IMAGE+DISPARITY BMA MODEL.

Standard BMA Image+Disparity BMA
BG Building BG Building

BG 77.12% 22.89% 74.28% 25.72%
Building 26.68% 73.32% 18.94% 81.05%

Total Accuracy 75.43% 77.27%

training the model, as well as to incorporate more negative
(background) data, in order to cope with some of the issues
that appear to cause difficulty for our models (i.e. the rock
and water tank in the middle image).

IV. CONCLUSION

We present a extension of the Boosting on Multilevel
Aggregates method [2] to include features on disparity map
data from stereo cameras, in the context of building facade
detection for mobile robot platforms. Our approach achieves
significant improvement in the accuracy of labeling the pos-
itive (building) class, albeit with some loss of accuracy in
labeling the negative class (background), compared to the
BMA method using appearance-based features alone.

We intend to pursue several paths toward improving our
results: expansion and enhancement of our data set and post-
processing steps to refine the output. Ultimately, we plan to
embed this system on an actual mobile platform in order to
incorporate our building facade detection into a mobile robot
localization system.
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