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Abstract

We present the Video Graph-Shifts (VGS) approach for
efficiently incorporating temporal consistency into MRF en-
ergy minimization for multi-class video object segmenta-
tion. In contrast to previous methods, our dynamic temporal
links avoid the computational overhead of using a fully con-
nected spatiotemporal MRF, while still being able to deal
with the uncertainties of the exact inter-frame pixel corre-
spondence issues. The dynamic temporal links are initial-
ized flexibly for balancing between speed and accuracy, and
are automatically revised whenever a label change (shift)
occurs during the energy minimization process. We show in
the benchmark CamVid database and our own wintry driv-
ing dataset that VGS improves the issue of temporally in-
consistent segmentation effectively—enhancements of up to
5% to 10% for those semantic classes with high intra-class
variance. Furthermore, VGS processes each frame at pixel
resolution in about one second, which provides a practi-
cal way of modeling complex probabilistic relationships in
videos and solving it in near real-time.

1. Introduction

Segmentation of multiple semantic objects (such as hu-
man, building, tree, sky, ...) in images and videos is a prob-
lem of broad interest in computer vision. One of the many
reasons is because these algorithms [4,5, 15] not only detect
what types of objects are in the image and localize them,
but also output detailed inter-object boundaries. With these
information, higher-level semantic relations such as a car is
next to a pump in a gas station can be inferred, which could
benefit problems ranging from scene understanding, video
surveillance, to autonomous-driving applications. Although
many advancements have been reported on existing image
datasets, such as the MSRC [14] and PASCAL VOC Chal-
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Figure 1. An example of inconsistent segmentation of near-static
semantic objects in video frames.

lenge [10], single-image-based multi-class semantic object
segmentation algorithms are prone to producing inconsis-
tent segments when applied directly to videos, as shown in
Fig. 1. One main reason is because these algorithms are
largely based on 2D spatial features alone—complications
such as lighting, occlusion, and even sensor noises could
cause the spatial features to vary from frame to frame even
for static objects, thus producing inconsistent output.

Among the many methods for multi-class object seg-
mentation, pixel labeling via energy minimization on
Markov Random Fields (MRF) [12] (including Conditional
Random Fields (CRF) [11]) have been quite popular, which
is likely due to their mathematical elegance, empirical
power [16] and efficient recent algorithmic developments
like graph-cuts [2] and belief propagation [18]. However,
previous approaches in introducing temporal consistency
to MRFs are often either too restrictive (only applies for
videos captured by static cameras at high frame rates and
static background) [9, 13, 19] or are computationally ex-
pensive [6]. For every pixel p. in frame ¢ at coordinate
z = (z,y): Zhou et al.’s method [19] limits p%’s temporal
connectivity to only p;/_l where z = z’, which only works
well for videos obtained by static cameras, e.g. surveillance
videos; Chen and Tang’s method [6] connects pf, to all p;,_l
in frame ¢ — 1 (as shown in Fig. 2), which increases the
nodal connectivity by an order of N2 (N is the number of
pixels in an image, e.g. N = 640 - 480).

When the exact pixel motions are known, every p. in
frame ¢ need only be connected to at most one p, ! in frame

614



frame t-1 frame t
Conventional Spatiotemporal MRF

prob. maps of y1 in t-1 frame t
Temporal Probability Maps

Figure 2. The temporal consistency constraint enforced by using a
fully connected spatiotemporal MREF, as in [6].
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Figure 3. Ideal temporal links. Dotted arrows represent the nodal
motions and solid arrows are the ideal temporal links.

t — 1, where z = z’ + v, v is the motion vector from z’ to
z, as shown in Fig. 3. In this case, the temporal consis-
tency constraint can be easily formulated as a binary rela-
tion between one pixel in frame ¢ and one in frame ¢ — 1,
in the form of f(pL, p;/_l). One exception is when the cam-
era zooms out, motion vectors originating from multiple z’
could point towards the same z; nevertheless, pi would still
be enforced to be consistent with one or multiple p, ’s.
The biggest problem of this exact pixel motion assumption
is that dense optical flow algorithms are often not as reliable
as we expect it to be [1,7,17]. One remedy is to connect ev-
ery pL to all pifl as in [6] (Fig. 2), so that the temporal
relationships are multiple soft ones instead of one hard one.
However, due to the local characteristics of optical flows,
many of these temporal links are redundant (temporal like-
lihood value close to 0), which results in unnecessary wastes

in computing power and memory storage.

Inspired by the merits of these previous approaches, we
propose using a single dynamic temporal link to enforce
temporal consistency to 2D MRFs, as illustrated in Fig. 4.
Our driving motivation is the acknowledgement that even
the best optical flow estimations can make mistakes. There-
fore, we allow the temporal links to be modified when the
other evidences (unary likelihood from classifier and spa-
tial smoothness prior) show otherwise. The temporal links
between ¢t and ¢t — 1 are initialized by either coarsely esti-
mated or precisely computed dense optical flows, then mod-
ified dynamically during the 2D MRF’s energy minimiza-
tion process at frame ¢. Dynamic modification of temporal
links are enabled by any type of energy function that is de-
pendent on the class label, e.g. the Potts energy. Note that
the labels (segments) of frame ¢ — 1 are fixed when the tem-
poral links between ¢ and ¢ — 1 are dynamically modified,
i.e., we perform energy minimization on the 2D MRF of
frame ¢ with an additional temporal term that is defined on

frame t-1 frame t

Figure 4. Dynamic Temporal Links: in our proposed algorithm,
temporal links self-modify while the 2D MRF in frame # is energy-
minimized.

the 2D MRF of ¢ — 1 instead of doing it on a strict spa-
tiotemporal MRF. Although this simplification is not ex-
actly a spatiotemporal MRF, our results show that it does
sufficiently enforce temporal consistency without adding
significant complexities.

We develop and define the energies used in our algorithm
in Sec. 2, followed by the full Video Graph-Shifts (VGS)
algorithm in Sec. 3. We efficiently establish the initial tem-
poral links for our VGS algorithm by exploiting the multi-
level adaptive hierarchy structure as in [8]. Due to the lack
of ground-truth video datasets of the segmentation of mul-
tiple semantic classes in the community, we recorded and
hand-labeled an hour-long wintry driving dataset and tested
our VGS algorithm on it, as well as on the CamVid video
benchmark [3]. We discuss the database and experiment
setup along with the results in Sec. 4. The whole process of
temporal link construction and energy minimization takes
about 1 second per 320 x 240 frame to converge, compared
to the minute-long fully-connected temporal links approach
used in [6]. We consistently achieve an accuracy rate in-
crease of 5% to 10% for the semantic classes where the clas-
sifier alone suffers from noise and large intra-class variance
therefore produce temporally inconsistent segments. Such
result demonstrates the effectiveness of our VGS algorithm.

2. Temporally Consistent Energy Model

We first discuss the energy models used in the standard
2D MRE, inspect existing and possible ways of incorporat-
ing temporal consistency constraints, then define and ana-
lyze our temporal links and temporal energy. Ultimately,
the energy function is:

El{my e DY = M 3 B (1(S[u),m,) M
neED
+ Ay Z Es(my,my) + A3 Z Ei(my,mp)
(k,v) neD

where D is the image lattice, S [u] is the local sub-image
surrounding 1, m,, = {L1, Lo, ..., L.} is the label £; taken
by u, for example tree, car, building and so on. (u,v) de-
notes that v is a neighbor of 4, p is the node in the previous
frame that is corresponded to p through u’s temporal link,
and ), \; = 1 are the weights of the energy terms. Discus-
sion of the individual energy terms follows.
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2.1. The Standard Energy Terms

The energy used in standard 2D MREFs is the first two
terms of (1). E; (unary energy) is the potential of each node
1+ belonging to a certain class m,,, and Ey (binary energy) is
the energy induced by the interaction between neighboring
nodes. Low-energy or high-likelihood configurations of the
labels are preferred.

The unary potentials can be calculated from suitable
manually-defined or machine-learned classifiers, and can
incorporate various color, texture and even shape proper-
ties. In VGS, we set F as:

By (I(S[u]), my,) = —log P(m,[I(S[u])) . (2)

where the probability P(m,,|I(S[u])) is conditioned on
a local sub-image of u. We use a context-sensitive dis-
criminative model—the Probability Boosting Tree (PBT)
algorithm—to generate P (m,, |[I(S[u])).

The binary term can be designed to incorporate our prior
knowledge of the inter-nodal relationship, e.g., the spatial
smoothness constraint. F/» can be viewed as the penalty ap-
plied to neighboring nodes possessing different class labels:

Ey(my,m,) =1—6(my,m,) . 3)

2.2. Temporal Link and the Temporal Energy

We use only one dynamic temporal link per node. A la-
bel dependent energy function defined on this temporal link
is used to motivate the alteration of this dynamic temporal
link. We develop the temporal energy used in our algorithm
in the following paragraphs.

Let us first explain the concept of a node p’s temporal
correspondent p in frame ¢ — 1 with a toy example: a video
is simply the movements of & disparate nodes (i.e., nodes
with distinct feature values), where each instance (frame)
of the k nodes forms a graph D;. The temporal correspon-
dent of p € Dy is simply the search of ¢/ € D;_1, where
u = p'. Inreal-world problems, however, nodes in the MRF
are not guaranteed to be disparate, i.e., there may exist two
nodes with exactly the same attributes (color, shape, tex-
ture) in the same frame. Also, large homogeneous regions
complicates the calculation of exact nodal movement, even
with the information of object motion. Thus, the definition
of p’s temporal correspondent p is relaxed to the searching
of Kk € D;_1 that minimizes the feature space distance to y:

p=argmin || X, — X,||l,, x€Di_1 . )

X, is the feature vector of any node w, and || - ||,, is the L?
norm used for distance measurements.

The above definition of temporal correspondents still
fails to account for an important prior knowledge we have
about videos: object motion o0,, is usually limited in-
between neighboring frames—the higher the frame rate, the

frame t-1

Figure 5. Finding p1’s temporal correspondent p through the initial
estimate «’, in ;s 2"¢ order neighborhood.

smaller the movement. Therefore, only nodes within a cer-
tain range need to be examined while searching for ones
temporal correspondent (those with suddenly fast move-
ment can be handled by coarser level nodes of our adaptive-
hierarchy, which will be discussed in detail in 3.2.) In terms
of the MRF neighborhood, a node i € D, will only have to
search within the n*" order spatial neighborhood of the ini-
tial estimate of the temporal correspondent node ' € D;_1,
where n x |0y, ]:

p=argmin || X, — Xu|l,, we€{Un: (&, n}t . ©)

The temporal relationship between p and its temporal
correspondent p can thus be formulated as a binary energy:

Et(m/_nmp) =1- \Il(uvp)v (6)
where the similarity measure U is defined as

if my, ;é m,
otherwise

0

Y p) = { exp(—a] [ X, — X, |I,)
(N

« is a non-negative coefficient. When a node y insists on
taking a label £; that its temporal correspondent’s neighbor-
ing region shows no supports for, E; is assigned the highest

possible energy (i.e., 1) to discourage this selection.

3. The Video Graph-Shifts (VGS) Algorithm

The VGS algorithm is composed of three major steps:
(1) Coarsening: for each frame ¢, an adaptive hierarchy G
is built on top of the standard MRF by recursively grouping
the nodes (pixels) with similar attributes (color, intensity,
depth); (2) Linking: temporal links are constructed between
corresponding nodes in G; and G;_1; (3) Shifting (as in
Fig. 6): nodes shift iteratively by taking different labels to
minimize the energy function. The search is a gradient de-
scent minimization in as search space defined by the adap-
tive hierarchy (i.e., not a local search space). After a shift
occurs, we refine the temporal links to enforce consistency
with the label change.

3.1. Coarsening the Adaptive Dynamic Hierarchy

The adaptive-dynamic hierarchy differs from traditional
pyramidal structures of the image in the following ways:
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Figure 6. Process of a shift on a toy adaptive hierarchy.
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Figure 7. Video Graph-Shifts: The red dotted arrow denotes the
movement of p from frame ¢ — 1 to t. When pu shifts from its
original parent (black hollow arrow) to its new parent (black solid
arrow), temporal shifts will follow and find its most similar node
in frame ¢ — 1 (light blue dotted arrow to dark blue solid arrow).

(1) The hierarchy is built according to the data instead of
pixel coordinates; (2) The hierarchy is dynamic, so that the
structure of nodes (parent-child relationship) changes dy-
namically while the energy is being minimized.

Nodes with similar attributes are grouped together to
form a node in the next layer. The top layer of the hier-
archy consists of K nodes, where each node represents one
of the K labels. The parent-label constraint forces a node
to have the same label as its parent; hence, an instance of
the adaptive hierarchy is a full pixel labeling. The energy
is accumulated recursively from bottom to top throughout
the hierarchy G: Leaf nodes calculate their energy directly
from (1) - (3), while non-leaf nodes sum the energy from all
their child nodes. (Refer to [8] for details on the recursion.)

3.2. Initializing the Temporal Links

Because the temporal links are dynamically altered dur-
ing energy minimization, only a coarse estimate of object
motion is needed to initialize them. This coarse estimation
can involve little or no calculation of the motion field at all,
depending on how fast the objects are moving, the moving
directions, and the frame rate.

For nodes with Brownian motion, since the mean mo-
tion vector is 0, we initialize the temporal link of n € D; to
p € Dy_1, where their spatial coordinates are the same. (Of

course, these will change later during the energy minimiza-
tion process.) For nodes with non-Brownian motion, the
initial temporal correspondent can be estimated efficiently
with the adaptive hierarchy. Since most objects are rigid
with a coherently moving inner region, when u’s hierar-
chical parent p;,’s spatial displacement o,,, is known, it is
reasonable to estimate that x’s temporal correspondent is in
the same direction as o,,. For this reason, all but the nodes
in the coarsest level of the hierarchy requires the explicit
calculation of nodal-motion. The computational complex-
ity for finding the nodal-motion is thus reduced from N2 to
[N/(4*)]?, where N is the number of pixel-level nodes, v
is the reduction factor of the hierarchy coarsening process,
and ¢ is the number of layers in the graph-shifts hierarchy.
Using the same setting as in [8] on a 320 x 240 video frame,
the number of nodes that requires this explicit attention is
77000 versus less than one hundred.

3.3. Shifts and Temporal Correspondent Changes

A shift is when a node p decides to change its parent
(and here, class label m,,) to its neighboring node’s parent
(and takes a new label 1m,,), all p’s descendants follow; it is
denoted m,, — 71,,. The resulting change in global energy,
called the shift-gradient AE(m,, — 1), is defined as:

AE(my, — 1) = M [By(p, i) — Ey(p,my)] (8)

+ X[ Y [Ba(ring, my) — Ea(my,my)] ]
n:(p,m)
+ /\S[Et(muamﬁ) - Et(m;u mp)] )

where 4 can be a node at any level in the hierarchy.

Potential Temporal Correspondent Changes are eval-
uated after a shift, which seeks a new temporal corre-
spondent p that minimizes the temporal energy gradient
Ey (1, mp) — Ey(my,mp).

p = argmin Ey (1, ms), k€ {p,Un:{(p,m} . (9

For each node in the hierarchy, shift-gradients among all
neighbors are calculated and only those that are negative
(which would cause an energy decrease) are stored in the
list of potential shifts S. The shift with the steepest shift-
gradient is chosen at each iteration, causing the node and
all its descendants’ labels to be changed. The nodes and
edges affected by the shift will be updated, along with the
list S with recomputed energies. The process is iterated un-
til convergence when S becomes empty, which means that
any further shift will not decrease the energy. Convergence
is guaranteed as this is a steepest-gradient algorithm.

3.4. Video Pixel-Labeling via Video Graph-Shifts

The first frame is labeled with all E; set to 0, i.e., the
VGS algorithm essentially only performs the following two
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Flgure 8. Sample frames (first row) and labels (second row) from the “highway” sequences of our wintry-driving dataset.
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Figure 9. Sample frames (first row) and labels (second row) from the “major road” sequences of our wintry-driving dataset.

steps: (1) the adaptive hierarchy is coarsened on top of the
standard MRF, and (2) all potential shifts are calculated,
stored, then iterated until convergence. Starting from the
second frame: (1) the hierarchy is coarsened, (2) the initial
temporal links are constructed, and (3) each shift is followed
by a temporal correspondent change, which refines the tem-
poral link between G and G;_; (Fig. 7). When the energy
is minimized, temporal links between GG; and G;_1’s lowest
layer can be viewed as a motion field.

In practice, for typical videos with little frame-to-frame
motion, the independently coarsened adaptive hierarchies
of the two frames should be similar. With the dynamically
changing nature of the hierarchy, one can superimpose the
hierarchy of frame ¢ — 1 onto frame ¢ to serve as its initial
hierarchy. As long as the energies are updated and prop-
agated correctly throughout the hierarchy, shifts will alter
this superimposed hierarchy to its energy-minimized state.
The final labeling result of this superimposed hierarchy is
similar to those obtained from an independently coarsened
hierarchy when the overall object movement and appear-
ance/disappearance rate is small. However, when the over-
all object movement is significant between two frames, a
new hierarchy should be coarsened instead of using the su-
perimposed one from the previous frame. One practical so-
lution is to interlace frames using superimposed hierarchies
with frames using coarsened hierarchies; this is similar to
the interlaced I, P, B frames of the MPEG compression.

4. Experiments and Results

As pointed out by Brostow et al. in their recently pub-
lished video-pixel labeling benchmark dataset—CamVid
[3], there is a lack of pixel-wise multiple-semantic-class la-
beled video recorded by non-stationary cameras. Theirs is
the first such dataset. At the same time CamVid was being
developed, we also realized this void and constructed our
own video database with per-pixel ground truth of each se-

mantic class. Sample frames and their corresponding pixel-
wise labels of our dataset are shown in Fig. 8, 9. In this
section, we apply our method to both datasets. Our dataset
and code will be available for download upon publication
to allow for future comparison. We discuss our new video
database in detail in 4.1, followed by experiments on it in
4.2 and experiments on the CamVid database in 4.3.

4.1. Our Wintry-Driving Video Database

Our database, as of date, consists of 49 driving video
sequences recorded in various weather, lighting, and scene
conditions throughout the winter that spans roughly 90 min-
utes of time at 15 fps. Each sequence is approximately 2
minutes. The videos are recorded uncompressed at a res-
olution of 640x480 using a fixed focal length IEEE1394
industrial-grade camera. The sequences can be classified
into three types of weather conditions: heavily snowing, not
snowing but the road is slushy, and not snowing and the road
is dry; three types of lighting conditions: day time, dusk,
and night (vehicles’ headlights and road lights on); three
types of surrounding scenes: highway, major roads, and
residential neighborhood driving. Currently, 375 frames
have been manually labeled with four high-level seman-
tic classes: vehicles, road-side obstacles, road, and others
(mostly sky). It is now being expanded to more semantic
classes as well as adding higher semantic relationship be-
tween objects, e.g. pole in front of trees, cars on the road.

Our wintry driving database differs significantly from the
CamVid database in the following aspects: (1) Our dataset
is recorded in a wide variety of weather conditions, and
(2) the surrounding scene differs more in our sequences,
e.g. highway scenes v.s. residential neighborhood scenes.
Therefore, our full dataset provides a different and challeng-
ing benchmark for not only pixel labeling and multi-class
video object segmentation problems, but also for bounding-
box based classifiers, per-frame/image classifiers, etc.
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VGS 2D MRF

974 |26 97.2 | 2.8
19 [971]1.0 19 [974]07
196 | 80.4 297 1703

Table 1. Confusion matrices of VGS (left) versus 2D MREF (right)
on the major road testing set. Empty cells have values < 0.1. The
per-class averaged accuracy rate is 91.63% versus 88.3% while the
global accuracy rate is 94.76% versus 93.32%. Notice the 10.1%
improvement of the road class is because of the temporally incon-
sistent classifier output improved by VGS.

4.2. Experiments on our Wintry-Driving Database

For the ease of comparison, we follow two conven-
tions commonly used in the pixel-labeling society while set-
ting up the experiments for our wintry driving dataset: the
frames are down-sampled to the standard size (320x240),
and the semantic classes with less than several percents
of pixel-wise appearance frequency along those with high
intra-variance (e.g. partially occlusions vehicles) are dis-
carded. We randomly take 70% of the non-snowing se-
quences and train a single Probability Boosting Tree (PBT)
classifier, which is used to generate the P (m,,[I(S[u])) for
F/ in both the 2D MRF and VGS for fair comparison. Ob-
ject motions are assumed Brownian for temporal correspon-
dent initialization, and a new hierarchy is built for each
frame. It takes about 1 second on average for our method to
process a new frame, which consists of: building the adap-
tive hierarchy, temporal links, and energy minimization.

The quantitative labeling results for our VGS algorithm
versus 2D MRFs are shown in table 1. Our method shows
a near 3.5% increase of the per-class averaged accuracy !
on the “major road” test sequences. The major contributor
to this improvement is the 10.1% improvement of the road
class. Such result is driven by the fact that: the similar-
ity between the roadside dirty snow pile and slush-covered
roads confuses the classifier from time to time in the major
road test sequences (Fig. 10), therefore allowing the tempo-
ral consistent constraint to make a significant impact on the
segmentation accuracy. The roadside obstacles and the sky
are rarely mislabeled, therefore the temporal consistency
has little impact on the results of these two classes.

4.3. Experiments on the CamVid Video Database

The CamVid video database consists of five 960x720
video sequences that are recorded at 30Hz and spans a total
of 10 minutes of city driving scenes. The videos are cate-
gorized into two types: those recorded during the day time
and those at dusk. Most of their frames are labeled at 1Hz

Recent literature [3,4] have argued that the per-class averaged accu-
racy rate is a better measure than the conventional global accuracy rate
(total number of correctly-labeled pixels over the total number of pixels),
since the easiest way to boost global accuracy is to neglect everything that
infrequently appears and give preference to the frequently appearing ones.

road

mjrd5_00005

Legend [ sky(others) | obstacles

name mijrd5_00003

mjrd5_00004

Input
frame

Ground
truth
labels

Results:
without
temporal
links

Results:
with our
dynamic
temporal

e . SN, SeNNN. |
Figure 10. A frequently occurring example of VGS outperforming
2D MRF’s energy minimization results on the 3-class subset of our
wintry driving dataset. Single frame based energy minimization
mistakenly labeled the whole road region as obstacles, while our
method avoids being trapped in this type of local minima.

with a significant change of scene content from frame to
frame. We use the same setting as in [4] to test our pro-
posed method on the CamVid dataset (11-class subset), and
the sequences shown in Fig. 13 are reserved for testing.

VGS observes a consistent improvement of labeling ac-
curacy over 2D MRF methods again by producing more
temporally consistent results. The results are better ex-
plained by on a per-class improvement basis due to the in-
trinsic difference in semantic classes in the test sequences.
The dusk test sequences consists of many stop and go traf-
fic scenes, with lots of cars, pedestrians and bicyclists
randomly appearing and swiftly moving on the sidewalks
(Fig. 11). Due to the large intra-class difference in these se-
mantic objects, the classifier outputs are inconsistent from
frame to frame. With the VGS algorithm, temporal con-
sistency increased 6.2%, 7.3%, and 4.4% respectively in
these three flickering classes while remaining largely the
same for the more static objects, such as building, tree, amd
sky. The day test sequences, as a contrast, are recorded
in a much faster-moving vehicle with fewer appearances
of pedestrian and bicyclist classes (Fig. 12). As a result,
the frame-to-frame difference of the same free and fences
objects is higher, thus the temporal consistency constraint
improved the per-class accuracy rates by 5.1% and 4.1% re-
spectively.

The qualitative comparisons of the results are shown in
Fig. 13 and the quantitative ones are shown in table 2 and
3. The per-class average accuracy shows a near 2% im-
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0001TP_009240 0001TP_009270 0001TP_009300
Figure 11. Sample clips from the CamVid dusk test sequences that
consists of many stop and go traffic scenes. The images shown are

brightened and contrast enhanced for the ease of visualizing.

Seq05VD_f00000 Seq05VD_{00030 Seq05VD_f00060
Figure 12. Sample clips from the CamVid day test sequences that
are recorded in a comparatively faster moving vehicle. The tree,
fence, sidewalk, and buildings classes have a larger intra-class

variance in these sequences.

provement on the dusk test sequence, and The global ac-
curacy rate of our method is 81.40% versus the 80.52%.
We observe a 71.74% global accuracy rate on the day test
sequences, which is also a near 1% higher than 2D MRF
results. For comparison, the global accuracy reported in
Brostow et al. [4] is 69.1%. Our per-class or balanced av-
erage accuracy is 46.45% whereas it is 53%—however, we
note that, in both cases, their scores are computed on com-
bined training and testing data, so comparing the two scores
is unfair.

5. Conclusion

Our proposed Video Graph-Shifts algorithm provides an
efficient way of modeling and energy minimizing MRFs
with additional dynamic temporal links that promotes tem-
poral consistency. The dynamic temporal links efficiently
achieves a good level of temporal consistency as compared
to a fully-connected spatiotemporal MRF while using only
a fraction of computational time. Furthermore, the multiple
available choices for initializing the temporal links provides
the flexibility for different levels of accuracy and efficiency
requirements. Experiments on our new wintry driving video
dataset and the CamVid benchmark show that our VGS al-
gorithm not only produces visually more consistent seg-
mentation results, but also quantitative improvements over
plain 2D MRFs. A consistent 5% to 10% improvement
is observed on the classes where the classier alone suffers
from noise and large intra-class variance.
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Figure 13. Examples of VGS outperforming 2D MRF energy minimization results on the Camvid 11-class dataset. —Frames
00001YP_008820-80 demonstrate how dynamic temporal links produces consistent tree labels at the upper right corner (circled in yellow)
of each frame while 2D MRFs alone fail to do so. The sidewalk region on the right side of frames Seq05VD_f01200-60 (circled in yellow)
shows the same case, where our dynamic temporal links are able to correctly infer the sidewalks while others do not.
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Table 2. Confusion matrices of VGS (left) versus the 2D MREF results (right) on the testing set of the camvid dusk sequences. Empty cells
have values < 0.1. Global accuracy rate is 81.40% for VGS versus 80.52% for 2D MRFs while the per-class average accuracy rate is
45.31% versus 43.47%. Note that the high intra-class variance of the car, pedestrian, and bicyclist classes causes the classifier to output
inconsistent results, and the temporal consistency constraint in VGS help improve the accuracy rate by 6.2%, 7.3%, and 4.4% respectively
while remaining largely the same for the remaining more static classes.
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Table 3. Confusion matrices of VGS (left) versus the 2D MREF results (right) on the testing set of the camvid day sequences. Empty cells
have values < 0.1. The Global accuracy rate is 71.74% for VGS versus 70.8% for 2D MRFs while the per-class average accuracy rate
is 46.45% versus 46.3%. Note that because the videos are recorded in a comparatively faster moving vehicle with fewer occurrences of
the pedestrian, bicyclist classes and larger variances for the tree and fence classes. As a result, tree and fence benefited the most from the
additional temporal consistency constraint, demonstrating 5.1% and 4.1% improvement respectively.
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