
Coherent Regions for Concise and Stable Image Description

Jason J. Corso and Gregory D. Hager
Computational Interaction and Robotics Lab

The Johns Hopkins University
Baltimore, MD 21218

{jcorso|hager}@cs.jhu.edu

Abstract

We present a new method for summarizing images for the
purposes of matching and registration. We take the point
of view that large,coherentregions in the image provide
a concise and stable basis for image description. We de-
velop a new algorithm for image segmentation that oper-
ates on severalprojections(feature spaces) of the image,
using kernel-based optimization techniques to locate local
extrema of a continuous scale-space of image regions. De-
scriptors of these image regions and their relative geometry
then form the basis of an image description.

We present experimental results of these methods ap-
plied to the problem of image retrieval. On a moderate
sized database, we find that our method performs compa-
rably to two published techniques: Blobworld and SIFT
features. However, compared to these techniques two sig-
nificant advantages of our method are its 1) stability under
large changes in the images and 2) its representational effi-
ciency. As a result we argue our proposed method will scale
well with larger image sets.

1. Introduction
In this paper, we consider the problem of matching (or regis-
tering) differing views of a scene to each other. This, prob-
lem, which has received an immense amount of attention
over the last decade, is currently solved using two different
approaches.

One set of approaches, pioneered by Schmid and Mohr
[21] and extended in many recent papers [9, 12, 8, 7, 15,
16, 22], makes use of local region descriptors for index-
ing and matching. The general idea of such approaches
is to locate regions of high texture content using an inter-
est operator and to then create indices for matching. The
key to good performance is to create interest operators and
match indices that are insensitive to geometric and photo-
metric image distortions. The advantage of the approach is
generally the robustness of matching to occlusion, changes
in lighting, and moderate changes of viewpoint. The dis-
advantages are the need to identify such local image re-
gions and (typically) the use of only gray-scale image pro-

jections. In particular, large areas of the image are poten-
tially discarded as “untextured” and therefore unusable by
the method. Mikolajczyk and Schmid [17] evaluated the
performance of several local image descriptors. Their eval-
uation tested the descriptors’ stability to rotation, scaling,
affine transformations, and illumination changes. The study
showed that SIFT [12] features performed the best over all
conditions.

Another set of approaches, exemplified by Malik et
al. [13, 1] and Greenspan et al. [6], instead represents im-
ages through segmentation. This approach is particularly
appealing for image retrieval problems where the goal is to
find similar, rather than exactly matching, images. The ad-
vantage is that large areas of the image tend to be stable
across large changes in viewpoint and can be matched in a
spatially approximate manner. The disadvantages are that
it is necessary to have an efficient yet stable segmentation
process and to find image cues that are themselves stable
over variations in pose and lighting.

In our work, we consider a “middle ground.” Namely,
our goal is to create interest operators that focus on ho-
mogeneous regions, and local image descriptors for these
regions. To this end, we perform a sparse image segmen-
tation and then index images based on the results of that
segmentation. The segmentation is performed in parallel
on several scalar image projections (feature spaces) using
kernel-based optimization methods. The optimization eval-
uates both the size (large regions tend to have high stability
across widely disparate views) and the coherency (e.g. sim-
ilar color, texture, depth, or image gradient) of region con-
tent. Once a region is located, its description is composed of
simple kernel-weighted means of the coherent content. This
description is concise: it is stable under drastic changes in
viewpoint, and it is insensitive to photometric changes pro-
vided the initial image projections are. In particular, the
kernel-based optimization can easily be made fully invariant
to affine geometric deformations. Finally, since we com-
pute multiple image regions, images can be geometrically
registered in a manner similar to interest point-based regis-
tration.
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In principle, our method is most similar to Schaffalitzky
and Zisserman [20]. They use the texton segmentation [1]
and create a texture region descriptor that is invariant to
affine geometric and photometric transformations. They
robustly estimate the epipolar geometry of a wide base-
line system by matching these regions. While emphasis
on scene-retrieval and registration based on regions as op-
posed to points is similar to their work, we differ in the
region detection and description. The remainder of this
paper details our kernel-based segmentation methods and
provides preliminary comparative experimental results sug-
gesting region-based matching performs comparably with
other published image matching methods.

2. Coherent Region Clustering
Scale is a crucial parameter in the analysis of objects in im-
ages. In our case, there are two essential notions of scale:
the scale of the image content (e.g. texture or edges), and
the scale of an associated spatial kernel function used to
summarize image content. In both cases, there is no univer-
sally accepted method for choosing an optimal scale. Lin-
deberg proposed a set of scale selection principles [11] for
feature detection and image matching, and a technique [10]
for building a gray-level blob and scale-space blob repre-
sentation of an image. Comaniciu et al. [5] proposed the
variable bandwidth mean shift to solve this problem (in the
context of kernel-based density estimation [4]). Collins [2]
applied Lindeberg’s general scale selection principles [11]
to extend the kernel-based mean shift tracking to refine the
scale of the object being tracked. Okada et al. [19] presented
a method for the creation of an anisotropic, Gaussian scale-
space by extending Lindeberg’s [11] isotropic scale-space
methods.

In our work, we focus primarily on determining the cor-
rect scale of a spatial kernel for summarizing image content.
Let an imageI

.
= {I, I} be a finite set of pixel locationsI

(points in
�

2) together with a mapI : I → X , whereX
is some arbitrary value space of dimensiond. The image
bandj at pixel locationi is denotedIj(i). Thus, for our
purposes theimageis any scalar or vector field: a simple
grayscale image, an YUV color image, a disparity map, a
texture-filtered image, or any combination thereof.

A coherentregion in an image is a connected set of (rel-
atively) homogeneous pixels. We describe a coherent re-
gion θ as a two-dimensional Gaussian weighting function,
or kernel, K with 4 parameters,1 two spatial locations and
two corresponding scale parametersθ = {µx, µy, σx, σy}.
Thus, for a pixel locationx = (x, y)T ∈ I, the kernel is
written

1For the moment, we disregard rotations of anisotropic kernels and im-
age skew which would be necessary to ensure full affine invariance of the
kernel-based segmentation.
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whereZ is a normalizing scalar.

2.1. Scalar Projections
Kernels are applied to scalar projections of the image. The
intuition is that various projection functions will map a re-
gion of consistent image content to a homogeneous image
patch in the scalar field: for example, there is some tex-
ture and/or color projection function such that an image of
a plaid shirt will be mapped to a relatively homogeneous
scalar field. Thus, by choosing appropriate scalar projec-
tions, we can capture a variety of different coherent image
content.

To that end, define a functionP : X → �
thatprojects

regions of thed-dimensional image onto a one-dimensional
scalar field. Essentially, each projection is defining a new
feature spacein which to analyze the input image. If we as-
sume an image whered = 3 andX = RGB, then a feasible
projection is a simple linear combination with coefficients
{cr, cg, cb} of the pixel color components [3]:

S(i) = crIr(i) + cgIg(i) + cbIb(i), ∀i ∈ I. (2)

Other potential projections include neighborhood vari-
ance, periodicity of the image, dominant gradient direction,
and so forth. It is even plausible to create a specific tem-
plate matching projection; for example, if we want to find a
certain road-sign in the image, then the projection is simply
computed by convolving the image by a road-sign template.
The methodology we propose is general and the construc-
tion of these projections is application dependent. In this
paper we give a simple set of projections (§ 5). Addition-
ally, the projections affect the invariance properties of the
image description. We defer such a discussion to§ 3.5.

2.2. Region Statistics
We define the statistics that will be used in region detection
and description. For projectionP ,

MeanP (θ, I) =
∑

x∈I

K(θ,x)P (I(x)) (3)

VarP (θ, I) =
∑

x∈I

K(θ,x)P (I(x))2 − MeanP (θ, I)2.

(4)

We use the kernel-weighted mean and variance instead of
uniformly weighted statistics because the pixels in the cen-
ter of the region are more likely to have stronger coherency
than the pixels on the outer parts of the region. We show an
experiment to justify this claim in Fig. 8.
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3. Region Detection and Refinement

3.1. Initial Seed Detection

Marr and Hildreth [14] first proposed the use of the Lapla-
cian of a Gaussian (LoG) for distinguishing homogeneous
regions from the drastic changes in intensity that separate
them. More recently, Lowe [12], among others [9], used a
Difference of a Gaussian (DoG) to approximate the LoG fil-
ter. They construct a dense, discrete scale-space of DoG re-
sponses and then perform an explicit search for stable points
(local extrema in space and scale).

To detect seed points, we create a coarse, discrete scale-
space of isotropic DoG responses by sampling a few (in our
experiments just 2) large scales. This coarse sampling is
sufficient for seed detection because we later refine each
candidate seed and localize it in both space and scale. Simi-
lar to Lowe, we look for local extrema in the DoG response
to detect seeds. However, since we are coarsely sampling
scale-space, we analyze each 2D DoG-response separately
(Lowe searches for extrema in 3D scale-space).

We define a seed with three parametersθ̂ = {µx, µy, σ}
where µx, µy are the spatial coordinates andσ is an
isotropic scale. We set the scale of the seed to one-third of
the scale of the LoG filter. Intuitively, this one-third scale
factor shrinks the kernel to the homogeneous region at the
filter’s center. In contrast, Lowe scales the region by a fac-
tor of 1.5 because the SIFT keys function best in regions
of high variance (the region including its surrounding areas,
for example).

3.2. Refining the Seeds into Regions

In the second stage of processing, we take the detected
seeds and independently refine their spatial location and
(anisotropic) scale with respect to the original image. Thus,
we create a continuous scale-space of regions.

The objective function we optimize consists of two com-
peting terms: a homogeneity term and a scale term:

OP (θ, I) =
VarP (θ, I)

MeanP (θ, I)2
+

τ
√

σxσy

. (5)

The first term measures the variance of the kernel-
weighted region normalized by the squared mean. Thus, for
poorly projected, inhomogeneous regions, the first term will
be high. The second term is an ad-hoc penalty that prefers
large regions.τ is a tuning parameter; in all of our exper-
iments, we chooseτ = 1. In Fig. 1, we show the function
response of (5) for a synthetic image containing a single
homogeneous region in a field of noise.

The minima of (5) correspond to large, coherent regions.
Thus, we refine the seeds from§ 3.1 by minimizing the
function in (5):
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Figure 1: (left) (5) response for varyingσ along each di-
mension for the synthetic image on the top-right. Spatial
location is fixed at the (known) region center. (bottom-right)
Extracted ellipse overlayed on the image.
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θ
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(6)

This objective function can now be optimized using clas-
sical descent methods. We have experimented with both
gradient-descent and second-order Newton-style minimiza-
tion algorithms and have found both to provide satisfactory
results. As we would expect, the second-order methods con-
verge more quickly but are more sensitive to initialization.
During minimization, we must ensure the scale parameters
remain positive and the spatial parameters remain on the
image lattice; we set explicit boundaries on scale ([2, 60]
pixels) and location. If these bounds are violated, we termi-
nate optimization (removing the region).

It is worth noting that, in order to implement this opti-
mization efficiently, several algorithmic optimizations are
possible. In particular, we precompute kernels for a spe-
cific set of scales and resample images dynamically to the
appropriate scale. With these optimizations, a complete op-
timization for one region consumes about0.1 sec.

3.3. Merging and Annotation
LetB denote the set of active regions in an image. For a re-
gionB ∈ B, denote the parameters byθ(B). Since multiple
seeds may converge to the same minima of (5), we perform
a simple region merging procedure. Define the distance2

between a pair of regionsB, C ∈ B as,

d(B, C) = ‖θ(B) − θ(C)‖2. (7)

2We have experimented with more mathematically justified distances
(e.g. Kullback-Leibler Divergence), but found them to havelittle or no
effect on the merging process because, here, we are only merging regions
that are near equal.
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Fix a thresholdα and define an empty set of merged re-
gions B̂ = ∅. Then, for each pair of regionsB, C ∈ B
solve

B̂ = B̂
⋃

{

B d(B, C) < α
{B, C} otherwise

. (8)

Although this is of quadratic order, we have found the num-
ber of regions was significantly reduced (about25% on av-
erage) after the merging procedure. This reduction is insen-
sitive to the threshold chosen.

Then, given a set of projectionsP , for each regionB ∈
B̂ annotate it by computing the kernel-weighted mean under
each projection:

Bp = Meanp(θ(B), I), ∀p ∈ P . (9)

The resulting image summarization can be interpreted as a
Gaussian mixture model over the joint feature-spatial space
(with infinitesimal variance in the feature spaces). In Fig.2,
we show an example image with its representative regions
under the three (red, green, and blue) color projections.

Figure 2: An image from the dataset and its representative
color regions extracted with our technique.

3.4. Algorithm Summary

In this section, we summarize the complete algorithm which
uses the local minima of a continuous scale-space as repre-
sentative coherent regions in the image description. For a
given input imageI, define a set of projectionsP and an
initial, empty set of regionsB and carry out the following
steps:

1. Under each projection independently,

(a) Detect seeds. (§ 3.1).

(b) Independently, minimize the function in (6) to re-
fine each seed.

(c) Add convergent regions toB.

2. MergeB (8).

3. Annotate remaining regions inB.

3.5. Properties

The coherent regions we present in this paper have a number
of good properties:stability/invariance, conciseness, and
scalability. The region description is implicitly invariant
to rotation and translation in the image because it is simply
a vector of kernel-weighted means. Since the image de-
scription is composed of a number of independent regions,
like other local descriptor methods [21], it is robust to oc-
clusion. In addition, using the kernel functions to weight
the region statistics increases the robustness since it weighs
pixels based on their distance from the region center.

Figure 3: The coherent regions extracted are robust to affine
distortion of the image even though we currently do not in-
clude kernel rotation which would be required for full affine
invariance (each row is a pair, see text for explanation).

We claim that our method is robust to affine distortions
in the image. In Fig. 3 we show the extracted regions (using
the RGB projections for exposition) for the same image as
Fig. 2 after it has been transformed by different affine maps:
(row-wise) halving the aspect ratio,90◦ rotation,45◦ rota-
tion, and a shear. From the figure, we see that roughly the
same regions are extracted. It is important to note that for
each extracted region, the kernel-weighted mean is stored,
and thus, the precise geometric parameters of the regions
may be slightly different. We include an experiment in
§ 5 (Fig. 6) in which we query the database with images
that have been distorted. The experiment finds the affine
distortion effects a minor change in the precision-recall for
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our technique while causing a large change for the SIFT
method.

These invariance properties are dependent on the specific
scalar projections employed. For instance, if the scalar pro-
jection is designed to extractvertical texture (y-gradientin
the image), then the region’s description under this projec-
tion is no longer rotationally invariant or robust to affine
distortion. The projections we use in this paper all pro-
duce rotationally invariant and affinely robust descriptions
(§ 5). We are currently pursuing a more concrete definition
for the constraints on the projections to ensure these invari-
ance/robustness properties and leave it for future work.

It is clear that the image description is concise because
we store simply a small set of kernel-weighted means per
region. Thus, the storage requirement for our technique will
not prohibit its scaling to larger databases.

4. Matching
Earlier, we mentioned that we consider the problem of
matching differing views of a scene to each other. In this
section, we discuss our approach for using the coherent
region-based image description to address this problem.

Given a pair of imagesI1, I2 and their corresponding re-
gion setsB1,B2 computed from the same set of projections
P , the problem of matching can be approached on two lev-
els: qualitative and quantitative matching. In qualitative
matching, we address image content similarity; i.e. based
on the two region sets, how similar are imagesI

1 andI
2?

In quantitative matching, we quantify how much spatial co-
herence exists between the two images? Spatial coherence,
in this case, is defined as the pixel-area in each image where
matching regions overlap. We can then, for instance, maxi-
mize the amount of overlap region to compute the parame-
ters of a geometric transformation relating the two images.
In this paper, we focus on qualitative matching, and we use
the same approach for all three methods in our comparative
analysis.

To compute image similarity, we simply compute the
sum-of-squared distance between the two region feature
vectors; that is, for any two regionsa, b:

s(a, b) =
∑

p∈P

(ap − bp)
2 (10)

Thus, for each regionBi ∈ B1, we find its nearest neighbor
B∗ ∈ B2:

B∗ = arg min
Bj∈B2

s(Bi, Bj). (11)

We repeat this procedure for each region inB2 and keep
only those matches which are consistent in both directions.

5. Experiments in Image Retrieval
In this section, we discuss the techniques proposed in this
paper for the task of image retrieval. For these experiments,
we use a moderate sized dataset of 48 images‡ taken of an
indoor scene from widely varying viewpoints and with dras-
tic photometric variability (a subset of the dataset is shown
in Fig. 4). We hand-labeled the dataset; two images are said
to bematchingif there is any area of overlap between them.
We can see from the images that the number of matches for
each image has a high variation.

Figure 4: A subset of the dataset (chosen arbitrarily) used
in the retrieval experiments.

Denote the three bands of the input image asR, G, B
and S as their gray projection. Unless otherwise noted,
we use a set of5 projections: the 3 opponent color axes
((R + G + B)/3,(R−B)/3, and(2G−R−B)/4) which
were experimentally shown by [18] to perform well in color
segmentation, and 2 projections that measure neighborhood
variance inS with window sizes of16 and32 pixels. As
noted earlier, many other more sophisticated methods are
plausible to capture texture information in the image pro-
jections; we leave such experimentation to future work.

We use the standard precision-recall graphs to present
the matching results. The precision is defined as the fraction
of true-positive matches from the total number retrieved and
the recall is the fraction of matching images that are re-
trieved from the total number of possible matches in the
database. First, we compare our technique to two tech-
niques in the literature: SIFT Keys [12] and Blobworld [1].

SIFT is an example of a local, affine-insensitive and
scale-invariant interest point descriptor. For matching,we
use the same nearest-neighbor scheme as discussed in§ 4.
Note that additional geometric constraints are plausible for
both our method and SIFT Key matching, but we do not em-
ploy any of them in order to keep the comparisons between
methods fair. Blobworld is an example of using segmented
image regions as the description. To measure matches using
their provided source code, we used blob-to-blob queries.

‡The complete dataset can be found on the www athttp://www.
cs.jhu.edu/˜jcorso/r/regions/ .
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For a query imageI1 with regionsr1, . . . rn, we queried the
database independently for each regionri and maintained
accumulators for each image. The final matches for the
query image were those images with the highest accumu-
lators after queries for alln regions had been issued.

Average
Number of
Elements

Size† per
Element

(in Words)

Average
Size

(in Words)

Our Technique 159 5 797
Blobworld 9 239 2151

SIFT 695 32 22260
Table 1: Comparison of average per-image storage for the
three techniques.

Fig. 5 and Table 1 present the precision-recall graph (av-
erage for querying on all images in the database) and the
storageefficiencyfor each of the methods. We see from Ta-
ble 1 that our method is the most efficient in the average
amount of data it generates per image. For retrieval, we find
the SIFT Keys outperform the other two methods. This re-
sult agrees with the study by Mikolajczyk and Schmid [17].
Our method outperforms the Blobworld technique by about
5% precision on average.

Figure 5: Comparison between our technique and other
published techniques.

In § 3.5 we discussed the properties of our representa-
tion, and claimed that it is robust to affine transformations
of the image. To test this, we halved the aspect ratio of the
entire dataset and re-computed the coherent regions and the
SIFT Keys. We performed a complete dataset query (same
as above) and measured the precision-recall (Fig. 6) when
querying with these distorted images. From the graph, we
see that our method is very robust to the image distortion
and it outperforms the SIFT method which drops substan-
tially.

†This data reflects the available source code for Blobworld and SIFT.
It should be noted that the SIFT keys store128 1-byte elements while the
other two methods use4-byte (1-word) floating point elements. We have
not experimented with quantizing the storage for our technique to further

Figure 6: Graph showing precision-recall for our technique
and the SIFT method when querying with distorted images
from the database. The aspect ratios of the images were
halved.

In Fig. 7, we show the effect of varying the number of
projections used in the image description. For Proj. 1,
we just use the grayscale image. For Proj. 2, we use the
grayscale image and the variance projection with a neigh-
borhood size of 32. For Proj. 3, we use the 3 opponent
color axes, and for Proj. 4, we add the variance with neigh-
borhood size 32. Proj. 5 is the same set of projections used
in all the other experiments. We find that the addition of
multiple projections greatly improves the retrieval accuracy.
However, we note that there is not a large difference be-
tween Proj. 4 and Proj. 5. We claim this is because of
the similarity in projections Proj. 4 and Proj. 5 which both
just measure neighborhood variance but in different sized
neighborhoods.

Figure 7: Graph showing precision-recall as the number of
projections (feature spaces) is varied.

In Fig. 8, we show the effect of using kernel-weighted
means for region description versus standard, uniformly
weighted means. As expected, the kernel-weighted means
greatly outperform the uniform means (by about 10% on
average).

reduce the size.
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Figure 8: Graph showing precision-recall using kernel-
weighted means in the projections versus uniform means.

6. Conclusion
We have presented a novel method for image representation
using a kernel-based, sparse image segmentation and de-
scription method. The method is general in that it permits
a variety of feature spaces which are represented as scalar
image projections. Our main contribution is in the image
description which is a middle-ground between local inter-
est operator techniques from object recognition and global
image segmentation techniques that cluster regions of ho-
mogeneous content.

We create a continuous scale-space of regions with co-
herent image content. The regions are robust under dras-
tic viewpoint changes and varying photometric conditions.
Our initial experiments indicate that the method is stable,
reliable, and efficient in terms of both computation and stor-
age. In particular, the use of spatial kernels admits effi-
cient, optimization-based methods for segmentation and, ul-
timately, image registration.

There are several directions of future work we intend to
pursue. The problem of registration using segmentation has
been addressed by Schaffalitzky and Zisserman [20]. One
advantage of kernel-based methods is that the registration
problem can be posed as a continuous optimization defined
directly on images. We intend to investigate this approach.
A second, obvious extension is to enrich the set of feature
spaces we consider. In particular, the development of suit-
ably invariant projections for texture is a key step. Finally,
a more extensive evaluation of our methods with a larger,
more varied database is an essential further step.
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