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Existing methods in the semantic computer vision community seem unable to deal with

the explosion and richness of modern, open-source and social video content. Although

sophisticated methods such as object detection or bag-of-words models have been well
studied, they typically operate on low level features and ultimately suffer from either

scalability issues or a lack of semantic meaning. On the other hand, video supervoxel

segmentation has recently been established and applied to large scale data processing,
which potentially serves as an intermediate representation to high level video semantic
extraction. The supervoxels are rich decompositions of the video content: they capture
object shape and motion well. However, it is not yet known if the supervoxel segmen-
tation retains the semantics of the underlying video content. In this paper, we conduct

a systematic study of how well the actor and action semantics are retained in video
supervoxel segmentation. Our study has human observers watching supervoxel segmen-

tation videos and trying to discriminate both actor (human or animal) and action (one
of eight everyday actions). We gather and analyze a large set of 640 human perceptions
over 96 videos in 3 different supervoxel scales. Furthermore, we design a feature defined
on supervoxel segmentation, called supervoxel shape context, which is inspired by the

higher order processes in human perception. We conduct actor and action classification
experiments with this new feature and compare to various traditional video features. Our
ultimate findings suggest that a significant amount of semantics have been well retained

in the video supervoxel segmentation and can be used for further video analysis.

Keywords: Semantic retention; computer vision; video supervoxel segmentation; action

recognition.
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2 Chenliang Xu, Richard F. Doell, Stephen José Hanson, Catherine Hanson, and Jason J. Corso

1. Introduction

We are drowning in video content—YouTube, for example, receives 72 hours of video

uploaded every minute. In many applications, there is so much video content that

a sufficient supply of human observers to manually tag or annotate the videos is

unavailable. Furthermore, it is widely known that the titles and tags on the social

media sites like Flickr and YouTube are noisy and semantically ambiguous [1].

Automatic methods are needed to index and catalog the salient content in these

videos in a manner that retains the semantics of the content to facilitate subsequent

search and ontology learning applications.

However, despite recent advances in computer vision, such as the deformable

parts model for object detection [2], the scalability as the semantic space growing

remains a challenge. For example, the state of the art methods on the ImageNet

Large Scale Visual Recognition Challenge [3] have accuracies near 20% [4] and a

recent work achieves a mean average precision of 16% on a 100,000 class detec-

tion problem [5], which is the largest such multi-class detection model to date. To

compound this difficulty, these advances are primarily on images and not videos.

Methods in video analysis, in contrast, still primarily rely on low-level features [6],

such as space-time interest points [7], histograms of oriented 3D gradients [8], or

dense trajectories [9]. These low-level methods cannot guarantee retention of any

semantic information and subsequent indices likewise may struggle to mirror human

visual semantics. More recently, a high-level video feature, called Action Bank [10],

explicitly represents a video by embedding it in a space spanned by a set, or bank,

of different individual actions. Although some semantic transfer is plausible with

Action Bank, it is computationally intensive and struggles to scale with the size

of the semantic space; it is also limited in its ability to deduce viewpoint invariant

actions.

In contrast, segmentation of the video into spatiotemporal regions with ho-

mogeneous character, called supervoxels, has a strong potential to overcome these

limitations. Supervoxels are significantly fewer in number than the original pixels

and frequently surpass the low-level features as well, and yet they capture strong

features such as motion and shape, which can be used in retention of the semantics

of the underlying video content. Figure 1 shows an example supervoxel segmenta-

tion generated by the streaming hierarchical supervoxel method [11]. The individual

supervoxels are denoted as same-colored regions over time in a video. Furthermore,

results in the visual psychophysics literature demonstrate that higher order pro-

cesses in human perception rely on shape [12] and boundaries [13, 14, 15]. For in-

stance, during image/video understanding, object boundaries are interpolated to

account for occlusions [13] and deblurred during motion [15]. However, the degree

to which the human semantics of the video content are retained in the final seg-

mentation is unclear. Ultimately, a better understanding of semantic retention in

video supervoxel segmentation could pave the way for the future of automatic video

understanding methods.
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Fig. 1. Example output of the streaming hierarchical supervoxel method. Columns from left to

right are frames uniformly sampled from a video. Rows from top to bottom are: the original RGB

video, the fine segmentation (low level in the hierarchy), the medium segmentation (middle level
in the hierarchy), and the coarse segmentation (high level in the hierarchy).

To that end, we conduct a systematic study of how well the actor and action

semantics in moving videos are retained through various supervoxel segmentations.

Concretely, we pose and answer the following five questions:

(1) Do the segmentation hierarchies retain enough information for the human per-

ceiver to discriminate actor and action?

(2) How does the semantic retention vary with density of the supervoxels?

(3) How does the semantic retention vary with actor?

(4) How does the semantic retention vary with static versus moving background?

(5) How does response time vary with action?

A preliminary version of our study appeared in [16], in which we present novice

human observers with supervoxel segmentation videos (i.e., not RGB color videos

but supervoxel segmentation videos of RGB color videos) and ask them to, as quickly

as possible, determine the actor (human or animal) and the action (one of eight

everyday actions such as walking and eating). The system records these human

perceptions as well as the response time and then scores whether or not they match

the ground truth perceptions; if so, then we consider that the semantics of the

actor/action have been retained in the supervoxel segmentation. We systematically

conduct the study with a cohort of 20 participants and 96 videos. Ultimately, the

human perception results indicate that a significant amount of semantics have been

retained in the supervoxel segmentation.
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In addition, we conduct machine recognition experiments on actor and action

with a feature defined on the supervoxel segmentation, called supervoxel shape con-

text, and compare it with various video features, such as dense trajectories [9] and

action bank [10]. The supervoxel shape context captures the important shape infor-

mation of supervoxels, which is inspired by the shape context on still images [17].

Our experimental results suggest that the underlying semantics in supervoxel seg-

mentation can be well used in machine recognition to achieve competitive results,

and the overall machine recognition of actor and action seems to follow the same

trend as that of human perception but more work needs to be done to get the

machine recognition models up to par with the humans in terms of recognition

performance.

The remainder of the paper is organized as follows. Section 2 provides the back-

ground on video supervoxel segmentation. Section 3 describes the details of the

data set acquisition as well as the experiment setup for both human perception and

machine recognition using supervoxel segmentations. Section 4 dicusses the results

and our analysis of the underlying semantics and recognition experiment. Finally,

Section 5 concludes our findings.

2. Video Supervoxel Segmentation

2.1. Supervoxel Definition, Methods and Applications

Supervoxel Definition. Perceptual grouping of pixels into roughly homogeneous

and more computationally manageable regions, called superpixels, has become a

staple of early image processing [18, 19]. Supervoxels are the video analog to the

image superpixels. Recently, supervoxel segmentation has risen as a plausible first

step in early video processing [20, 21, 22, 11]. Consider the following general math-

ematical definition of supervoxels, as given in our early work [22], where a video

is treated as a 3D volume composed by frames with time as the third dimension.

We build a 3D lattice Λ3 composed by voxels (pixels in a video) with edges linking

neighbors in space and time, and define a supervoxel s as a subset of the lattice

s ⊂ Λ3 such that the union of all supervoxels comprises the lattice and they are

pairwise disjoint:
⋃

i si = Λ3 ∧ si
⋂
sj = ∅ ∀i, j pairs.

Although the lattice Λ3 itself is indeed a supervoxel segmentation, it is far from

a so-called good one [22]. Typical algorithms seek to enforce principles of spatiotem-

poral grouping—proximity, similarity and continuation—from classical Gestalt the-

ory [23, 24], boundary preservation, and parsimony. From the perspective of machine

vision, the main rationale behind supervoxel oversegmentation is two fold: (1) vox-

els are not natural elements but merely a consequence of the discrete sampling

of the digital videos and (2) the number of voxels is very high, making many so-

phisticated methods computationally infeasible. Therefore, supervoxels serve as an

important data representation of a video, such that various image/video features

may be computed on the supervoxels, including color histograms, textons, etc.

Supervoxel Methods. Methods for generating video supervoxel segmentation are
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thoroughly evaluated in our proposed LIBSVXa benchmark [22, 11, 25], which im-

plements a suite of five supervoxel algorithms and tests them in a set of evaluation

metrics with three video datasets. The methods in the library include segmentation

by weighted aggregation [26, 27], graph-based [28], hierarchical graph-based [21],

mean shift [29], and Nyström normalized cuts [30]. Ultimately, it was determined

that the two hierarchical agglomerative methods [26, 27, 21] perform best overall

due to the way in which multiscale region similarity was reevaluated as the hier-

archy was generated. We note that later methods based on temporal extension of

superpixels [31, 32, 33, 34] and hierarchical trajectory merging [35] also achieve com-

petitive performance with respect to the library’s benchmark. In this paper, we use

the streaming version [11] of hierarchical graph-based algorithm [21] to generate the

supervoxels due to its good performance and the ability to handle long videos.

Supervoxel Applications. Despite the richness in supervoxel methods and the

well developed evaluation benchmark, supervoxels are still treated as merely group-

ings of video based features for object and region labeling problem. Tighe and

Lazebnik [36] use supervoxels for region labeling in videos, where standard video

features such as color histograms and optical flow [37] are computed. Raza et al. [38]

build geometric context classifiers on supervoxels by exploring motion based features

and appearance features. Tang et al. [39] propose a weakly supervised algorithm to

tackle the large-scale video object labeling problem. However, the ability of us-

ing supervoxels for actor and action recognition remains as an unexplored research

problem.

2.2. Streaming Hierarchical Supervoxel Method

We use the state of the art streaming hierarchical supervoxel method [11] to generate

a supervoxel segmentation hierarchy S = {S1, S2, . . . , SH} of an input video V,

where Sh = {shi }, h ∈ {1, 2, . . . ,H} is the supervoxel segmentation at level h in

the hierarchy. The levels of a supervoxel hierarchy define the merging stages of

supervoxels. In our case, the size of supervoxel s grows from fine to coarse when

varying h from 1 to H. The method obtains the hierarchical segmentation result S
by minimizing:

S∗ = argmin
S

E(S|V) , (1)

where the objective criterion E(·|·) is defined by the minimum spanning tree method

in [28]. For example, for the hth level in the hierarchy, the objective criterion is

defined as:

E(Sh|V) = τ
∑
s∈Sh

∑
e∈MST(s)

w(e) +
∑

s,t∈Sh

min
e∈<s,t>

w(e) , (2)

where, MST(s) denotes the minimum spanning tree (of voxels or supervoxels from

the previous fine level in the hierarchy) in the supervoxel s, e is the edge defined

ahttp://www.cse.buffalo.edu/~jcorso/r/supervoxels/
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Fig. 2. A comparison of different video feature representations. From top to bottom rows are:
the RGB video, the supervoxel segmentation, extracted boundaries of supervoxel segmentation,

space-time interest points (STIP), and dense trajectories (DT).

by the 3D lattice Λ3, w(e) is the edge weight, and τ is a parameter that balances

the two parts. The edge weight w(e) captures the color differences of voxels. By

minimizing Eq. (1), the algorithm ultimately outputs a supervoxel segmentation

hierarchy of the original input RGB video.

Figure 1 shows a hierarchical supervoxel segmentation produced by [11]. The

segmentations from top to bottom rows are sampled from low, middle, and high

levels in a supervoxel segmentation hierarchy, where each have fine, medium and

coarse segments respectively. Each supervoxel has a unique color and we randomly

color the output supervoxels in one level with the constraint that the same color is

not shared by different supervoxels. In general, we allow reuse of colors in different

levels in the segmentation hierarchy, since they are not used in a single run of human

perception experiment in this work.

2.3. Supervoxels: Rich Decompositions of RGB Videos

Considering the example in Figure 1, we observe that the hierarchy of the super-

voxel segmentation captures different levels of semantics of the original RGB video.

For example, one tends to recognize the humans easier from coarser levels in the
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hierarchy, since they are captured by fewer supervoxels; however, the coarser levels

lose the detailed content in the video, such as the woman in the painting hanging

on the wall, which is still captured at the medium level.

Compared with other features, such as space-time interest points (STIP) [7]

and dense trajectories (DT) [9], which are frequently used in video analysis [6], the

supervoxel segmentation seems to retain more semantics of the RGB video (in this

paper we seek to quantify how many of these semantics are retained for one set of

actors and actions). Figure 2 shows a visual comparison among those features. STIP

and DT use the sampled points and trajectories as the data representation—this

is not the full STIP or DT feature descriptor representation, which also measures

other information, such as gradient.

By only watching the videos of STIP and DT, as shown in the bottom two

rows of Figure 2, it seems unlikely that humans could recover the content of a

video, especially when there is little motion in a video. On the other hand, one

can easily recover the content of a video by watching the supervoxel segmentation

video, likely due to the fact that the supervoxel segmentation retains the shape of

the objects (boundaries of the supervoxel segmentation are also shown in the third

row of Figure 2). Zitnick and Parikh [40] show that the segmentation boundaries are

in general better than classical edge detection methods, such as those generated by

the Canny edge detector[41], for automatic image understanding, and they perform

as well as humans using low-level cues.

The precise goals of this paper are to explore exactly how much semantic con-

tent, specifically the actor (human or animal) and the action, is retained in the

supervoxel segmentation and can they be used for machine recognition for actors

and actions. We describe the experiment and results of supervoxel human perception

and machine recognition in the next two sections.

3. Experiment Setup

We have set up a systematic experiment to study actor and action semantic reten-

tion in the video supervoxel segmentation. By actor we simply mean human or an-

imal. For action, we include a set of eight actions: climbing, crawling, eating, flying,

jumping, running, spinning and walking. We have gathered a complete set of videos

(Section 3.1) and processed them through the segmentation algorithm (Section 2).

Then we use the data to conduct human perception experiments (Section 3.2) as

well as machine recognition experiments (Section 3.3). Finally, we analyze the ag-

gregate results over the full data cohort and quantify the retention of semantics

(Section 4).

3.1. Data Set

We have collected a data set with two kinds of actors (humans and animals) per-

forming eight different actions: climbing, crawling, eating, flying, jumping, running,

spinning and walking. We only include animals that frequently appear in (North
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Fig. 3. A snapshot of the RGB videos in our data set. The actors in the top two rows are humans

and in the bottom two rows are animals. The data set consists of two kinds of actors, eight actions
and two types of background settings, resulting in a total of 32 videos.

American) daily life, such as dogs, cats, birds, squirrels and horses. The backgrounds

of the videos fall into two categories: static (relatively static objects such as ground

and buildings with little camera changes) and moving (moving objects in the back-

ground, such as in a traffic or dramatic camera changes). A complete RGB video

data set consists of 32 videos in total (2 actors × 8 actions × 2 background types

= 32). Figure 3 shows a snapshot of the RGB videos we collected.

Each video in the data set is about four seconds long and the actor starts the

action immediately after the video plays. We, however, show the videos at half-

frame-rate when conducting the experiment to allow ample response time for the

human participants. We have attempted to exclude those videos that have ambiguity

with either the actors or the actions, and only use videos that have a major actor

performing one single action. For example, a disqualified human jumping video

usually contains running before jumping. But, some ambiguity remains due to the

general complexity of dynamic video. The data set used in this paper is a complete

data set having a single video for each actor, action and background type tuple. All

videos were downloaded from public “wild” repositories, such as YouTube.

For each of the RGB videos, we use the method described in Section 2.2 to

obtain a supervoxel segmentation hierarchy. We first use ffmpeg to resize the videos

to 320x240 maintaining the original aspect ratio. Then, we run the gbh stream

program (LIBSVX version 2.0) with the following parameters: c: 0.2, c reg: 10,

min: 20, sigma: 0.4, range: 10, hie num: 30. Note that c and c reg map to τ

in Eq. (2) (c is used at the first level and c reg is used at all other hierarchy levels).

We sample three different levels (fine: 8th level, medium: 16th level, coarse: 24th

level) from the hierarchy, similar as in Figure 1. Therefore, the full set of data we

used to run the semantic retention experiment is the 96 supervoxel segmentation

videos of three different levels. Note that the audio is disabled, so that the par-
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ticipants in human perception expeirment only have the vision perception of the

supervoxel segmentation videos (and never the RGB videos).

3.2. Human Perception Experiment

The purpose of the human perception experiment is to measure exactly how much

semantic content is retained in the supervoxel segmentation. In the perception ex-

periment, we show the supervoxel segmentation videos to human observers and

request them to make a forced-choice selection of actor and action.

3.2.1. Data Split and Study Cohort

We create a threeway split of the 96 videos into three sets: alpha, beta and gamma.

Since each of the original 32 videos is represented in three levels of the hierarchy, it

is imperative to make the threeway split and thereby avoid one participant seeing

the same video twice but on two different supervoxel hierarchy levels. So, each of

alpha, beta and gamma have the full 32 videos, but on different hierarchy levels

and uniformly varying over levels in each of the three splits. Based on the ordering

in the database, alpha will start with one level (say coarse) in the hierarchy, then

beta will have the next (medium) and gamma the third (fine) for one original RGB

video. For the next original RGB video, it will rotate, so that alpha has the next

level (now medium), beta the next (fine) and gamma will wrap around to the first

(coarse) again. This repeats through all 96 supervoxel videos. Before the videos are

shown to the participant, the order of the videos is shuffled, so that the participant

cannot deduce the contents based on an ordering of the videos (like human human

human ... animal animal animal).

Our study cohort is 20 college-age participants. To ensure generality, we exclude

those students who are studying video segmentation (and hence may have already

developed an eye for semantic content in supervoxel segmentations). Each partici-

pant is shown one split of the videos (alpha, beta or gamma). And each participant

sees a given video only once. Participants never see the input RGB videos.

3.2.2. User Interface and Instructions

We developed a web-based user interface to collect human responses. Figure 4 shows

a snapshot of it. The left part of the participant’s screen is the supervoxel segmen-

tation video and the right part of the participant’s screen comprises two sets of

buttons that allow the user to choose either human or animal as the actor, and to

choose one of the eight actions. The participant has the option to choose unknown

(the option “Don’t know act or actor” is shown in the center of the select action

area in Figure 4). Such an unknown option prevents the participant from random

selection.

Initially, when the participant starts the experiment, the left part of the screen is

blank and buttons on the right side are deactivated (grayed out); once the next video
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Fig. 4. A snapshot of the user interface for the human perception experiment. The left part of screen
is the supervoxel segmentation video and the right part of screen is a set of selection buttons. Users

are instructed that time to make a selection is recorded and important for the human perception

experiment.

in their split is downloaded locally, it prompts the user with a “ready” message.

As soon as the participant presses the space key, it starts to show the supervoxel

segmentation video and the interface triggers a timer that records the response time

of the participant. The participant is required to respond by pressing the space key

again as soon as he or she captured enough information to reach a decision (i.e.,

knows the actor and action in the supervoxel video). The amount of time between

these two space key pressing is recorded as one’s response time. After this second

space key is hit, the buttons on the right side are activated and ready for the

participant to select them. The participant can only watch the video once, which

means once the video reaches the end, the participant is forced to make a decision

(or choose unknown) without the option to watch it again. In this case, the whole

video time is recorded as one’s response time. This process is repeated for each

video in the split (alpha, beta or gamma) until the end.

Before a participant begins, s/he is instructed briefly as to the nature of the

experiment (trying to recognize the actor and action in a supervoxel video) and

walked through the user interface. They are instructed that time is recorded and

important; they should hence stop the video as soon as they know the answer. They

are not shown any example supervoxel video before the experiment starts.
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3.3. Machine Recognition Experiment

We design experiments to explore whether machines can use the features extracted

from the same supervoxel segmentation videos that we have shown to human ob-

servers (no original pixel RGB videos) to perform the actor and action recognition

task. Note that our data assumption is different than the labeling problem in Sec-

tion 2.1, where both original video and supervoxel segmentation are available and

supervoxels are merely groupings of video features. We instead extract features

based on supervoxel shape, which is directly observable by the humans (see super-

voxel boundary in Figure 2). In our machine recognition experiment, we train a

set of classifiers based on the supervoxel shape feature to discriminate actors and

actions, then compare the video classification results to state of the art action recog-

nition features, such as dense trajectories [9] and action bank [10], which require

the availability of pixel RGB videos. Again, we conduct experiments on supervoxel

segmentations at three different hierarchy levels.

3.3.1. Supervoxel Shape Context (SSC)

Supervoxel segmentation contains important shape and boundary information that

is directly observable by humans, and the results in the visual psychophysics liter-

ature [12, 13, 14, 15] further demonstrate that such information helps higher order

processes in human perception. Therefore, it is our hypothesis that it is possible

for machines to mimic the ability of human observers to discern actor and action

by using shape related features extracted on supervoxel segmentation videos, even

without the availability of pixel RGB videos. Belongie et al. [17] demonstrate the

success of shape context feature on shape maching and object recognition. Inspired

by the original shape context work, we adapt the descriptor to supervoxel segmenta-

tion video for feature extraction. The shape context descriptor at a reference point

captures the distribution of the (supervoxel) edges relative to it, thus offering a

globally discriminative characterization.

The original shape context descriptor is intended for static images. We therefore

apply the following modifications to extend it to capture the temporal aspect of

supervoxel segmentation videos. First of all, we calculate the center of mass of the

optical flow [37] for each frame in a video. This point is indicative of the greatest

amount of action occurring in a frame and considered as an approximation of the

actor center with respect to our single actor videos. Note that other methods to

obtain this point are possible, such as using the center of STIP [7] or DT [9] (see

Figure 2). We choose optical flow due to the fast computation and parsimony—it

is used when generating supervoxel segmentations [21]. Thus, the set of points is

suitable as reference points to calculate the supervoxel shape context, which reduces

the complexity required for directly determining the location in a spatiotemporal 3D

video volume. The supervoxel shape context as used in this paper are the log-polar

histograms of supervoxel edges calculated at the reference point on a per-frame

basis. We then use five radial and 12 angular bins for the histogram quantization.
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Therefore, the supervoxel shape context in a video capture both spatial information

by counting the locations and density of the supervoxel edges nearby the center of

motion and also temporal information pertinent to action by utilizing the optical

flow as an indicator of which points are most salient.

3.3.2. Other Video-Based Features

We include the state of the art video-based features for action recognition in the

comparison. The span of the features include both low-level and high-level in terms

of underlying semantics. Recall we visually compared the supervoxel segmentation

with the other video features in Section 2.3.

Low-level Video Feature. The low-level video features we include are dense

trajectories [9] and HOG3D [8]. Dense trajectories are calculated from optical flow in

a video and the descriptors on the trajectories capture the shape (point coordinates),

appearance (histograms of oriented gradients) and motion (histograms of optical

flow), as well as the differential in motion boundry (motion boundry histograms).

A dense representation of trajectories guarantees a good coverage of foreground

motion as well as of the surrounding context. HOG3D is the video extension of the

histogram of oriented gradients based descriptors for static images [42]. It treats

videos as spatio-temporal volumes and generalizes the key histogram of gradients

concepts to 3D and thus it captures the global shape information in a video. For

both of these low-level features, we use a bag-of-words classification scheme [43].

High-level Video Feature. Action bank [10] is a high-level representation of

video. It is comprised of many individual action detectors, such as boxing and horse

back riding, that are sampled broadly in semantic space as well as viewpoint space.

It computes the responses of those individual action detectors at different locations

and scales in a video and ultimately transfers the video to a response vector in

high-dimensional action-space.

Dense trajectories and action bank achieve state-of-the-art action recognition

performance on popular computer vision datasets, such as UCF50 [44].

3.3.3. Classification Setup

We set up the experiment to classify videos based on actor and action separately.

For actor, it is a two class (human or animal) classification task. For action, it is one

versus all for each of the eight actions. For example, when we train a classifier for

action walking, we use videos containing walking as positive samples and the rest

videos containing the other seven actions as negative samples. Due to the small size

of our experiment data set, the classification is done with a leave-one-out setup.

For supervoxel shape context (SSC), we again extract the features at different

levels in a hierarchy: fine, median and coarse segmentations, which are the same as

in human experiment. For dense trajectories (DT) and HOG3D, we use a codebook

of 20 words, which is small but necessary due to the data set size and empirically
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Table 1. Confusion matrix for actor discrimination.

0 0 0

0.11 0.86 0.03

0.17 0.05 0.78

unknown

human

animal

un hu an

found to outperform other sized codebooks—we also used codebooks of 100 and

1000 words. We note that all the action detectors in action bank are from human-

based templates, which limits its performance in actor classification. We refer to [10]

for a complete list of action templates.

4. Results and Analysis

Human Perception Responses. The response of a single video by one human

participant is defined as: < actor, action, response time >. In total, we have 640

such supervoxel human perceptions collected (32 videos in each split × 20 partici-

pants). The original RGB videos are used as the ground truth data to measure the

match of the supervoxel human perceptions. We also measure the response time

of the participants for both matched perceptions and unmatched perceptions. Our

analysis in Section 4.1 to Section 4.6 is organized systematically according to five

key questions regarding semantic retention.

Machine Recognition Results. Our machine classification setting is different

than the human perception response. We put actor and action recognition in two

separate tasks. For actor, it is a two class (human or animal) classification task. For

action, it is one versus all for each of the eight actions. For example, given all 32

supervoxel segmentation videos in one hierarchy level, we classify them as running

or not running. We analyze the machine recognition results in Section 4.7.

4.1. Do the segmentation hierarchies retain enough information

for the human perceiver to discriminate actor and action?

4.1.1. Actor Discrimination

Table 1 shows a confusion matrix of the actor discrimination. As high as 86% of

the human perceptions correctly identify the human actors, 78% for the animal

actors, and in average 82% for actors in general. We also note that participants

tend to choose the unknown option when they are less confident of the supervoxel

segmentation. There is only a small portion of unmatched perceptions 3% and 5%

that mistake human as animal or vice versa. This is hence strong evidence showing

that the supervoxel segmentation indeed has the ability to retain the actor semantics

from the original RGB videos. We suspect this binary discrimination performance
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Table 2. Confusion matrix for action discrimination.

0 0 0 0 0 0 0 0 0

0.11 0.57 0.12 0.12 0 0.01 0.01 0.04 0

0.15 0.06 0.65 0.03 0 0 0.01 0.04 0.06

0.01 0.07 0.07 0.79 0.04 0 0 0.01 0

0.19 0.01 0.04 0.09 0.57 0 0 0.01 0.09

0.19 0 0 0 0 0.76 0.04 0 0.01

0.06 0.01 0 0 0.03 0 0.90 0 0

0.20 0.03 0 0.06 0.01 0 0.01 0.69 0

0.19 0.03 0.01 0 0.01 0.01 0.03 0.03 0.70

unknown

walking

spinning

running

jumping

eating

climbing

crawling

flying

un wl sp rn jm ea cl cr fl

is so high because the data cohort includes videos with one dominant actor and

the human participant is able to localize this actor with the supervoxel motion

information and then use the supervoxel shape information to determine human or

animal. We suspect the reason why the human perception of animal actors is less

than that of human actors is because the animals in the data set vary more broadly

in relative location and orientation than the humans do.

4.1.2. Action Discrimination

Table 2 shows a confusion matrix of the action discrimination. The top three scor-

ing actions are climbing (90%), running (79%), and eating (76%), while the bottom

three ones are walking (57%), jumping (57%), and spinning (65%). On average,

70.4% of human perceptions correctly match the actions. Of the lower perform-

ing actions, only walking has been easily confused with the other actions (12% to

spinning and 12% to running, which may be due to semantic ambiguity—see the

example of the human walking in the spinning wheel in Figure 9); jumping and spin-

ning have more unknowns (19% and 15% respectively) rather than being confused

with other actions. An interesting point to observe is that running and climbing are

perceived unknown significantly fewer than the other six actions. We suspect this

is due to the dominant unidirectional motion of these two actions. Overall, this is

more strong evidence that suggests the supervoxel segmentation can well retain the

action semantics from the original RGB videos.
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Fig. 5. The performance of supervoxel semantic retention of actor and action on three levels
from the supervoxel segmentation hierarchy: fine, medium and coarse. The percentages on top are

computed when the supervoxel human perceptions are correctly matched to ground truth ones.

The middle and bottom rows are the response time figures when the supervoxel human perceptions
are correctly matched and incorrectly matched respectively.

4.2. How does the semantic retention vary with density of the

supervoxels?

Following the discussion of supervoxel hierarchy in Section 2.3, we seek to un-

derstand how the supervoxel size influences retention of action and actor semantics.

Recall that we sampled three levels from the supervoxel hierarchy to obtain fine,

medium and coarse level supervoxel segmentations. Figure 5 shows the overall per-

formance of the supervoxel human perceptions on different levels. The percentage of

correctly matched human perceptions increases when the size of supervoxels grows,

suggesting that coarse segmentations more readily retain the semantics of the ac-

tion and that even coarser segmentations could perform better (i.e., the perfect

segmentation of the actor performing the action would likely perform best). A sec-

ond plausible explanation is that for actor and action discrimination the finer details

in the other levels are unlikely to be needed.

We also show study of the response time in Figure 5. Here, we plot the density of

responses (horizontal axis is time, at half-frame-rate; vertical axis is density). The

blue bars are a simple histogram and the red curve is a Gaussian kernel density

estimate. For correct action matches, the response distributions are nearly equiva-

lent, and are heavily weighted toward the shorter end of the plot, indicating that

if the participant knows the answer then typically knows it quickly. However, for

the incorrect matches, we see different patterns, the fine videos are peaked at about

eight seconds, which is the maximum length for most videos, indicating the partic-

ipant watched the whole video and still got the wrong action perception. For fine

videos, one expects this due to the great number of supervoxels being perceived,
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Human!
75.0%!

Animal!
65.9%!

Fig. 6. Performance comparison between human actors and animal actors. The percentages on

top are computed when the supervoxel human perceptions are correctly matched to ground truth

ones. The response time plots include both correctly and incorrectly matched supervoxel human
perceptions.

which introduces more noise. The medium and coarse scales are more uniformly

distributed (although the coarse scale also has a peak at eight seconds), indicating

that sometimes the perception was simply wrong. This may either be due to in-

trinsic limitation of the supervoxels to retain some action semantics or due to the

ambiguities of the specific videos in the data set, which, although we did try to

avoid, are present in some few cases. Further study on this point is needed to better

understand the source of the error.

4.3. How does the semantic retention vary with actor?

We stratify the accuracy of the matches according to the actor performing the

action. Figure 6 shows the overall performance by human actors and animal actors.

In general, human perception of human actors has higher match than that of animal

actors. For speed, the response time of human actors has only one peak at around

three seconds, while that of animal actors has multiple peaks, which may be due

to the greater variation in appearance of animals in the data set than of humans.

Moreover, human activity is easier to perceive than animal as studied by Pinto and

Shiffrar [45]. Considering the result in Table 1, the result in Figure 6 also suggests

a correlation between knowing the actor and recognizing the action correctly.

4.4. How does the semantic retention vary with static versus

moving background?

Figure 7 shows the overall performance of the supervoxel human perception match

for static background and moving background. Supervoxel human perceptions have

higher match and shorter response time in the case of static background, as expected

(the dominant actor is more easily picked out by the participant). The relatively
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Static!
77.2%!

Moving!
63.8%!

Fig. 7. Performance comparison between static background and moving background. The per-

centages on top are computed when the supervoxel human perceptions are correctly matched

to ground truth ones. The response time plots include both correctly and incorrectly matched
supervoxel human perceptions.

Climbing Crawling Eating Flying

Jumping Running Spinning Walking

Fig. 8. Response time of eight different actions for both correctly and incorrectly matched super-
voxel human perceptions.

“flat” curve in moving background suggests the response time for a single video

highly depends on the specific background within that video.

4.5. How does response time vary with action?

Figure 8 shows the response time for the eight different actions. From the trend of

the red curves in the figure, running and crawling get the shortest response time

while the flying action takes longest. Bimodality in crawling is likely due to the very

simple human baby crawling video (short response time) and very challenging cat

preying video (long response time; see Figure 9 for the example). The more general
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Animal_Running_Moving: 95% Correct Human_Eating_Static: 100% Correct

Animal_Flying_Moving: 80% Correct Human_Climbing_Static: 75% Correct

Animal_Crawling_Moving: 20% Correct Human_Walking_Moving: 30% Correct 

Fig. 9. Visualization of videos with different levels of semantic retention in human perception
experiment. From top to bottom rows are videos picked from high, moderate, and low semantic

retention resepectively. Frames are uniformly sampled from each video. We notice that supervoxel

motion plays an important role in helping human observers locate the actor in a supervoxel seg-
mentation video, which is hard to see in the montages. Therefore, we encourage people to view

those videos in our project website for a better visualization.

messages behind these results are that those unusual actions such as human flying

take more time to get a response, and that those actions whose semantics have

been strongly retained (resulting in higher match statistics, Table 2) are generally

responded to more quickly than those whose semantics have less well been retained.
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DT HOG3D Action-Bank SSC-(Fine) SSC-(Median) SSC-(Coarse)
Actor 37.50% 37.50% 25.00% 51.65% 51.23% 54.52%
Action 18.75% 9.38% 21.88% 13.14% 10.11% 7.42%

Table 3. Overall machine classification accuracy. The leading score of each task is highlighted in
bold font.
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Fig. 10. Ranked classification accuracy on animal and human actors of different features.

4.6. Easy, moderate and hard videos of human perception

Finally, in Figure 9, we show montages of interesting videos, some with high action

semantic retention and others with moderate or low retention. These top cases have

distinct shape and motion properties that are readily transferred to the supervoxels;

in the case of the running dog, the lateral motion is very strong. In the bottom left of

retention examples, we see a cat crawling toward prey, but the cat is off-center from

the camera and the participants likely dismiss this small off-center motion as noise

for most of the video resulting in incorrect and slow responses. On the bottom right,

we see a human walking in the spinning wheel. The human is walking; the wheel

is spinning. There is likely semantic ambiguity here and further study is needed to

understand the level and impact of the ambiguity.

4.7. Machine Recognition Analysis

Overall Performance. Table 3 shows the overall machine classification accuracy.

Surprisingly, for actor classification, supervoxel shape context (SSC) gives much

higher accuracy than the others. We suspect the reason why the performance of

other features is worse than chance (50%) is because of a lack of discrimination in

the feature (e.g., action bank has only human-based templates), or a lack of sufficient

training samples in the data set. For action classificatoin, action bank achieves the

leading performance, which is probably due to the underlying high-level semantics

in the action templates. Note that the action classification by chance is 12.5%.

Actor. Figure 10 shows the ranked classification performance on individual actors
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Fig. 11. Ranked classification accuracy on eight actions separately. Note that DT* in the top-left
plot achieves 100% accuracy on climbing.

(animal and human). Overall, the performance of human actor is higher than animal

actor, which is similar to our findings of human perception in Section 4.1. For

human actor, the performance increases when supervoxels in a video become coarser.

We suspect that the shape information at coarser levels is cleaner than that at

finer levels for training a human classifier. However, it dose not hold for animal

actor, which we suspect is due to more irregular shapes of animals. Therefore more

sophisicated methods are needed for finding the right scales for fine grained actors.

Action. Figure 11 shows the classification performance on eight actions. Different

features have very different performance on actions. This is expected since the

different types of feature have very distinct foci in a video. For example, action

bank performs stably well for most of the actions, whereas DT has good performance

only on climbing, jumping and running, which suggests that motion based feature

is easier to capture unidirectional actions with limited training data. We also note

that although DT has better classification accuracy in Table 3, supervoxel shape

context achieves superior performance on more actions, such as crawling, eating,

flying, spinning and walking. We show examples of success (spinning) and failure

(running) cases of supervoxel shape context in Figure 12. We suspect the reason

why supervoxel shape context fails to capture the running action is because the

video only shows the upper body of the athlete.

In general, supervoxel shape context performs well on actor classification with a

54.52% accuracy at coarse level, but less well on action classification with a 13.14 %

accuracy at fine level. The supervoxel shape information is essential for discriminate

actors since animal and human are of very different shapes. Furthermore, more

sophisticated methods are needed to better capture the shape changing information
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Fig. 12. Examples of success (left) and failure (right) cases of using supervoxel shape context to
capture action.

which is crucial for action discrimination.

In summary, our experimental results demonstrate that the rich semantics in

supervoxel segmentation can be well used in machine recognition to achieve com-

petitive results when comparing with state of the art video level features. The overall

machine recognition of actor and action seems to follow the same trend as that of

human perception but more work needs to be done to get the machine recognition

models up to par with the humans in terms of recognition performance.

5. Conclusion

In this paper, we explore the degree to which actor and action semantics are retained

in video supervoxel segmentation. We design and conduct a systematic study to

answer a set of questions related to this semantic retention. Our experiment results

indicate strong retention of actor and action semantics: human perception achieves

82% accuracy on actor and 70% on action. Furthermore, this underlying semantics

in supervoxel segmentation can be well used in machine recognition tasks. The

supervoxel shape context achieves competitive results when comparing with state

of the art video level features, but it is still far away from human performance.

Our overall findings suggest that supervoxel segmentation is a rich decomposition

of the video content, compressing the signal significantly while retaining enough

semantic information to remain discriminative. The next challenge is to develop

better methods for representation of the supervoxels for machine modeling.
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[9] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu, “Action recognition by dense trajec-
tories,” in IEEE Conference on Computer Vision and Pattern Recognition, 2011.

[10] S. Sadanand and J. J. Corso, “Action bank: A high-level representation of activity in
video,” in IEEE Conference on Computer Vision and Pattern Recognition, 2012.

[11] C. Xu, C. Xiong, and J. J. Corso, “Streaming hierarchical video segmentation,” in
European Conference on Computer Vision, 2012.

[12] O. Amir, I. Biederman, and K. J. Hayworth, “Sensitivity to nonaccidental properties
across various shape dimensions,” Vision Research, 2012.

[13] K. Grill-Spector, “The neural basis of object perception,” Current opinion in neuro-
biology, 2003.

[14] J. F. Norman, F. Phillips, and H. E. Ross, “Information concentration along the
boundary contours of naturally shaped solid objects,” Perception, 2001.
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