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Abstract

Supervoxel hierarchies provide a rich multiscale decom-
position of a given video suitable for subsequent processing
in video analysis. The hierarchies are typically computed
by an unsupervised process that is susceptible to under-
segmentation at coarse levels and over-segmentation at fine
levels, which make it a challenge to adopt the hierarchies
for later use. In this paper, we propose the first method
to overcome this limitation and flatten the hierarchy into a
single segmentation. Our method, called the uniform en-
tropy slice, seeks a selection of supervoxels that balances
the relative level of information in the selected supervoxels
based on some post hoc feature criterion such as object-
ness. For example, with this criterion, in regions nearby
objects, our method prefers finer supervoxels to capture the
local details, but in regions away from any objects we pre-
fer coarser supervoxels. We formulate the uniform entropy
slice as a binary quadratic program and implement four dif-
ferent feature criteria, both unsupervised and supervised,
to drive the flattening. Although we apply it only to super-
voxel hierarchies in this paper, our method is generally ap-
plicable to segmentation tree hierarchies. Our experiments
demonstrate both strong qualitative performance and supe-
rior quantitative performance to state of the art baselines
on benchmark internet videos.

1. Introduction
In recent years, segmentation has emerged as a plausible

first step in early processing of unconstrained videos, with-
out needing to make an assumption of a static background
as earlier methods have [10]. For example, the key segments
work [19] proposes a method to take frame-by-frame super-
pixel segmentations and automatically segment the domi-
nant moving actor in the video with category independence.
Recent works in video segmentation generate spatiotempo-
rally coherent segmentations relatively efficiently by meth-
ods like point trajectory grouping [6, 15, 21], superpixel
tracking [4, 29, 32], probabilistic methods [1, 7, 18], su-
pervoxels by minimum spanning trees [16, 33, 34], or com-
positing multiple constituent segmentations [22, 26].
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Figure 1. The uniform entropy slice (UES) selects supervoxels
from multiple hierarchical levels in a principled way to balance
the amount of information contributed by each selected super-
voxel, according to some feature criterion (motion in this fig-
ure). UES Selection shows what levels are used and UES Flat-
tening shows the final supervoxel output. Here, UES avoids over-
segmentation of the background (present in Levels 1 and 2) and
under-segmentation of the dancers (present in Levels 4 and 5);
even just Level 3 joins the dancers’ face with their shirts.

These advances in video segmentation have also been
thoroughly evaluated. Leveraging contributions in image
segmentation evaluation [3] and criteria for good video seg-
mentation [11], we have proposed the LIBSVX benchmark
[33], which implements a suite of six supervoxel algorithms
and tests them in a set of evaluation metrics with three video
datasets. Ultimately, it was determined that the two hi-
erarchical agglomerative methods, Grundmann et al. [16]
graph-based hierarchical method and Sharon et al. [27] seg-
mentation by weighted aggregation, perform best overall
due to the way in which multiscale region similarity was
reevaluated as the hierarchy was generated.

Despite these advances, hierarchical video segmentation
has not yet been actively adopted. The hierarchies con-
tain a rich multiscale decomposition of the video, but we
are unaware of a principled approach to make use of this
rich information by flattening it to a single non-trivial seg-
mentation. Trivial flattenings, by arbitrarily taking a level,
would carry over intrinsic limitations of the bottom-up su-
pervoxel methods, as Fig. 1 illustrates. For example, tak-
ing a low level would mean very many supervoxels (over-
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Input Video

UES on Motion (Selection)
Figure 2. Example of supervoxel hierarchy selection by UES with
a motion criterion on video boxers. The motion criterion drives the
algorithm to select finer levels of the hierarchy (brighter regions
on bottom row) on the dominant moving objects. The boxer on
the right and the head of the boxer on the left are being selected
from finer levels in the supervoxel hierarchy while the background
segments are from coarser levels in the hierarchy. The boxer on
the right (in an offensive posture) is moving much more than the
boxer on the left.

segmentation), taking a high level would mean salient re-
gions are missed (under-segmentation), but taking a mid-
dle level would over-segment in some regions but under-
segment in others. We believe this is the key limitation to
the adoption of supervoxels for early video analysis.

In this paper, we propose the first principled solution to
overcome this key limitation of flattening a supervoxel hi-
erarchy. Our emphasis is on video supervoxel hierarchies,
but the core contribution is generally applicable to image
and other segmentation hierarchies, given certain assump-
tions are met. Our approach includes a novel model—the
uniform entropy slice (UES)—and a formulation for effi-
ciently solving it via a binary quadratic program (QP). A
slice through the hierarchy is a flattened supervoxel seg-
mentation generally consisting of supervoxels from various
levels of the hierarchy. The uniform entropy slice seeks to
balance the amount of information in the selected supervox-
els for a given feature criterion, such as motion, in which
larger supervoxels from coarser-levels with less relative mo-
tion will be selected along with smaller supervoxels from
finer-levels with more relative motion. Such a criterion en-
ables us to pull out the most unique and dominant regions
in a supervoxel hierarchy as shown in Figure 2.

The feature criterion, which drives the uniform entropy
slice and hence the flattening, is independent of the super-
voxel hierarchy itself. We explore four different cases for
the feature criterion underlying the uniform entropy slice:
motion, object-ness, human-ness, and car-ness. Motion is
an unsupervised criterion that emphasizes relatively unique
motion of segments in the flattened hierarchy; the other
three are supervised criteria with object-ness based on the
category independent measure [2] and human- and car-ness
based on trained deformable parts models [13] from PAS-
CAL VOC [12]. The variability of these underlying feature
criteria and our ultimate findings demonstrate the high de-
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Figure 3. Illustration of the segmentation tree creation process. On
the top of the figure, left, middle and right are bottom-up levels in
a supervoxel hierarchy: T 1, T 2 and T 3 respectively. From left to
middle, V4 and V5 are merged together, and V3 remains itself as
V1 in the middle. From middle to right, V1 and V2 are merged
together to a single top node V0. The corresponding tree-graphs
are in the bottom row.

gree of versatility in the proposed method: indeed it can
take any form of a subsequent criterion and apply it to a
previously computed supervoxel hierarchy.

We have implemented and tested the uniform entropy
slice on top of the state of the art graph-based segmenta-
tion (GBH) [16] and segmentation by weighted aggregation
(SWA) [27] methods. Our quantitative comparison on the
SegTrack [28] dataset using the LIBSVX benchmark [33]
systematically finds that UES outperforms the natural base-
line of selecting a single level from the hierarchy as well
as the state of the art method, SAS [22], which combines
multiple segmentations. Our qualitative results demonstrate
numerous clear cases in which the flattened supervoxels are
precisely what is expected for various feature criteria, like
human-ness.

Our code as well as the two-actor videos are available
as part of the LIBSVX 3.0 software library, which is down-
loadable at http://www.cse.buffalo.edu/˜jcorso/
r/supervoxels/.

2. Supervoxel Hierarchy Flattening Problem

Let M denote a given video and consider it as a map-
ping from the 3D lattice Λ3 to the space of RGB colors.
Each element of Λ3 is a voxel. Based on some hierarchical
supervoxel algorithm, consider an h level hierarchical over-
segmentation of the video: T .

= {T 1, T 2, . . . , Th} and V i

is the node set in supervoxel level T i, i ∈ [1, h]. Individual
nodes are denoted by subscripts V is . The level superscript
for V is is dropped when the level is irrelevant. We let node
V0 be the root node of the supervoxel hierarchy T , and V 1

is the set of leaf nodes in T .
We consider only supervoxel hierarchies that are trees,

i.e., each node has one and only one parent (other than the
root) and each node has at least one child (other than the
leaves). Figure 3 shows the general creation process of
such a supervoxel tree; GBH generates such a tree. The
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Figure 4. Slices in the example supervoxel tree. (a) - (d) list all 4
possible slices of the segmentation tree (excluding the root node).
Each slice is highlighted as a thick black curve, and nodes on the
slice are darkened.

algorithm initially builds a 26-connected voxel lattice over
the whole video clip, then iteratively constructs a region
graph over the obtained segmentation based on the min-
imum spanning tree merging criterion [14], and forms a
bottom-up segmentation tree structure of the regions. The
regions are described by their local texture histogram. The
algorithm stops after a user-specified number of iterations.
The algorithm tends to preserve the important region bound-
aries in the hierarchical merging process. We show results
with both GBH and SWA, with a small modification of
SWA to turn its general graph hierarchy into a tree.

Define a tree slice as a set of nodes from the hierarchy
such that on each root-to-leaf path in the hierarchy, there
is one and only one node in the slice set. Each such slice
provides a plausible flattened hierarchy. If we combine all
the nodes in the slice, then we can obtain a new composed
segmentation of the original video from the hierarchical su-
pervoxels. Fig. 4 shows example tree slices for the seg-
mentation tree from the previous Fig. 3. The set of all tree
slices includes both trivial (e.g., just nodes from one level)
and non-trivial node selections. Note that we call this a tree
slice rather than a tree cut to distinguish it from conven-
tional use of the term cut, which generally indicates a set of
edges and not nodes as we have in the slice.

More formally, consider a binary variable xs for each
node Vs in the tree T . The binary variable xs takes value
1 if node Vs is a part of the slice and value 0 otherwise.
Denote the full set of these over the entire tree as x. Any
instance of x induces a selection of nodes in the tree T , but
not all instances of x are valid. For example, there are many
instances of x that will select both a node and its ancestor.
The trivial single-level selection is x(V i) = 1 and x(T \
V i) = 0.

In a valid slice, each root-to-leaf path in the segmenta-
tion tree T has one and only node being selected. We for-
mulate this constraint linearly. Let P denote a p by N bi-
nary matrix, where p = |V 1| is the number of leaf nodes in
T , and N = |T | is the total number of nodes in T . Each
row of P encodes a root-to-leaf path by setting the corre-
sponding columns for the nodes on the path as 1 and 0 oth-
erwise. Such a matrix enumerates all possible root-to-leaf
paths in T . Fig. 5 shows the path matrix P for our example
supervoxel tree from Fig. 3. There are three rows in the
path matrix P , which are the three root-to-leaf paths. The
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Figure 5. Supervoxel tree T and the corresponding path matrix P .
The path P2 is highlighted to illustrate the path matrix P in which
each row specifies a root-to-leaf path through the tree.

six columns of the path matrix P are the six nodes (includ-
ing the root node V0) in the segmentation tree T . We use
the path P2 to illustrate the values on a row of P—nodes
{V0, V2, V4} are on path P2.

For a given tree T , we compute the path matrix P by a
breadth-first search with complexity O(ph). The size of P
is tractable for typical videos: the number of rows is exactly
the number of leaves in the tree, which is either the number
of voxels or some number of supervoxels of the smallest
scale maintained in the tree (in the case the full tree is not
used); the number of columns is typically a factor of two on
the number of rows due to the agglomerative nature of the
supervoxel methods.

To ensure a tree slice is a valid, we have

Px = 1p , (1)

where 1p is an p-length vector of all ones. This linear con-
straint ensures that every root-to-leaf path (row of matrixP)
has one and only one node in the slice x. If there is more
than one node being selected in Pi, then Pix > 1. If there
is no node being selected in Pi, then Pix = 0. The valid
selection x is called a tree slice.

3. The Uniform Entropy Slice
The previous section presents the tree slice problem and

a linear constraint to assess the validity of a slice; here we
present a new model based on uniform entropy to quantify a
slice. The intuitive idea behind the uniform entropy slice is
that we want to select nodes in the tree that balance the in-
formation contribution to the overall slice. We are inspired
by the Uniform Frequency Images work of Hunter and Co-
hen [17]. Their model is proposed for image compression;
they automatically generate an invertible warping function
that downshifts the image’s highest spatial frequencies in
exchange for upshifting some of its lowest spatial frequen-
cies, producing a concentration of mid-range frequencies.
In other words, the compressed image is able to focus more
bits on the parts of the image that have a higher frequency
signal than those with a lower frequency signal.

In our case for supervoxel hierarchies, one can relate
finding the best slice in a hierarchy to such a compression
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Figure 6. Example hierarchy node entropy for the motion feature
criterion. (a) is the raw video girl from SegTrack, (b: coarse) – (h:
fine) are node entropy from various levels in the hierarchy. The
entropy color from dark blue to dark red maps entropy changing
from low to high (using the jet colormap in Matlab). Notice how
the entropy of the girls limbs is relatively higher than that of the
background for corresponding hierarchy levels.

problem; we want a slice that is able to retain the greatest
amount of information relative to the number of selected
supervoxels: select bigger supervoxels from coarse levels
when there is little information content and conversely, se-
lect smaller supervoxels from fine levels when there is high
information content.

Information content is specified relative to a certain fea-
ture criterion, such as motion or human-ness. We specify
four such feature criteria later in Sec. 3.2 and experiment
with them in Sec. 4. For the current discussion, assume
we have a feature criterion F(·) that maps a node Vs to a
discrete distribution over the feature range. For example,
consider an unsupervised motion feature criterion in which
we want the slice to focus on regions of the video that are
moving uniquely relative to the rest of the video—e.g., a
girl running leftward while the camera slowly pans as in
Fig. 6. In this case, we compute optical flow over the video
and then compute a bivariate discrete distribution over a set
of flow magnitudes and flow directions for F .

The information content of each node Vs in the hierarchy
is computed by the entropy over F(·):

E(Vs)
.
= −

∑
γ

PF(Vs)(γ) logPF(Vs)(γ) , (2)

with γ varying over the bivariate discrete feature range.
We next propose the uniform entropy objective, which

considers the node information content according to Eq. 2
and seeks a tree slice that balances the overall information
content of the selected nodes. Again, consider a valid tree
slice x which is a vector of binary variables with one xs for
each node Vs in the hierarchy taking value 1 if the node is
on the slice and 0 otherwise. The uniform entropy objective
hence seeks a valid tree slice that minimizes the difference
in entropy of selected nodes:

x∗ = arg min
∑

Vs,Vt∈T
|E(Vs)− E(Vt)|xsxt . (3)

where the minimization is over valid tree slices x.
The intuition behind the uniform entropy objective is

twofold. First, in a common case, the entropy of a super-
voxel in coarser levels of the hierarchy drops down when
the segment breaks up into smaller pieces at finer levels.
Again consider Fig. 6, which shows the node entropy for a
motion feature criterion on the video girl from the SegTrack
dataset [28]. It is clear that the node entropy generally de-
creases from coarser to finer levels, and those informative
supervoxels (the girl in this case) have overall more mo-
tion entropy than the background. It is hence plausible the
slice will select nodes around the girl at finer levels to match
similar motion entropies to the background at coarser lev-
els in the hierarchy. Second, regions of the video that are
salient for the specified feature criterion tend to have higher
entropy than non-salient regions because of articulation and
variability of the features near the salient region boundaries.
Hence, when selecting the supervoxels, our goal is to pre-
serve the detail in the segmentation of these salient regions
and less so in the non-salient regions.

3.1. Uniform Entropy Slice as a Binary QP

Directly minimizing Eq. 3 is complex because it requires
enumerating all valid tree slices and includes a degenerate
minimum which selects the root node only. We instead re-
formulate the objective as the following binary quadratic
program, which we call the uniform entropy slice.

minimize
∑
s

αsxs + σ
∑
s,t

βs,txsxt (4)

subject to Px = 1p

x = {0, 1}N

where αs forms a vector with length equal to N , βs,t is
an entry in an N by N matrix, and σ controls the balance
between the two terms. Note the Px = 1p slice validity
constraint from Eq. 1. Furthermore, note that there is no ex-
plicit notion of neighborhood in the uniform entropy slice,
but βs,t can be specified based on the neighborhood struc-
ture in the tree.

The linear term makes the slice prefer simpler segmenta-
tions when possible, i.e., prefer coarser levels in the hierar-
chy rather than finer levels in the hierarchy. The following
is the unary potential we set:

αs = |V i| if Vs ∈ V i , (5)

where |V i| means the total number of supervoxels in ith
level of the tree. In typical supervoxel trees, there is a
quadratic relationship between |V i| and |V i+1| due to al-
gorithm construction.

The quadratic term implements the uniform entropy ob-
jective

βs,t = |E(Vs)− E(Vt)||Vs||Vt| (6)
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Figure 7. Different feature criteria focus on different parts of the
video dancers. Here, the motion feature focuses mostly on the
dominant man in front and some attention to the woman in the
back. On the other hand, the human-ness criterion focuses on both
dancers, while the object-ness also focuses on the chairs in the
back. All these feature criteria try to avoid under-segmentation of
interesting objects as shown in the top level in GBH (the woman
merged with the door and bench in the back), and maintain a
uniform clean background. In the UES Selection images (left
two columns), the dark red to dark blue means the finer levels to
coarser levels in the supervoxel hierarchy tree.

where |Vs| and |Vt| denote the volume of the supervoxels Vs
and Vt respectively. Although nodes in the coarser levels of
the tree have relatively higher entropy than nodes in the finer
levels, the number of coarser level nodes is dramatically less
than those in the finer levels. By adding the volume factors,
we push the selection down the hierarchy unless a uniform
motion entropy has already been achieved. Indeed this be-
havior has generally been observed in our quantitative and
qualitative experiments. See, for example, the level of the
hierarchy selection for the video girl in Fig. 9 in Sec. 4.

We solve the QP using a standard solver (IBM CPLEX),
but note that other approaches to solving it are plausible,
such as spectral relaxation [20].

3.2. Feature Criteria

The uniform entropy slice operates directly on a su-
pervoxel hierarchy that was computed by an unsupervised
method such as GBH. However, the feature criteria, which
drive the tree slice optimization, provide a doorway to ap-
ply situation-specific guidance post hoc. To illustrate this
versatility, we describe four such feature criteria that span
the spectrum of unsupervised to class-specific supervised.
Each of these have been implemented and used in our ex-
periments (Sec. 4). In Figure 7, we show the different fea-
ture criteria on one video and observe how different slices
are computed with criterion-specific foci of attention.
Unsupervised: Motion. The motion feature criterion has
been discussed as an example earlier and we hence do not

describe it in detail here. For computing the feature we use
the Liu [23] optical flow method and compute flow on each
frame of the video. For the map F we discretize the range
to four magnitude bins and eight angular bins.
Supervised, Category-Independent: Object-ness. This
demonstrates a general category-independent, object-ness
feature, as it is common in problems like video object seg-
mentation [19]. We sample 1000 windows per frame using
[2] according to their probability of containing an object.
Then we convert this measure to per-pixel probabilities by
summing the object-ness score over all windows covering
a pixel, and normalizing the result over the video, which is
similar to [30]. We use six quantization levels for F .
Supervised: Human-ness and Car-ness. The last two fea-
ture criteria are class-specific and demonstrate further post
hoc flattening goals. We use the state of the art deformable
part based model [13] with previously trained PASCAL
VOC detectors to compute car-ness and human-ness. We
use a low detection threshold to get more detection bound-
ing boxes for each frame. Then, similar to object-ness, we
count the per-pixel detection hits to obtain a detection hit
map for each frame. We again set six quantization levels
for F .

4. Experiments
We evaluate the uniform entropy slice (UES) both quan-

titatively (Sec. 4.1) and qualitatively (Sec. 4.2) on various
benchmark and new, challenging unconstrained videos. To
explore the generality of UES, we apply it to supervoxel hi-
erarchies generated by two different methods, GBH [16] as
implemented in [33] and SWA [27] as implemented in [9].
For GBH, we construct a supervoxel tree directly from its
output supervoxel hierarchy, since the method itself gener-
ates a tree structure. For SWA, we simplify the supervoxel
hierarchy, which is a general directed acyclic graph, to a
tree structure by taking the most dominant parent for each
child node and denote this variant of SWA as SWAT .

The most important parameter in UES is the ratio σ be-
tween the linear and quadratic terms. However, we have
observed that, in practice, the relative hierarchy selection of
supervoxels is not very sensitive to it. We L-1 normalize
both of these terms and in our quantitative experiments, we
empirically set σ = 10 for all the videos.

4.1. Quantitative Evaluation

Benchmark and Dataset. We use the recently published
supervoxel benchmark LIBSVX [33] to evaluate the UES
with GBH and SWAT methods. The benchmark provides
six supervoxel methods and a set of supervoxel evaluation
metrics. We use the SegTrack dataset from Tsai et al. [28],
which provides a set of human-labeled single-foreground
objects with six videos stratified according to difficulty on
color, motion and shape.
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SWAT Flattening GBH Flattening

BASE SAS UES BASE SAS UES BASE SAS UES BASE SAS UES BASE SAS UES BASE SAS UES BASE SAS UES BASE SAS UES
birdfall2 9.0 0.0 69.7 36.8 38.3 26.5 82.1 81.9 84.9 0.66 0.65 0.70 1.8 0.0 53.8 26.9 27.1 23.2 74.3 74.0 82.1 0.83 0.83 0.94
cheetah 0.0 0.0 0.0 47.4 47.4 47.4 65.7 65.7 65.7 1.93 1.93 1.93 30.2 30.2 39.4 31.7 32.4 34.1 78.3 79.3 75.3 1.42 1.43 1.60

girl 56.4 55.9 56.1 7.8 8.2 5.9 56.6 56.5 57.7 3.36 3.39 3.31 41.9 45.6 41.9 11.2 11.1 13.7 54.4 54.1 58.1 2.90 2.91 3.94
monkeydog 0.0 0.0 0.0 52.0 52.2 51.9 84.9 86.8 86.7 3.32 3.12 3.35 71.9 79.9 79.9 37.1 36.6 43.2 90.7 90.9 91.0 2.55 2.47 2.95

parachute 83.7 85.5 90.3 23.6 24.4 22.3 93.2 93.0 94.6 1.66 1.69 1.72 89.4 89.4 89.4 38.6 38.6 38.6 87.4 87.4 87.4 10.0 10.0 10.0
penguin 94.7 94.4 94.4 1.8 1.9 1.8 73.7 72.3 71.0 1.36 1.37 1.27 84.7 83.1 85.0 2.2 1.9 1.8 66.7 65.4 65.5 1.10 0.96 0.88

AVERAGE 40.6 39.3 51.8 28.2 28.7 26.0 76.0 76.0 76.8 2.05 2.03 2.05 53.3 54.7 64.9 24.6 24.6 25.8 75.3 75.2 76.6 3.14 3.11 3.39

Video 3D ACCU 3D UE 3D BR 3D BP3D ACCU 3D UE 3D BR 3D BP

Table 1. Quantitative comparison of UES against the other two baseline methods on SegTrack dataset. We evaluate on two different
hierarchical supervoxel methods: SWAT and GBH. The leading scores of each metric per video are in bold font.

Baseline Methods. We compare with two baseline meth-
ods. The first is a simple trivial slice that takes a single
level from the hierarchy, which we denote as “Base” in Ta-
ble 1. Another method is a video extension of Segmenta-
tion by Aggregating Superpixels (SAS) [22], which com-
posites multiple segmentations together based on bipartite
graph matching. It achieves state-of-the-art performance on
the image Berkeley Segmentation Database [25]. To the
best of our knowledge, we are not aware of other video su-
pervoxel selection algorithms. The number of supervoxels
from the input hierarchy varies from less than 10 to about
800. For fair comparison, we feed SAS and UES with the
unsupervised motion feature only. The scores in Table 1 are
generated for the same number of supervoxels for all three
methods per video. The scores of “Base” are generated by
linear interpolation of nearby levels as in [33].

3D Segmentation Accuracy measures the average per-
centage area of the ground-truth segments being correctly
segmented by the supervoxels. 3D Undersegmentation Er-
ror measures the fraction of voxels that go beyond the
boundary of the ground-truth when mapping the supervox-
els onto it. Along with 3D Boundary Recall, we add 3D
Boundary Precision as a new metric. Overall, the proposed
UES achieves better performance for both SWAT and GBH
supervoxel hierarchies than the other two baseline meth-
ods, and in some cases, such as 3D ACCU the improve-
ment is significant for both methods. We note that neither
the baseline one level selection nor the SAS can correctly
segment the video “birdfall2” with only a small number of
supervoxels. In some cases, such as the video “cheetah” us-
ing SWAT , the scores are frequently the same for the three
methods; this is a failure case of the overall supervoxel hi-
erarchies, which we have observed to have little variation in
supervoxels covered on the object at multiple levels in the
hierarchy.

4.2. Qualitative Evaluation

UES on Motion. Figure 8 is an example video showing
that UES can help avoid foreground under-segmentation
and background over-segmentation. UES selects the coarse
levels of the hierarchy for the background when doing so
does not lead to foreground segments leaking, as in GBH.

Input Video GBH

UES Flattening GBH (Selection & Flattening)

UES Flattening SWA (Selection & Flattening)

SWA

LeakOK

OK OK

OK
OK

Figure 8. UES helps avoid foreground under-segmentation and
background over-segmentation on video birdfall2. GBH and SWA
on the top row show the middle levels from each hierarchy. A
white circle means the bird has no segmentation leak, whereas a
white rectangle means a segmentation leak with the surrounding
tree branches. Here, we use the motion criterion.

Similarly, UES pushes the foreground and the correspond-
ing leaking parts of the video down to the finer levels of the
SWA hierarchy, while it still keeps the other background
regions in the coarser levels of hierarchy.
UES vs. Baselines. In Figure 9, the girl is running leftward,
and the camera is also slowly moving leftward. The position
of the girl in the video does not change much, but the pose
changes drastically. The articulated pose generates more
motion entropy over time than the surroundings do, which
also allows UES to focus on the girl, as shown on the right
half of the figure with both motion and object-ness criteria.
In contrast, a simple selection of a middle level from GBH
gives a quite fragmented background. If we take a coarser
level of the hierarchy, then the girl is merged too much with
the grass in background. SAS does merge the supervoxels,
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Input Video Middle level GBH

UES on Motion (Selection & Flattening)SAS Output

UES on Object-ness (Selection & Flattening)

Figure 9. Comparison of UES against baseline methods on video
girl from SegTrack. UES on Motion and SAS (based on motion)
have identical number of supervoxels in their final outputs. We
also show a simple selection of the middle level from GBH as
well as UES on Object-ness for comparison.

Input Video Motion (Selection) Object-ness (Selection & Flattening)

Figure 10. UES on Object-ness selects the parachute segments and
the human, while UES on Motion fails.

but it lacks a focus on selection.
Object-ness vs. Motion. Sometimes, the motion criterion
fails when the rigid objects have same motion as the camera
in a video, or in a video with chaotic motion. The object-
ness can better handle the above situations. We show an
example in Figure 10, where the motion completely fails to
select the rigid object parachute, because the motion of it is
uniform over the video (from left to right) with the camera.
However, with the object-ness criteria, the algorithm can
easily select it from the lower levels in the hierarchy. The
supervoxels in the top part of the object-ness selection im-
age may seem to be errors, but indeed, these are expected:
the parachute moves from left to right across the light and
these selected supervoxels touch it at an earlier frame when
it was passing by.
Human-ness and Car-ness. Recall that Figure 7 shows
an example of how different feature criteria drive the algo-
rithm to focus on different parts of a video. The top level
hierarchy in GBH mistakes the woman in the left with the
door and bench in the background. With the motion crite-
rion, UES selects the man in the front from a finer level than
the woman in the back, since the man is the most dynam-
ically moving part of the video. Interestingly, the human-
ness focuses on the two dancers while the object-ness not
only focuses on the two dancers but also on the chairs in the
back. Figures 11 and 12 further demonstrate examples of
the supervised feature criteria in comparison to the motion
criterion; in both cases the unsupervised motion criterion
slices as well as the trained feature criterion suggesting the
unsupervised measure may be as useful as the trained ones,
at least in cases of relatively static backgrounds.

UES on Motion (Selection & Flattening)

UES on Human-ness (Selection & Flattening)Input Video

Figure 11. UES on Motion and Human-ness on video danceduo.

Input Video

UES on Motion (Selection and Flattening)

UES on Human-ness (Selection and Flattening)

UES on Car-ness (Selection and Flattening)

Figure 12. UES on Motion, Human-ness and Car-ness on video
nocountryforoldmen from [16]. For Motion and Human-ness, the
moving man is selected from the finer levels, while most others are
from coarser levels. For car-ness, the car and nearby regions are
selected from finer levels. The red selection around the window is
to avoid leaks.

5. Discussion and Conclusion

Summary. Supervoxel segmentation has gained poten-
tial as a first step in early video processing due to recent
advances in hierarchical methods [16], streaming meth-
ods [34] and related evaluations [33]. However, the high-
performing methods generate a hierarchy of supervoxels
that often renders the user with more questions than at the
outset due to the intrinsic limitations of unsupervised group-
ing. We have proposed the first principled method to flatten
the hierarchy, called the uniform entropy slice (UES). Our
method seeks to balance the level of information across the
selected supervoxels: choose bigger supervoxels in uninter-
esting regions of the video and smaller ones in interesting
regions of the video. A post hoc feature criterion is used to
drive this information selection, and is independent of the
original supervoxel process. Our experiments demonstrate
strong qualitative and quantitative performance.
Generality. Although our paper has strictly discussed
video supervoxel hierarchies thus far, the proposed method
is general and can directly be applied to other segmentation
hierarchies, such as those on images [27] or even a hierar-
chical clustering on top of existing trajectories [6, 31], so
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long as two assumptions are met. First, the hierarchy must
be a tree (or adequately transformed into one as we did for
SWA in this paper). Second, a feature criterion can be de-
fined to drive the slice.
Implications to Related Video Problems. The proposed
uniform entropy slice makes it plausible to provide an ini-
tial supervoxel map for further processing in problems like
video object segmentation. In particular, every video object
segmentation method we are aware of [19, 24, 35] begins
with an over-segmentation (typically frame-level superpix-
els) and extracts a single moving foreground object. We ex-
pect our flattened output to provide a strong input for such
methods as the community moves from single to multiple
objects. Second, our method of using any feature criterion
is more general than the existing strictly object-ness crite-
rion that has thus far been used in video object segmenta-
tion. And, this has strong implications as the community
begins to consider semantic video segmentation on uncon-
strained videos, which is a relatively new problem in video
that has thus far focused on constrained videos [5, 8].
Limitations. The feature criterion is independent of the
supervoxel method. In some respects, this fact is a clear
benefit of the method, but it can also be considered a limita-
tion: there is no guarantee that the uniform entropy slice is
the optimal supervoxel segmentation for a given video and
feature criterion. In other words, since the supervoxel hier-
archy is computed independent of the feature criterion, its
segments may not coincide with the natural ones for a given
criterion. Our experiments demonstrate that for typical fea-
ture criteria this limitation is not critical, but further work is
needed to better understand the induced error for a feature
criterion-hierarchical supervoxel method pair.
Future Work. In the future, we plan to extend UES into
a streaming setting to handle longer videos [34]. A key hur-
dle to overcome will be the tractability of the subsequent
NP-hard quadratic program; we plan to pursue adequate ap-
proximations in this streaming case.
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