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Abstract:   Recognizing specific actions in video clips has been the 
main focus of current computer vision community. We move in a new, 
more general direction and ask the critical fundamental question:
What is action, how is action different from motion, and in a given 
image or video where is the action? The philosophical and visual 
characteristics of action lead us to define actionness: intentional 
bodily movement of biological agents (people, animals). In this paper, 
we propose the lattice conditional ordinal random field model that in-
corporates local evidence as well as neighboring order agreement to 
solve the general problem. 

Lattice Conditional Ordinal Random Field

Experiments
Action Recognition Status
Action Recognition Representation
The CV community has developed rich representations for action in video
 - local action features with bags-of-words framework
 --- spatio-temporal interest points, 
 --- trajectory-based representation,
 --- motion interchange patterns,
 - semantic action representation 
 --- action bank, ...
In all these methods, we can find two points:
 - What is an action?
The very notation of action has not been carefully defined or explicitly studied. In-
stead, action is defined implicitly by examples in a dataset.
 - Action = Motion?
Motion feature is the dominant part of action representation. What is the differ-
ence between action and motion?
Based on the discussion, we propose the notation of actionness to answer these 
two questions.

Actionness : What is an Action?
Action from the viewpoint of the philosophy
There are four aspects to define action: 
- action is what an agent can do; 
- action requires an intention; 
- action requires a bodily movement guided by an agent or agents;
- action leads to sides-effects.
Actionness
We define actionness as intentional bodily movement of biological agents. 
It is a subclass of general motion and a direct presentation of action. 
It provides a non-specific definition for action.
Here, we formulate the goal of ranking image/ video regions according to their ac-
tionness, or the degree to which an agent is doing intentional bodily movement 
within them.
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∑
φ(ri, rj , λij)

s.t. λij ∈ {0, 1}, P · Λ = U

Learning and Inference
Given the training data, we estimate the parameters  by MLE.
Inference on our lattice conditional ordinal random field is straightforward. 

Quantitative comparisons against baselines
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This is the �rst work 
on class-indepen-
dent action analysis 
and video parsing. 
There is still a long 
way to go. 

θ = (α, β)
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Problem Statement
Given an image/video data V, let R be a partitioning of V with n regions. 
The partitioning can easily be computed by rectilinear patches or cubes.
Define a predicate function indicating the local actionness ordering of any two 
regions. Our problem is to seek a valid ordering of regions, given the image/video 
V and its partitioning R under a local ordinal model. However, this problem is an in-
stance of the linear ordering problem, which is NP hard.

LCORF Model
In order to make the problem tractable, we relax the model to be a continuous CRF 
model and assign a real-valued variable for each region. So the strict ordering is a 
partial ordering such that . The relaxed model is written as

 

Partitioning and Annotation
To partition each sample and compute the lattice, we simply divide the image/ 
video into a rectilinear set of patches (cuboids). We developed an automatic 
scheme that requires one or more bounding boxes around the action region. 
Denote the set of bounding boxes as . pos() indicates the centroid of the 
region or the bounding box, and D() is the normalized Euclidead distance. The 
actionness score for region is as

Unary Term
The unary term scores the actionness for each region based on its evidence. 
- A trained AdaBoost classifier
--- Appearance information;
--- Spatial/ spatio-temporal information. 
- The non-parameteric generalized Hough voting. 
--- deal with underlying varied appearance of actionness; 
--- A codebook is learnt via k-means clustering and local appearance information.
--- The score map is computed as the mean over region hough scores 
The product of these two factors contributes to the measurment of evidence. The 
unary function is as follows

Pairwise Term
- This term enforces an ordering locally betwen two regions based on the ap-
peance information. 
- The local order preference is then computed by a trained AdaBoost classifier on 
the possible neighboring relations on the lattice.

The pairwise term penalizes the current actionness scores of two regions when 
they disagree with the predicated relationship from the classifier. 

Dataset: We apply the method on Stanford40, UCFSports and Hollywood1 (action 
happend clippers) action datasets, which includes the action bounding boxes. We 
split the data into training and testing data following the previous work.
Evaluation Protocol: mean average precision (mAP) is used to judge how well 
the actionness score agrees with the annotation. First, we score each patch / 
cuboid according to the intersection over union w.r.t. groundtruth (>= 0.5, positive). 
Then, PR curves are generated. Each test sample will generate an AP score, 
which is the area under the PR curve. mAP is the average of all the test samples. 
In all the experiments, we divide the image and video to 16×16 grids in space. For 
video data, the cuboid lasts 4 frames. 
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Table 1: Quantitative comparisons against baselines (mAP).

Stanford 40 UCF Sports HOHA
L-CORF 72.5 60.8 68.5
DPM [9] 85.6 54.9 60.8

RankSVM [14] 55.8 21.9 26.8
MBS [32] - 22.8 57.4

includes 430 videos with 8 actions, such as answer phone,
get out of a car and so on. This dataset is very challenging;
significant camera motion, rapid scene changes and back-
ground clutter are very common in the videos. Many ac-
tions are performed by multiple agents and involve the in-
teractions of them. The bounding boxes1 of actions in 392
videos are provided by [27]. In these videos, the clips with
interesting agents are selected to train and test all the meth-
ods.

For computing features, we use basic histograms of ori-
ented gradients (HOG) [4]. On video, we apply the HOG
frame-by-frame and the sum and the difference of HOG fea-
tures are used to represent each cuboid. We select only these
features to allow for a fair comparison between our method
and baselines, and to emphasize the power of the ordinal
random field. Our results show that we achieve a greater of
improvement of the proposed models better than the strong
baseline of ranking SVM [14], which was used in the ob-
jectness paper [7] (see below for a discussion).
Evaluation Protocol In order to evaluate the ranking per-
formance of different methods, we select the mean av-
erage precision (mAP) to judge how well the actionness
score agrees with the annotation. First, we score each
patch / cuboid according to the intersection over union w.r.t.
groundtruth (ie, if a patch overlaps the groundtruth by more
than 0.5 then it is scored as positive). Then, PR curves are
generated: a recall of k selects the top k ranked patches /
cuboids. For these k patches, we compute precision. Each
test sample will generate an AP score, which is the area un-
der the PR curve. mAP is the average of all the test samples.

We follow the protocol defined by Stanford 40 dataset to
assign the training and test examples. The splits for UCF
sports and HOHA datasets follows the previous work [20,
22]. In these datasets, we do not distinguish the categories
of actions, all the actions are considered as positive samples,
non-actions are considered as a negative samples. In all the
experiments, we divide the image and video to 16×16 grids
in space. For video data, the cuboid lasts 4 frames.

4.1. Comparisons with Baselines

Table 1 shows the quantitative comparisons of our L-
CORF method against baselines methods. This is the first

1http://vision.ucla.edu/˜raptis/action_part/
hoha1_annotations.tar

Figure 2: Visual examples of actionness on images from
Stanford 40. There are 8 examples (4× 2). For each exam-
ple, the left to right columns are original image, results of
L-CORF, DPM and Ranking SVM. DPM is able to effec-
tively detect the human in the image. However, L-CORF is
good at finding where where the action happens. The bot-
tom left image is not good result of our method.

paper on actionness, so our quantitative comparisons are
against relevant baseline methods that could have been used
in place of pieces of our method. We use the ranking SVM
[14] as a baseline since it was used in a similar visual rank-
ing problem (objectness) [7]. The ranking SVM used the
same features as our L-CORF method for this comparison.
In both the images and videos, there is a 15+% improvement
in our method. For an additional baseline on the video, we
apply the moving background subtraction (MBS) method
from Shiekh et al. [32], which does not seek to differenti-
ate between general motion and action at all. As we would
expect it is unable to perform as well as our method, since
intentional motion does not equate to general motion. But it
does perform better than the ranking SVM method. This re-
sult is also an indicator of the important distinction between
motion and action. DPM is another important baseline for
both images and videos. It is the state of the art human de-
tector and can be viewed as a method to find actionness by
detecting agents. It achieves the best performance on Stan-
ford 40 dataset, so agent detection is useful for actioness
detection, although Stanford 40 has limited pose variability.
However, actionness detection is quite different from hu-
man detection. It does not perform as good as our method
on UCF Sports and HOHA datasets.

We show visual comparisons of our method for both im-
age and video datasets in Figures 2 and 3. We have selected
both good and bad cases for our method to present it fairly.
In these examples, DPM successfully locates the positions
of human, especially for the upright pedestrians, however,
some of these persons are not the ones doing the right ac-
tions. MBS is able to find the place where the motion is
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We then use the gradient descent algorithm to maximize
the log likelihood. By maximizing L(θ|Tr) with respect
to logα and β, the problem is transformed to an uncon-
strained optimization problem, allowing the direct applica-
tion of gradient descent. The derivative of L(θ|Tr) with
respect to logα and β are as follows:
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The partial derivative ∂ logZ[Rs]
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We incorporate these derivations into the gradient descent
algorithm to compute α and β according to Algorithm 1.
Inference Inference on our lattice conditional ordinal ran-
dom field is straightforward. Since it is a continuous model,
we apply the learned parameters and input the test data
(Ve,Re) into our model, for a direct solution:

ˆ

Ae = argmax

Ae

M(Ae|Ve,Re, α, β) . (15)

We can take the derivative of Eq. 15, set it equal to zero and
derive a closed form solution. Each region’s actionness is
then
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Algorithm 1: Learning Algorithm of L-CORF

1: Input: training data Tr, and its associated Actionness
score A = {As}ts=1

, maximal iteration Iter and learn-
ing rate η

2: Output: logα and β

3: for i = 1 to Iter do
4: for k = 1 to t do
5: Compute ∂L(θ|Tr)

∂ logα and ∂L(θ|Tr)

∂β by Eq 13

6: Update logα = logα+ η

∂L(θ|Tr)

∂ logα

7: Update β = β + η

∂L(θ|Tr)

∂β
8: end for
9: end for

3.6. Related Work in Linear Ordering

The linear ordering problem is an NP-hard combinatorial
optimization problem with a number of applications such
as archaeological seriation and aggregation of individual
preferences[13]. Based on the relation between objects to
be ranked, Cao et al. [3] proposes a ranking model for the
ordering problem in document retrieval setting. The ranking
SVM [14] proposes an svm-based ranking method. Both of
these two papers rely on local information only for ranking.
Kim and Pavlovic [16, 30] introduce a conditional ordinal
random field model for dynamic facial emotion prediction
and temporal segmentation. Unlike our lattice conditional
ordinal random field model, their method only works on the
chain-based graphical structure, e.g. temporal segmenta-
tion. Qin Tao et al. [26] also propose a continuous Ranking
CRF model. The motivation of the model is different from
ours and our binary term is more general.

4. Experiments

Data and Features We implement and test our method
L-CORF for actionness on both images and videos. For the
images, we use Stanford 40 Actions [40], and for videos,
we use UCF Sports [29] and Hollywood1 Human Action
(HOHA) datasets [22]. Actionness is a new problem; all of
these datasets were previously used for action recognition,
but they include action bounding boxes and this is what we
use for actionness.

The Stanford 40 Action Dataset contains 9532 images of
humans performing 40 diverse daily actions, such as rid-
ing a bike, playing with guitar and so on. In each im-
age, a bounding box of the person performing the action
is provided. All these images come from web resources.
The UCF Sports dataset contains 150 videos from 10 action
classes, such as diving, golf swinging, walking and so on.
The videos are taken from sports broadcasts. The bound-
ing boxes of actions are provided in [38]. HOHA dataset
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