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Abstract

Supervoxel segmentation has strong potential to be in-
corporated into early video analysis as superpixel segmen-
tation has in image analysis. However, there are many
plausible supervoxel methods and little understanding as to
when and where each is most appropriate. Indeed, we are
not aware of a single comparative study on supervoxel seg-
mentation. To that end, we study five supervoxel algorithms
in the context of what we consider to be a good supervoxel:
namely, spatiotemporal uniformity, object/region boundary
detection, region compression and parsimony. For the eval-
uation we propose a comprehensive suite of 3D volumetric
quality metrics to measure these desirable supervoxel char-
acteristics. We use three benchmark video data sets with
a variety of content-types and varying amounts of human
annotations. Our findings have led us to conclusive evi-
dence that the hierarchical graph-based and segmentation
by weighted aggregation methods perform best and almost
equally-well on nearly all the metrics and are the methods
of choice given our proposed assumptions.

1. Introduction
Images have many pixels; videos have more. It has thus

become standard practice to first preprocess images and
videos into more tractable sets by either extraction of salient
points [32] or oversegmentation into superpixels [31]. The
preprocessing output data—salient points or superpixels—
are more perceptually meaningful than raw pixels, which
are merely a consequence of digital sampling [31]. How-
ever, the same practice does not entirely exist in video anal-
ysis. Although many methods do indeed initially extract
salient points or dense trajectories, e.g., [20], few methods
we are aware of rely on a supervoxel segmentation, which is
the video analog to a superpixel segmentation. In fact, those
papers that do preprocess video tend to rely on a per-frame
superpixel segmentation, e.g., [21], or use a full-video seg-
mentation, e.g., [15].

The basic position of this paper is that supervoxels have
great potential in advancing video analysis methods, as su-
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Figure 1. We comparatively evaluate five supervoxel methods on
3D volumetric metrics that measure various desirable characteris-
tics of the supervoxels, e.g., boundary detection.

perpixels have for image analysis. To that end, we perform
a thorough comparative evaluation of five supervoxel meth-
ods; note that none of these methods had been proposed
intrinsically as a supervoxel method, but each is either suf-
ficiently general to serve as one or has been adapted to serve
as one. The five methods we choose—segmentation by
weighted aggregation (SWA) [6, 33, 34], graph-based (GB)
[10], hierarchical graph-based (GBH) [15], mean shift [29],
and Nyström normalized cuts [11, 12, 35]—broadly sam-
ple the methodology-space, and are intentionally selected
to best analyze methods with differing qualities for super-
voxel segmentation (see Figure 1 for examples). For exam-
ple, both the SWA and the Nyström method use the nor-
malized cut criterion as the underlying objective function,
but SWA minimizes it hierarchically whereas Nyström does
not. Similarly, there are two graph-based methods that opti-
mize the same function, but one is subsequently hierarchical
(GBH). We note a similar selection of segmentation meth-
ods have been used in the (2D) image boundary comparative
study [1].

Our paper pits the five methods in an evaluation on a
suite of 3D metrics designed to assess the methods on basic
desiderata (Section 2.2), such as following object bound-
aries and spatiotemporal coherence. The specific metrics
we use are 3D undersegmentation error, 3D segmentation
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accuracy, 3D boundary recall, and explained variation. We
use three complementary video data sets to facilitate the
study (two of the three have hand-drawn object or region
boundaries). Our evaluation yields conclusive evidence
that two of the hierarchical methods (GBH and SWA) per-
form best and almost equally-well on nearly all the met-
rics (Nyström performs best on the 3D undersegmentation
error) and are the methods of choice given our proposed
metrics. Although GBH and SWA are quite distinct in for-
mulation and may perform differently under other assump-
tions, we find a common feature among the two methods
(and one that separates them from the other three) is the
manner in which coarse level features are incorporated into
the hierarchical computation. We thoroughly discuss com-
parative performance in Section 4 after presenting a theoret-
ical background in Section 2 and a brief description of the
methods in Section 3. Finally, to help facilitate the adoption
of supervoxel methods in video, we make the developed
source code—both the supervoxel methods and the bench-
mark metrics—and processed video results on the bench-
mark and major data sets available to the community.

2. Background
2.1. Superpixels

The term superpixel was coined by Ren and Malik [31]
in their work on learning a binary classifier that can seg-
ment natural images. The main rationale behind super-
pixel oversegmentation is twofold: (1) pixels are not natu-
ral elements but merely a consequence of the discrete sam-
pling of the digital images and (2) the number of pixels
is very high making optimization over sophisticated mod-
els intractable. Ren and Malik [31] use the normalized cut
algorithm [35] for extracting the superpixels, with contour
and texture cues incorporated. Subsequently, many super-
pixel methods have been proposed [22, 23, 26, 40, 43] or
adopted as such [5, 10, 41] and used for a variety of appli-
cations: e.g., human pose estimation [27], semantic pixel la-
beling [17, 37], 3D reconstruction from a single image [18]
and multiple-hypothesis video segmentation [39] to name a
few. Few superpixel methods have been developed to per-
form well on video frames, such as [8] who base the method
on minimum cost paths but do not incorporate any temporal
information.

2.2. What makes a good supervoxel method?

First, we define a supervoxel—the video analog to a su-
perpixel. Concretely, given a 3D lattice Λ3 (the voxels in
the video), a supervoxel v is a subset of the lattice v ⊂ Λ3

such that the union of all supervoxels comprises the lattice
and they are pairwise disjoint:

⋃
i vi = Λ3 ∧ vi

⋂
vj =

∅ ∀i, j pairs. Obviously, various image/video features may
be computed on the supervoxels, such as color histograms

and textons. In this initial definition, there is no mention
of certain desiderata that one may expect, such as locality,
coherence, and compactness. Rather than include them in
mathematical terms, we next list terms of this sort as desir-
able characteristics of a good supervoxel method.

We define a good supervoxel method based jointly on
criteria for good supervoxels, which follow closely from the
criteria for good segments [31], and the actual cost of gener-
ating them (videos have an order of magnitude more pixels
over which to compute). Later, in our experimental evalua-
tion, we propose a suite of benchmark metrics designed to
evaluate these criteria (Section 4.2).

Spatiotemporal Uniformity. The basic property of
spatiotemporal uniformity, or conservatism [26], encour-
ages compact and uniformly shaped supervoxels in space-
time [22]. This property embodies many of the basic
Gestalt principles—proximity, continuation, closure, and
symmetry—and helps simplify computation in later stages
[31]. Furthermore, Veksler et al. [40] show that for the case
of superpixels, compact segments perform better than those
varying in size on the higher level task of salient object seg-
mentation. For temporal uniformity (called coherence in
[15]), we expect a mid-range compactness to be most ap-
propriate for supervoxels (bigger than, say, five frames and
less than the whole video).

Spatiotemporal Boundaries and Preservation. The
supervoxel boundaries should align with object/region
boundaries when they are present and the supervoxel
boundaries should be stable when they are not present;
i.e., the set of supervoxel boundaries is a superset of ob-
ject/region boundaries. Similarly, every supervoxel should
overlap with only one object [23]. Furthermore, the su-
pervoxel boundaries should encourage a high-degree of ex-
plained variation [26] in the resulting oversegmentation. If
we consider the oversegmentation by supervoxels as a com-
pression method in which each supervoxel region is repre-
sented by the mean color, we expect the distance between
the compressed and original video to have been minimized.

Computation. The computation cost of the supervoxel
method should reduce the overall computation time re-
quired for the entire application in which the supervoxels
are being used.

Performance. The oversegmentation into supervoxels
should not reduce the achievable performance of the appli-
cation. Our evaluation will not directly evaluate this char-
acteristic (because we study the more basic ones above).

Parsimony. The above properties should be maintained
with as few supervoxels as possible [23].

3. Methods
We study five supervoxel methods—segmentation by

weighted aggregation (SWA) [6, 33, 34], graph-based (GB)
[10], hierarchical graph-based (GBH) [15], mean shift [29],



and Nyström normalized cuts [11, 12, 35]—that broadly
sample the methodology-space among statistical and graph
partitioning methods [1]. We have selected these five due
to their respective traits and their inter-relationships: for ex-
ample, Nyström and SWA both optimize the same normal-
ized cut criterion. We describe the methods in some more
detail below. We note that many other methods have been
proposed in the computer vision literature for video seg-
mentation, e.g., [2, 3, 14, 19, 24, 25, 39, 40, 41], but we do
not cover them in any detail in this study. We also do not
cover strictly temporal segmentation, e.g., [30].

Meanshift is a mode-seeking method, first proposed by
Fukunaga and Hostetler [13]. Comaniciu and Meer [5] and
Wang et al. [42] adapt the kernel to the local structure of the
feature points, which is more computationally expensive but
improves segmentation results. Original hierarchical mean
shift in video [7, 28] improves the efficiency of (isotropic)
mean-shift methods by using a streaming approach. The
mean shift algorithm used in our paper is presented by Paris
and Durand [29], who introduce Morse theory to interpret
mean shift as a topological decomposition of the feature
space into density modes. A hierarchical segmentation is
created by using topological persistence. Their algorithm is
more efficient than previous works especially on videos and
large images.

Graph-based. Felzenszwalb and Huttenlocher [10] pro-
pose a graph-based algorithm for image segmentation; it is
arguably the most popular superpixel segmentation method.
Their algorithm runs in time nearly linear in the number of
image pixels, which makes it suitable for extension to spa-
tiotemporal segmentation. Initially, each pixel, as a node,
is placed in its own region R, connected with 8 neighbors.
Edge weights measure the dissimilarity between nodes (e.g.
color differences). They define the internal difference of
a region Int(R) as the largest edge weight in the mini-
mum spanning tree of R. Traversing the edges in a non-
decreasing weight order, the regions Ri and Rj incident to
the edge are merged if the current edge weight is less than
the relaxed minimum internal difference of the two regions:

min(Int(Ri) + τ(Ri), Int(Rj) + τ(Rj)) , (1)

where τ(R) = k/|R| is used to trigger the algorithm and
gradually makes it converge. k is a scale parameter that
reflects the preferred region size. The algorithm also has
an option to enforce a minimum region size by iteratively
merging low-cost edges until all regions contain the min-
imum size of pixels. We have adapted the algorithm for
video segmentation by building a graph over the spatiotem-
poral volume, in which voxels are nodes connected with 26
neighbors in 3D space-time. One challenge in using this
algorithm is the selection of an appropriate k for a given
video, which the hierarchical extension (next) overcomes.

Hierarchical graph-based video segmentation algo-

rithm is proposed by Grundmann et al. [15]. Their al-
gorithm builds on an oversegmentation of the above spa-
tiotemporal graph-based segmentation. It then iteratively
constructs a region graph over the obtained segmentation,
and forms a bottom-up hierarchical tree structure of the re-
gion (segmentation) graphs. Regions are described by local
Lab histograms. At each step of the hierarchy, the edge
weights are set to be the χ2 distance between the Lab his-
tograms of the connected two regions. They apply the same
technique as above [10] to merge regions. Each time they
scale the minimum region size as well as k by a constant
factor s. Their algorithm not only preserves the important
region borders generated by the oversegmention, but also
allows a selection of the desired segmentation level, which
is much better than directly manipulating k to control region
size.

Nyström. Normalized Cuts [35] as a graph partitioning
criterion has been widely used in image segmentation. A
multiple eigenvector version of normalized cuts is presented
in [11]. Given a pairwise affinity matrix W , they compute
the eigenvectors V and eigenvalues Λ of the system

(D−1/2WD−1/2)V = V Λ , (2)

where D is a diagonal matrix with entries Dii =
∑

j Wij .
Each voxel is embedded in a low-dimensional Euclidean
space according to the largest several eigenvectors. The
k-means algorithm is then be used to do the final parti-
tioning. To make it feasible to apply to the spatiotempo-
ral video volume, Fowlkes et al. [12] use the Nyström ap-
proximation to solve the above eigenproblem. Their pa-
per demonstrates segmentation on relatively low-resolution,
short videos (e.g., 120 × 120 × 5) and randomly samples
points from the first, middle, and last frames.

SWA is an alternative approach to optimizing the nor-
malized cut criterion [6, 33, 34] that computes a hierarchy
of sequentially coarser segmentations. The method uses
an algebraic multigrid solver to compute the hierarchy effi-
ciently. It recursively coarsens the initial graph by selecting
a subset of nodes such that each node on the fine level is
strongly coupled to one on the coarse level. The algorithm
is nearly linear in the number of input voxels, and produces
a hierarchy of segmentations, which motivates its extension
to a supervoxel method.

4. Experiments and Discussion
4.1. Experiment Setup and Data Sets

We compare the above five methods as fairly as possible.
Each method is only allowed to use two feature cues: lo-
cation (x, y, t) and color space. However, each method has
its own tunable parameters; we have tuned these parameters
strictly to achieve a certain desired number of supervoxels
for each video in our study. In our experiments, GB is set



based on per-video and per-supervoxel-number; Meanshift
is set based on per-video; Nyström, GBH, and SWA are set
based on per-data-set. Following the above setup, we have
computed the segmentation results for each video but with
a distribution of supervoxel numbers varying from less than
200 to more than 900. To facilitate comparison of the meth-
ods for each data set, we use linear interpolation to estimate
each methods’ metric outputs densely. In order to run all
the experiments in reasonable time and memory, the input
video resolution is scaled to 240× 160.

However, even with the above setup, the Nyström
method is still not scalable as the number of supervoxels
or the length of video increases. Recall that the Nyström
method can be viewed as 3 steps: (1) building the affinity
matrix; (2) Nyström computing and; (3) k-means cluster-
ing. Sampling too many points makes the Nyström method
require too much memory, while sampling too few gives
unstable and low performance. Meanwhile, the ordinary
k-means clustering algorithm is sufficient for a video seg-
mentation with few clusters, but a more efficient clustering
method is expected in a supervoxel method. In our experi-
ment, we generate results using Nyström method with less
than 500 supervoxels.

Implementation. We have independently implemented
all methods except for the Meanshift method, for which we
use source code provided on the authors’ website (http:
//people.csail.mit.edu/sparis/#code). The SWA
implementation is based on our earlier 3D-SWA work in
the medical imaging domain [6]. The complete supervoxel
library, benchmarking code, and documentation is avail-
able for download at http://www.cse.buffalo.edu/
˜jcorso/r/supervoxels/. Various supervoxel results
on major data sets in the community (including the three
in this paper) are also available at this location to allow for
easy adoption of the supervoxel results by the community.

Data sets. We use three video data sets for our experi-
mental purposes, with varying characteristics. The first data
set is SegTrack from Tsai et al. [38] and provides a set
of human-labeled single-foreground objects with the videos
stratified according to difficulty on color, motion and shape.
SegTrack has six videos, an average of 41 frames-per-video
(fpv), a minimum of 21 fpv and a maximum of 71 fpv.

The second data set is from Chen et al. [4] and is a subset
of the well-known xiph.org videos that have been supple-
mented with a 24-class semantic pixel labeling set (the same
classes from the MSRC object-segmentation data set [36]).
The eight videos in this set are densely labeled with seman-
tic pixels and have an average 85 fpv, minimum 69 fpv and
maximum 86 fpv. This data set allows us to evaluate the
supervoxel methods against human perception.

The third data set is from Grundman et al. [15] that
comprises 15 videos of varying characteristics, but predom-
inantly with a small number of actors in the shot. In order
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Figure 2. 3D undersegmentation error vs. number of supervoxels.
Left: the results on SegTrack data set. Right: the results on Chen’s
data set.

to run all the five supervoxel segmentation methods, we re-
strict the videos to a maximum of 100 frames (they have an
average of 86 fpv and a minimum of 31 fpv). Unlike the
other two data sets, this data set does not have a ground-
truth segmentation, which inspires us to further explore the
human independent metrics.

4.2. Metrics and Baselines

Rather than evaluating the supervoxel methods on a par-
ticular application, as [16] does for superpixels and image
segmentation, we directly consider all of the base traits de-
scribed in Section 2.2 at a fundamental level. We believe
these more basic evaluations have a greater potential to in-
form the community than those potential evaluations on a
particular application.

We note that some quantitative superpixel evaluation
metrics have been recently used in [22, 23, 26, 40, 43], but
all of them are frame-based 2D image metrics, which are
not suitable in our supervoxel measures. We extend those
most appropriate to validate our desiderata in 3D space-
time. Given a ground-truth segmentation into segments
g1, g2, ..., gm, and a video segmentation into supervoxels
s1, s2, ..., sn, here we propose a suite of the volumetric
video-based 3D metrics.

4.2.1 3D Undersegmentation Error (3D UE)

This metric measures what fraction of voxels exceed the
volume boundary of the ground-truth segment when map-
ping the supervoxels onto it.

UE(gi) =

[∑
{sj |sj∩gi 6=∅} Vol(sj)

]
− Vol(gi)

Vol(gi)
(3)

gives the 3D UE for a single ground-truth segment gi in the
video, where Vol is the segment volume. We take the av-
erage across all ground-truth segments in the video, giving
equal weight to all ground-truth segments.

Figure 2 shows the dependency of 3D UE on the num-
ber of supervoxels. GBH, SWA and Nyström have much

http://people.csail.mit.edu/sparis/#code
http://people.csail.mit.edu/sparis/#code
http://www.cse.buffalo.edu/~jcorso/r/supervoxels/
http://www.cse.buffalo.edu/~jcorso/r/supervoxels/
xiph.org


Boundary Disappears

i i + 1

Boundary Appears 3D Boundary

Video at frame i

Figure 3. A visual explanation of the distinct nature of 3D bound-
aries in video (please view in color). We overlap each frame to
compose a volumetric video, the green colored area which is a
part of girl in frame i should not be counted as a part of girl in
frame i + 1, similarly the red area which is a part of girl in frame
i+ 1 should not be counted as a part of girl in frame i. The lower
right graph shows the 3D boundary along the time axis (imagine
you are looking through the paper).

better performance than Meanshift and GB with fewer su-
pervoxels. When the number of supervoxels is more than
500, GBH and SWA almost have the same competitive per-
formance on both data sets. As the number of supervoxels
increases, Meanshift quickly converges, while GB is much
slower. Figure 8 shows SWA, GBH, and Nyström generate
more spatiotemporally uniform supervoxels than the other
two.

4.2.2 3D Boundary Recall (3D BR)

In the ideal case, one can imagine the 3D boundary as
the shape boundary of a 3D object, composed by surfaces.
However, given a video, the 3D boundary face is not that
smooth, since videos are actually discrete and voxels are
rectangular cubes. Therefore, the 3D boundary should not
only capture the 2D within-frame boundary but also the
between-frame boundary. Figure 3 shows a between-frame
boundary concept by using the ground-truth segment as an
example. It follows the concept that we have proposed in
Section 2.2. The 3D boundary recall metric measures the
spatiotemporal boundary detection: for each segment in the
ground-truth and supervoxel segmentations, we extract the
within-frame and between-frame boundaries and measure
recall using the standard formula (not included for space).

Figure 4 shows the dependency of 3D BR on the num-
ber of supervoxels. GBH and SWA again perform best in
3D BR. GB quickly converges toward GBH as the number
of supervoxels increases, since it serves as a preprocessing
step of GBH.
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Figure 4. 3D boundary recall vs. number of supervoxels. Left: the
results on SegTrack data set. Right: the results on Chen’s data set.
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Figure 5. 3D segmentation accuracy vs. number of supervoxels.
Left: the results on SegTrack data set. Right: the results on Chen’s
data set.

4.2.3 3D Segmentation Accuracy (3D ACCU)

This metric measures what fraction of a ground-truth seg-
ment is correctly classified by the supervoxels: each super-
voxel should overlap with only one object/segment as a de-
sired property in Section 2.2. For the ground-truth segment
gi, we assign a binary label to each supervoxel sj accord-
ing to the majority part of sj that resides inside or outside
of gi. Then we have a set of correctly labeled supervoxels
s1, s2, ..., sk. We define the 3D SA for gi with the fraction

ACCU(gi) =

∑k
j=1 Vol(s̄j ∩ gi)

Vol(gi)
. (4)

To evaluate the overall segmentation quality, we also take
the average of the above fraction across all ground-truth
segments in the video.

Figure 5 shows the dependency of 3D ACCU on the
number of supervoxels. GBH and SWA perform again bet-
ter than the other three methods on both data sets. Mean-
shift performs better on Chen’s data set than on SegTrack
because Chen’s data has full-scene segmentation that in-
cludes large relatively homogeneous background segments
(like sky) whereas the SegTrack data only segments out a
single foreground object.

4.2.4 Explained Variation

Explained Variation is proposed in [26] as a human-
independent metric—in other words, it is not susceptible to
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Figure 6. Explained variation metric (R2) vs. number of supervoxels on SegTrack, Chen and Gatech data sets, respectively.

variation in annotator perception that would result in dif-
ferences in the human annotations, unlike the other pro-
posed metrics. It considers the supervoxels as a compres-
sion method of a video described in Section 2.2.

R2 =

∑
i(µi − µ)2∑
i(xi − µ)2

(5)

sums over i voxels where xi is the actual voxel value, µ is
the global voxel mean and µi is the mean value of the vox-
els assigned to the supervoxel that contains xi. Erdum et al.
[9] observe a correlation between explained variation and
the human-dependent metrics for a specific object tracking
task; our results, which we discuss next, show a similar
trend, substantiating our prior use of the metrics based on
the human annotations.

Figure 6 shows the dependency of explained variation on
the number of supervoxels. SWA and GBH perform better
and more stably than the others, even with a relatively low
number of supervoxels. The performance of GB increases
dramatically and converges quickly as the number of su-
pervoxels increases. The performance of Nyström on these
three data sets further demonstrates our claim in Section 4.1
that the method is sensitive to the actual point sampling den-
sity.

4.2.5 Computational Cost

Our operating workstation is a Dual Quad-core Intel Xeon
CPU E5620 @ 2.4 GHz, 16Gb RAM running Linux. Figure
7 presents the average running time of each method over all
three data sets. Over all five methods, GB is the most effi-
cient in time and memory usage. Its running time for one
video does not significantly change as the number of su-
pervoxels increases. Meanshift is the second most efficient
method. Interestingly, neither Meanshift nor GB performs
best in any of the quality measures—there is an obvious
trade-off between the computational cost of the methods
and the quality of their output (in terms of our metrics). The
two slowest methods, GBH and SWA, consistently perform
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Figure 7. Comparison of the running time among all five meth-
ods with parameters set to output about 500 supervoxels, averaged
over all three data sets. The comparison is not exactly apples to
apples: the SWA and GBH methods output all layers of the hierar-
chy and the Nyström method is in Matlab whereas the others are
in C++. Nevertheless, the trend expounds the trade-off between
computational expense and quality of supervoxel output (i.e., the
GBH and SWA methods consistently perform best in our metrics
and have the longest running time).

best in our quality metrics. Despite the faster running time,
the memory consumption of SWA is nearly five times that
of GBH (yet it still fits in 16Gb of memory).

5. Discussion and Conclusion
We have presented a thorough evaluation of five super-

voxel methods on four 3D volumetric performance metrics
designed to evaluate supervoxel desiderata. Samples from
the data sets segmented under all five methods are shown in
Figure 8. We have selected videos of different qualities to
show in this figure. These visual results convey the overall
findings we have observed in the quantitative experiments.
Namely, two of the hierarchical methods (GBH and SWA)
perform better than the others at preserving object bound-
aries. The Nyström supervoxels are the most compact and
regular in shape and the SWA supervoxels observe a sim-
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Figure 8. Visual comparative results of the five methods on four videos (with roughly 500 supervoxels); top-left is from Gatech, bottom-left
is from Chen, and right-two are from SegTrack. A black line is drawn to represent human-drawn boundaries in those videos that have been
annotated; note for the SegTrack data set only one object has a boundary and for the Chen data set many regions have boundaries. Each
supervoxel is rendered with its distinct color and these are maintained over time. Faces have been redacted for presentation (the original
videos were processed when computing the segmentations). We recommend viewing these images zoomed on an electronic display.

ilar compactness but seem to adapt to object boundaries
better (recall that SWA and Nyström are both normalized
cut solvers). It seems evident that the main distinction be-
hind the better performance of GBH and SWA is the way in
which they both compute the hierarchical segmentation. Al-
though the details differ, the common feature among the two
methods is that during the hierarchical computation, coarse-
level aggregate features replace or modulate fine-level indi-
vidual features. None of the other three approaches use any
coarse-level features.

In this paper, we have explicitly studied the general su-
pervoxel desiderata and avoided any direct application for
scope. The obvious question to ask is how well will the

findings on these general metrics translate to application
specific ones, such as tracking and activity recognition.
A related additional point that we have not studied is the
application-specific trade-off between quality of the output
and the run-time of the method used to generate it. For ex-
ample, in real-time streaming applications, it may be that
GB or Meanshift strikes the appropriate balance. We plan
to study these important questions in future work.
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