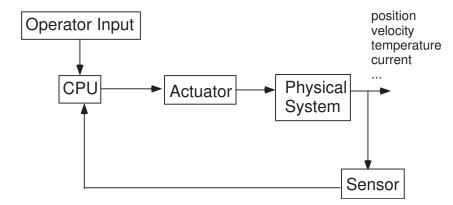
Feedback Systems

- Many embedded system applications involve the concept of feedback
- Sometimes feedback is *designed* into systems:



• Other systems have naturally occuring feedback, dictated by the physical principles that govern their operation

Feedback Systems

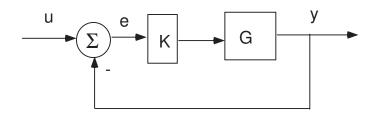
- Some examples we will see:
 - op-amp
 - motor equations: mechanical
 - motor equations: electrical
 - DC motor: back EMF
 - current controlled amplifier
 - velocity feedback control
- How many examples of feedback can you think of?

Issues with Feedback

- A feedback loop in a system raises many issues
 - requires a sensor!
 - changes gain
 - reduces effects of parameter uncertainty
 - may alter stability
 - changes both steady state as well as dynamic response
 - introduces phase lag
 - sensitive to computation/communication delay
- Detailed analysis (and design) of feedback systems is beyond the scope of our course, but we will need to understand these basic issues...

Feedback and Gain

• Using high gain in a feedback system can make output track input:



• feedback response:

$$y = \frac{KG}{1 + KG}u$$

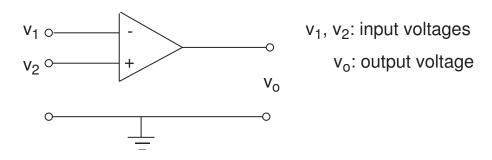
• error response:

$$e = \frac{1}{1 + KG}u$$

- high gain: as $K \to \infty$, $y \to u$ and $e \to 0$
 - "open loop gain": $|KG| \gg 1$
 - "closed loop gain": $|KG/(1 + KG)| \approx 1$
 - ⇒ we can make the output track the input even if we don;t know the exact value of the open loop gain!
- CAVEAT: only useful if system is stable!
 - for all but very simple systems, use of excessively high gain will tend to destabilize the system!
- a simple example where dynamics are usually ignored: op amp

Operational Amplifier (Op Amp)

 An op amp [2] is used in many electronics found in embedded systems. Hence it is of interest in its own right, as well as being a simple example of a feedback system



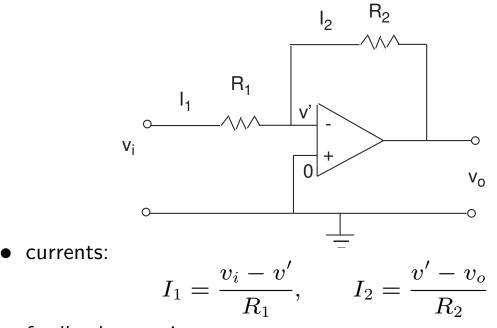
• output voltage depends on *difference* of input voltages

$$v_o = K(v_2 - v_1) = -K(v_1 - v_2)$$

- Typically $K \approx 10^5 10^6,$ but varies significantly due to manufacturing tolerances
- Ideal op amp
 - no current flows into input terminals
 - output voltage unaffected by load
- In reality
 - op amp is a low pass filter with very high bandwidth
 - draws a little current
 - is slightly affected by load
- we shall assume an ideal op amp

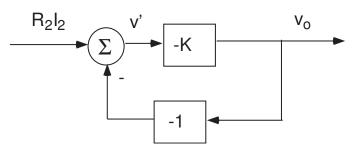
Inverting Amplifier, I

- Q: How to use the op amp as an amplifier given that gain is uncertain?
- A: Feedback!



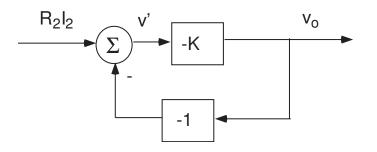
- feedback equations:
 - from previous page, v_o depends on v': $v_o = -Kv'$
 - v' depends on v_o : $v' = v_o + R_2 I_2$

 \Rightarrow



Inverting Amplifier, II

• Feedback diagram:



• Apply rule for transfer function of feedback system:

$$v_o = -\left(\frac{K}{1+K}\right)R_2I_2$$

• If K >> 1, then the feedback equations imply that

$$v_o \approx -R_2 I_2$$

• It further follows that $v' = v_o + R_2 I_2 \approx 0$. By assumption that the op amp draws no current, $I_1 = I_2$, and thus

$$v_o = -\left(\frac{R_2}{R_1}\right)v_i$$

 \Rightarrow Feedback allows us to use an op amp to construct an amplifier without knowing the precise value of K!

More Complex Feedback Examples

- to analyze op amp, we ignored dynamics and treated the op amp as a pure gain that was constant with frequency
- in general, dynamics cannot be ignored
 - transient response
 - stability
- Two examples where feedback arises from the physics
 - motor dynamics: mechanical
 - motor dynamics: electrical
- we shall discuss these examples, but we will first consider a simple case: feedback around an integrator

Integrator

• Equations of integrator

$$\dot{x} = u$$

 $x(t) = x(0) + \int_0^t u(\sigma) d\sigma$

- Examples:
 - u is velocity, x is position
 - u is acceleration, v is velocity
 - voltage and current through inductor: $I = \frac{1}{L} \int V dt$
 - voltage and current through capacitor: $V = \frac{1}{C} \int I dt$
- Integrator is an *unstable* system
 - the bounded input, u(t) = 1, yields the unbounded output

$$x(t) = x(0) + t$$

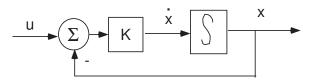
• Transfer function of an integrator

$$\int \Leftrightarrow \frac{1}{s}$$

 $\Rightarrow\,$ integrator has infinite gain at DC, s=0

Feedback Around an Integrator

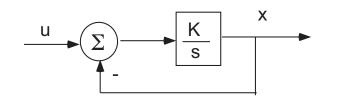
• Suppose there is feedback around integrator:



differential equation of feedback system

$$\dot{x} = -Kx + Ku$$

• Transfer function of feedback system:



$$X(s) = \left(\frac{K/s}{1 + K/s}\right)U(s) = \left(\frac{K}{s + K}\right)U(s)$$

• The system is *stable* if K > 0.

 \Rightarrow The response to the constant input u(t) = 1 yields

$$x(t) \to 1$$

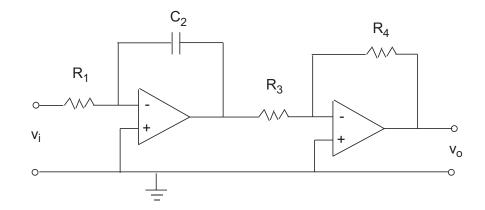
 $\dot{x}(t) \to 0$

independently of the value of K

EECS461, Lecture 7, updated September 24, 2008

Uses of an Integrator

- sometimes integrators arise from the physics
- other times they are constructed
 - to perform analog simulation of physical system
 - to add integral control to a system
- Op-amp integrator



- Transfer function:

$$v_o = \frac{R_4}{R_3} \frac{1}{R_1 C_2 s} v_i$$

- Can also implement integrator on a microprocessor
 - discrete simulations
 - digital control

Motor Equations, Mechanical

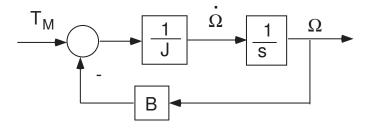
• equations of motion for shaft dynamics

$$J\dot{\Omega} = T_M - B\Omega$$

 $\dot{\Omega} = \left(\frac{1}{J}\right)T_M - \left(\frac{B}{J}\right)\Omega$

 $\Omega:$ shaft speed, $B\geq 0:$ friction coefficient, J>0: shaft inertia, $T_M:$ motor torque

• Feedback diagram



• Transfer function:

$$\Omega(s) = \frac{\frac{1}{sJ}}{1 + \frac{B}{sJ}} T_M(s) = \frac{1/B}{sJ/B + 1} T_M(s)$$

• Constant torque \Rightarrow speed goes to a steady state value:

$$\Omega_{ss} = T_M/B$$

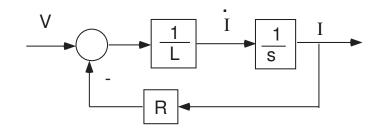
- NOTE: with no friction (B = 0), system is unstable!
 - constant torque implies $\Omega(t) \to \infty$

Motor Equations, Electrical

• equations of armature winding (ignoring back emf)

$$L\dot{I} = V - RI$$
$$\dot{I} = \left(\frac{1}{L}\right)V - \left(\frac{R}{L}\right)I$$

I: current, R: resistance, J: inductance, V: applied voltage • Feedback diagram



• Transfer function:

$$I(s) = \frac{\frac{1}{sL}}{1 + \frac{R}{sL}} V(s) = \frac{1/R}{sL/R + 1} V(s)$$

• Constant voltage \Rightarrow current goes to a steady state value:

$$I_{ss} = V/R$$

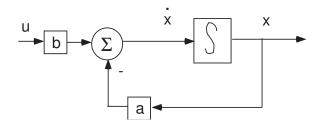
First Order Systems

- Shaft dynamics and circuit dynamics are each examples of a *first order systems*; i.e., they each have one integrator
- In general, a first order system may be written in the form

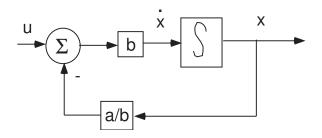
$$\dot{x} = -ax + bu$$

where \boldsymbol{x} is the "integrator state", \boldsymbol{u} is the input, and \boldsymbol{a} and \boldsymbol{b} are constants.

• Feedback diagram:



• Equivalently



• Transfer function:

$$X(s) = H(s)U(s)$$
$$H(s) = \left(\frac{b}{a}\right)\left(\frac{1}{s/a+1}\right)$$

Stability and Time Constant

• Time response:

$$x(t) = e^{-at}x(0) + \int_0^t e^{-a(t-\sigma)}bu(\sigma)d\sigma$$

• Response to a unit step, $u(t) = 1, t \ge 0$:

$$x(t) = \frac{b}{a} \left(1 - e^{-at} \right)$$

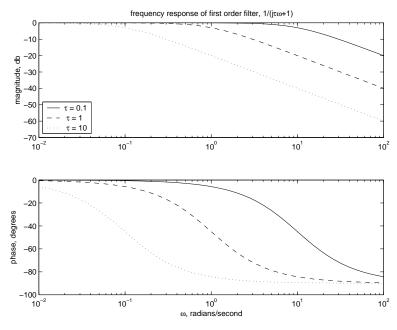
- The system is *stable* if a > 0- stability implies that $x(t) \to \frac{b}{a}$ as $t \to \infty$
- Rate of convergence determined by *time constant*, $\tau = 1/a$
 - at $t = \tau$, step response achieves 63% of its final value
 - at t=2 au, step response achieves 87% of its final value
 - at t=3 au, step response achieves 95% of its final value
- To easily compare rate of convergence, normalize so that b = a
- Normalized frequency response:

$$x = H(j\omega)u, \qquad H(j\omega) = \left(\frac{1}{j\tau\omega + 1}\right)$$

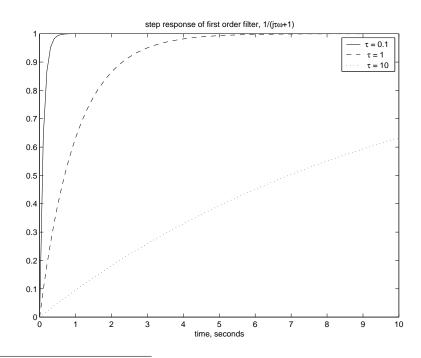
 NOTE: The time constant determines the rate at which the response of the system must be sampled in order to adequately represent it in digital form.

Bandwidth and Response Speed

- Time constant, au determines¹
 - bandwidth of frequency response:



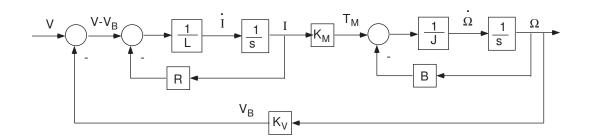
- speed of response to unit step input, u(t) = 1:



 $^{^{1}}$ Plots created with Matlab file first_order.m.

Complete Motor Model

• The motor has both electrical and mechanical components, interconnected by the back EMF feedback loop:



- Two integrators \Rightarrow a *second order* system
- Rules for combining transfer functions \Rightarrow

$$\Omega(s) = \frac{\left(\frac{1}{sL+R}\right) \left(\frac{K_M}{sJ+B}\right)}{1 + \left(\frac{K_v}{sL+R}\right) \left(\frac{K_M}{sJ+B}\right)} V(s)$$
$$= \frac{K_M}{(sJ+B)(sL+R) + K_v K_M} V(s)$$

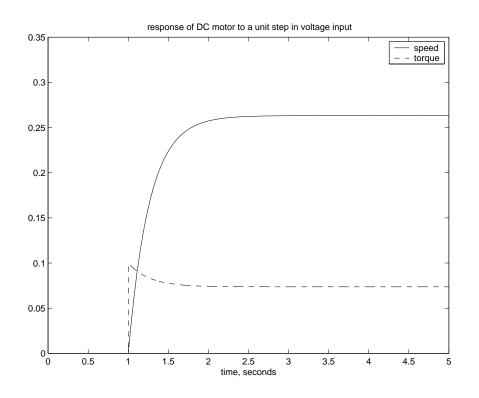
Second Order Systems

- Question: How to analyze and describe properties of second order systems?
 - stability
 - steady state response
 - transient response
- Approach 1:
 - If the system can be decomposed into component first order subsystems, then (perhaps) properties of the overall system can be deduced from those of these subsystems.
 - Example: DC motor
- Approach 2: General analysis procedure.
 - Roots of characteristic equation
 - Damping coefficient and natural frequency determine response
 - Example: Virtual spring/mass/damper systems

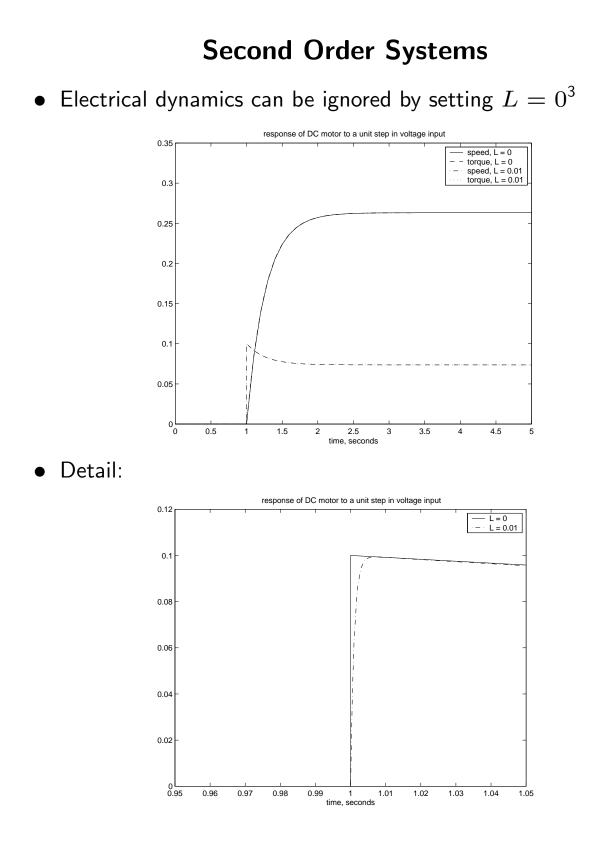
 \Rightarrow We will need to understand the relation between transient response and characteristic roots (natural frequency and damping) in order to design force feedback algorithms in Lab 6!

Time Scale Separation

- For a DC motor, the time constants for each first order subsystem may be very different:
 - electrical subsystem: $au_e = L/R = 0.001$
 - mechanical subsystem: $au_m = J/B = 0.35$
- Mechanical subsystem is much slower than the electrical subsystem
 - Response of motor shaft is dominated by the mechanical subsystem
 - On the shaft speed time scale, current appears to be instantaneous
 - Since current and torque are related directly, $T_M = K_M I$, torque also responds rapidly²



 $^{^2 {\}rm Matlab}$ files motor_linear.m and DC_motor_linear.mdl



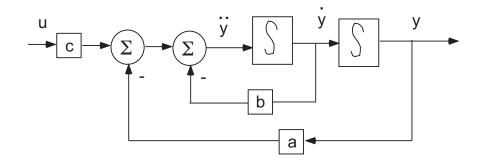
• Will need to model current when we implement torque control

³Matlab files motor_neglect_circuit.m and DC_motor_linear.mdl

Second Order Systems

- Systems with two integrators
 - DC motor
 - system with input and output described by the differential equation

$$\ddot{y} + b\dot{y} + ay = cu$$



• The frequency response function can be written as

$$H(s) = \frac{c}{s^2 + bs + a}$$

• Example: DC Motor

$$H(s) = \frac{\frac{K_M}{JL}}{s^2 + \left(\frac{BL+JR}{JL}\right)s + \left(\frac{BR+K_MK_V}{JL}\right)}$$

Characteristic Roots

• Suppose the frequency response is given by

$$H(s) = \frac{c}{s^2 + bs + a}$$

• Define the *characteristic equation*:

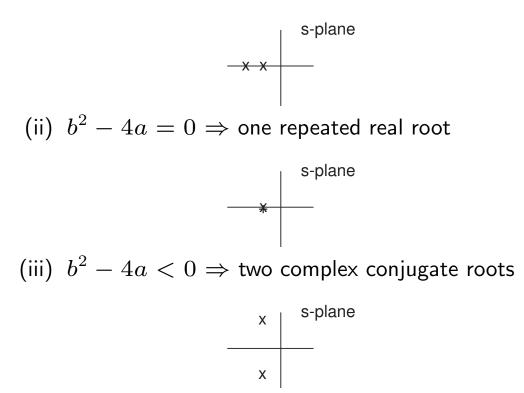
$$s^2 + bs + a = 0$$

• Characteristic roots

$$s = \frac{-b \pm \sqrt{b^2 - 4a}}{2} \tag{1}$$

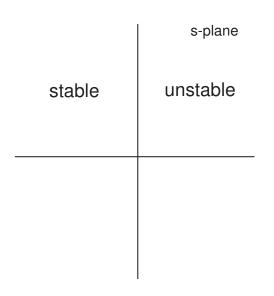
Possibilities:

(i) $b^2 - 4a > 0 \Rightarrow$ two distinct real roots



Characteristic Roots and Stability

- Second order system is
 - *stable* if the characteristic roots lie in the Open Left Half Plane (OLHP)
 - *unstable* if the characteristic roots lie in the Closed Right Half Plane (CRHP)
 - (roots on the imaginary axis are sometimes called *marginally stable*)



Natural Frequency and Damping

• Parameterize roots of $s^2 + bs + a = 0$ by

$$s = -\zeta \omega_n \pm j \omega_n \sqrt{1 - \zeta^2} \tag{2}$$

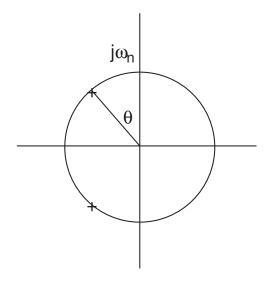
where natural frequency, ω_n , and damping coefficient, ζ , are defined by (compare (2) with (1))

$$b = 2\zeta\omega_n, \qquad a = \omega_n^2$$

• roots lie on circle of radius ω_n at an angle

$$\theta = \arctan{\zeta}/{\sqrt{1-\zeta^2}}$$

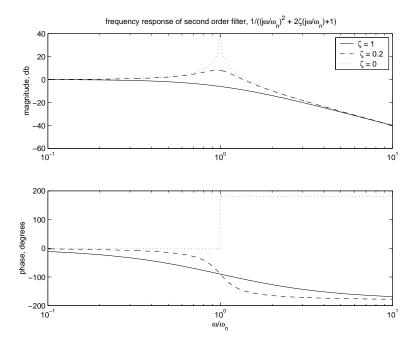
with the imaginary axis:



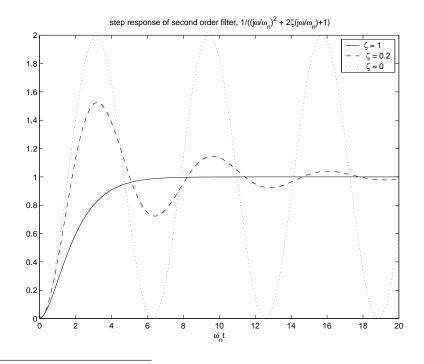
- Roots are
 - real if $\zeta^2 \ge 1$
 - complex and stable if $0 < \zeta < 1$
 - imaginary if $\zeta = 0$

Frequency and Time Response

Natural frequency, ω_n and damping ratio, ζ determine⁴
bandwidth and peak of frequency response:



- speed and overshoot of unit step response:



 $^{^4 {\}rm Plots}$ created with Matlab m-file second_order.m.

General Systems

- The characteristic equation of an *n*-th order system will have *n* roots; these roots are either *real*, or they occur in *complex conjugate* pairs.
- The characteristic polynomial can be factored as

$$\prod_{i=1}^{N_R} (s+p_i) \prod_{i=1}^{N_C/2} (s^2 + b_i s + a_i)$$

• Each pair of complex roots may be written as

$$s_{i\pm} = \frac{-b_i}{2} \pm \frac{\sqrt{b_i^2 - 4a_i}}{2} = x_i \pm jy_i$$

and have natural frequency and damping defined from

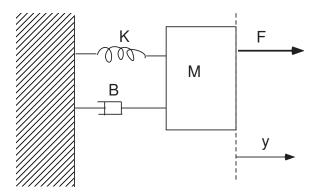
$$s_{i\pm} = -\zeta_i \omega_{ni} \pm j \omega_{ni} \sqrt{1 - \zeta_i^2}$$

• Hence ζ and ω_n can be computed from the real and imaginary parts as

$$\omega_{ni} = \sqrt{x_i^2 + y_i^2}, \quad \zeta_i = -x_i/\omega_{ni}$$

• Note: It often happens that the response of a high order system is well approximated by one complex pair of characteristic roots.

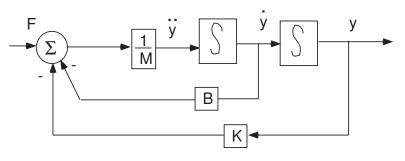
Spring/Mass/Damper System



• Newton's laws:

$$M\ddot{y} + B\dot{y} + Ky = F$$

$$\Rightarrow \quad \ddot{y} = -\frac{B}{M}\dot{y} - \frac{K}{M}y + \frac{F}{M}$$

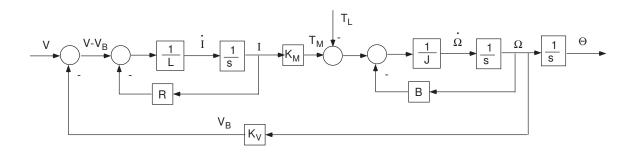


• Transfer Function:

$$Y(s) = \frac{\frac{1}{M}}{s^2 + \frac{B}{M}s + \frac{K}{M}}F(s)$$

Motor Control Strategies

- Can conceive of controlling four signals associated with the motor
 - input voltage, \boldsymbol{V}
 - shaft position, Θ
 - shaft velocity, $\boldsymbol{\Omega}$
 - torque, T_M (equivalently, current, I)



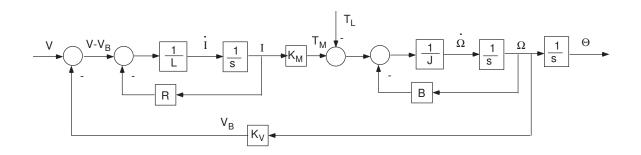
- Issues:
 - Input (V) vs. output (Θ, Ω, I) variables
 - Open loop vs. feedback control (i.e., do we use sensors?)
 - Effect of load torque
 - Control algorithm (P, I, ...)
- Motor control results in higher order systems (more than two integrators)
- Higher order systems
 - Can still define characteristic polynomial and roots
 - Stability dictates that characteristic roots must lie in OLHP
 - Integral control may still be used to obtain zero error (provided that stability is present)
 - More complex control algorithms may be required to obtain stability

Voltage Control

- Apply desired V (either with a linear or a PWM amplifier)
- Suppose there is a constant load torque, T_L . Then steady state speed and torque depend on the load:

$$\Omega = \frac{K_M V - RT_L}{K_M K_V + RB}$$
$$T_M = \frac{K_M (VB + K_V T_L)}{K_M K_V + RB}$$

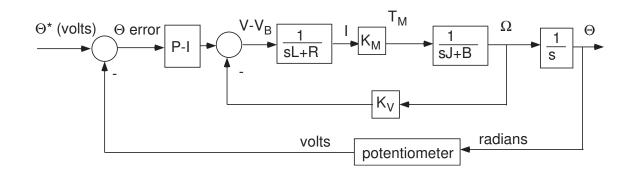
• Position $\rightarrow \infty$



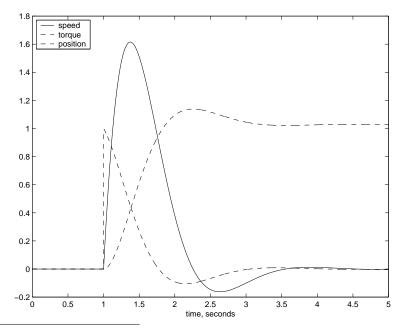
- Issues:
 - V is an input variable, and usually not as important as T_M , $\Theta,~{\rm or}~\Omega$
 - Suppose we want to command a desired speed (or torque), independently of load or friction
 - * Problem: usually load torque (and often friction) are unknown
 - Suppose we want to command a desired position
 - * Problem: no control at all over position!

Position Control, I

- Suppose we want to control position
- We can use a sensor (e.g., potentiometer) to produce a voltage proportional to position, and compare that to a commanded position (also in volts).



- an integral controller cannot stabilize the system. Instead use a proportional-integral (P-I) controller: $10 + \frac{1}{s}$
- responses of speed, torque, and position due to a unit step command to position⁵



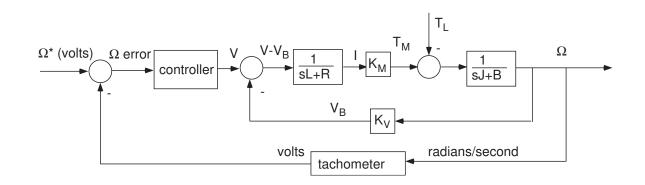
 $^{^5 {\}rm Matlab}$ files motor_position_FB.m and DC_motor_position.mdl

Position Control, II

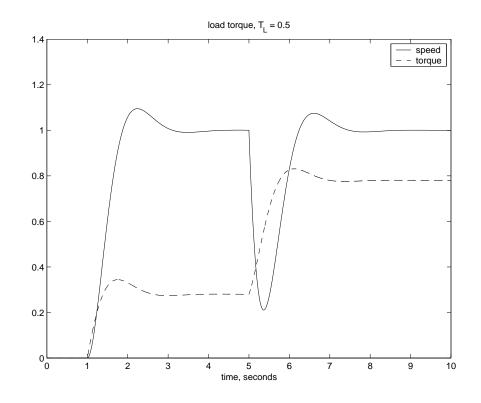
- P-I control: if feedback system is stable, then error approaches zero, and position tracks desired value
- Can implement analog P-I control using op amp circuit
- Control can also be implemented digitally using a microprocessor
- An encoder can be used instead of a potentiometer to obtain digital measurement
- PWM can be used instead of linear amplifier

Velocity Control, I

 Using an analog velocity measurement, from a tachometer, and an analog integral controller, allows us to track velocity



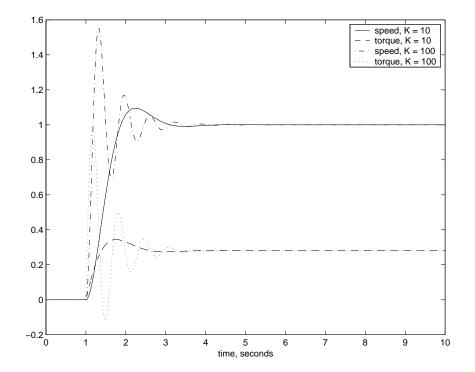
• despite the presence of an unknown load torque⁶



 $^{^{6}\}mbox{Matlab}$ files motor_speed_FB.m and DC_motor_speed.mdl

Velocity Control, II

- microprocessor control
 - use encoder measurement to generate digital velocity estimate
 - compare measured speed with desired speed
 - feed error signal into digital integral controller
 - generate PWM signal proportional to error
- Note: Performance depends on the controller gain⁷. Consider the difference between 10/s and 100/s:

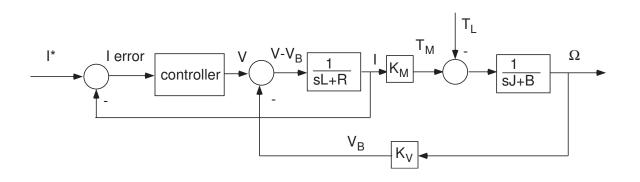


 Usually, excessively high gain leads to oscillatory response or instability!

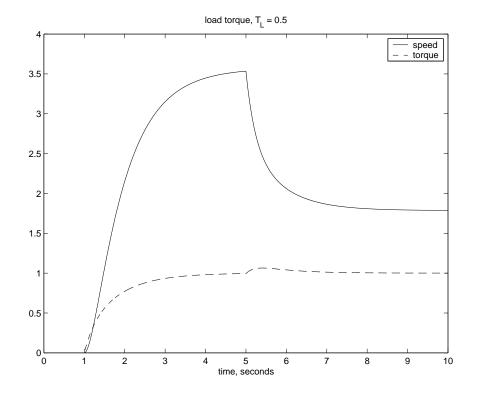
⁷Matlab files motor_speed_FB.m and DC_motor_speed.mdl

Torque Control

• Using a measurement of current and an analog integral controller, allows us to track torqe, which is directly proportional to current: $T_M = K_M I$



despite the presence of an unknown load torque⁸

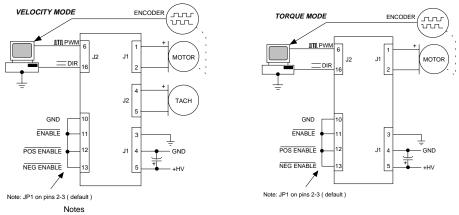


• Question: How does our lab setup implement torque control?

 $^{^{8}\}mbox{Matlab}$ files and motor_current_FB.m and DC_motor_current.mdl

PWM Amplifier, I

- Copley 4122D DC brush servo amplifier with PWM inputs [1]
- Two feedback control modes:
 - velocity control (requires a tachomoter)
 - torque (current) control
- We use torque control so that we can provide force feedback through our haptic interface



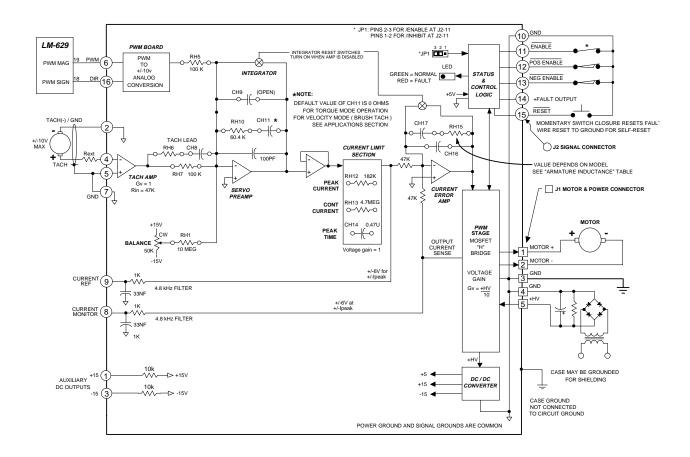
1. All amplifier grounds are common (J1-3, J1-4, J2-2, J2-7, and J2-10) Amplifier grounds are isolated from case & heatplate..

- 2. Jumper JP1 default position is on pins 2-3 for ground active /Enable input (J2-11) For /Inhibit function at J2-11 (+5V enables), move JP1 to pins 1-2
- 3. For best noise immunity, use twisted shielded pair cable for tachometer inputs.

Twist motor and power cables and shield to reduce radiated electrical noise from pwm outputs.

PWM Amplifier, II

- \bullet "one-wire" mode: 50% duty cycle corresponds to zero requested torque
- analog integral controller with anti-windup
- H bridge PWM amplifier
- 25 kHz PWM output



References

- [1] Copley Controls. Models 4122D, 4212D DC brush servo amplifiers with PWM inputs. www.copleycontrols.com.
- [2] K. Ogata. *Modern Control Engineering*. Prentice-Hall, 3rd edition, 1997.