
Feedback Systems

• Many embedded system applications involve the concept of

feedback

• Sometimes feedback is designed into systems:

CPU

Operator Input

Actuator Physical
System

position
velocity
temperature
current
...

Sensor

• Other systems have naturally occuring feedback, dictated by

the physical principles that govern their operation
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Feedback Systems

• Some examples we will see:

- op-amp

- motor equations: mechanical

- motor equations: electrical

- DC motor: back EMF

- current controlled amplifier

- velocity feedback control

• How many examples of feedback can you think of?
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Issues with Feedback

• A feedback loop in a system raises many issues

- requires a sensor!

- changes gain

- reduces effects of parameter uncertainty

- may alter stability

- changes both steady state as well as dynamic response

- introduces phase lag

- sensitive to computation/communication delay

• Detailed analysis (and design) of feedback systems is beyond

the scope of our course, but we will need to understand these

basic issues...
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Feedback and Gain

• Using high gain in a feedback system can make output track

input:

u y

Σ
-

GK

e

• feedback response:

y =
KG

1 + KG
u

• error response:

e =
1

1 + KG
u

• high gain: as K →∞, y → u and e → 0

- “open loop gain”: |KG| � 1

- “closed loop gain”: |KG/(1 + KG)| ≈ 1

⇒ we can make the output track the input even if we don;t

know the exact value of the open loop gain!

• CAVEAT: only useful if system is stable!

- for all but very simple systems, use of excessively high gain

will tend to destabilize the system!

• a simple example where dynamics are usually ignored: op amp
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Operational Amplifier (Op Amp)

• An op amp [2] is used in many electronics found in embedded

systems. Hence it is of interest in its own right, as well as

being a simple example of a feedback system

-

+

v1

v2
vo

v1, v2: input voltages

vo: output voltage

• output voltage depends on difference of input voltages

vo = K(v2 − v1) = −K(v1 − v2)

• Typically K ≈ 105 − 106, but varies significantly due to

manufacturing tolerances

• Ideal op amp

- no current flows into input terminals

- output voltage unaffected by load

• In reality

- op amp is a low pass filter with very high bandwidth

- draws a little current

- is slightly affected by load

• we shall assume an ideal op amp
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Inverting Amplifier, I

• Q: How to use the op amp as an amplifier given that gain is

uncertain?

• A: Feedback!

-

+
vi

vo
0

v’

R1
I1

R2I2

• currents:

I1 =
vi − v′

R1

, I2 =
v′ − vo

R2

• feedback equations:

- from previous page, vo depends on v′: vo = −Kv′

- v′ depends on vo: v′ = vo + R2I2

⇒

-K

-1

R2I2 vo

Σ
-

v’
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Inverting Amplifier, II

• Feedback diagram:

-K

-1

R2I2 vo

Σ
-

v’

• Apply rule for transfer function of feedback system:

vo = −
„

K

1 + K

«
R2I2

• If K >> 1, then the feedback equations imply that

vo ≈ −R2I2

• It further follows that v′ = vo + R2I2 ≈ 0. By assumption

that the op amp draws no current, I1 = I2, and thus

vo = −
„

R2

R1

«
vi

⇒ Feedback allows us to use an op amp to construct an amplifier

without knowing the precise value of K!
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More Complex Feedback Examples

• to analyze op amp, we ignored dynamics and treated the op

amp as a pure gain that was constant with frequency

• in general, dynamics cannot be ignored

- transient response

- stability

• Two examples where feedback arises from the physics

- motor dynamics: mechanical

- motor dynamics: electrical

• we shall discuss these examples, but we will first consider a

simple case: feedback around an integrator

EECS461, Lecture 7, updated September 24, 2008 8



Integrator

• Equations of integrator

ẋ = u

x(t) = x(0) +

Z t

0

u(σ)dσ

• Examples:

- u is velocity, x is position

- u is acceleration, v is velocity

- voltage and current through inductor: I = 1
L

R
V dt

- voltage and current through capacitor: V = 1
C

R
Idt

• Integrator is an unstable system

- the bounded input, u(t) = 1, yields the unbounded output

x(t) = x(0) + t

• Transfer function of an integratorZ
⇔

1

s

⇒ integrator has infinite gain at DC, s = 0
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Feedback Around an Integrator

• Suppose there is feedback around integrator:

x
.
x

u Σ
-

K

• differential equation of feedback system

ẋ = −Kx + Ku

• Transfer function of feedback system:

x
u

Σ

-

K

s

X(s) =

„
K/s

1 + K/s

«
U(s) =

„
K

s + K

«
U(s)

• The system is stable if K > 0.

⇒ The response to the constant input u(t) = 1 yields

x(t) → 1

ẋ(t) → 0

independently of the value of K
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Uses of an Integrator

• sometimes integrators arise from the physics

• other times they are constructed

- to perform analog simulation of physical system

- to add integral control to a system

• Op-amp integrator

-

+

R1

C2

vo

vi

-

+

R3

R4

- Transfer function:

vo =
R4

R3

1

R1C2s
vi

• Can also implement integrator on a microprocessor

- discrete simulations

- digital control
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Motor Equations, Mechanical

• equations of motion for shaft dynamics

JΩ̇ = TM − BΩ

Ω̇ =

„
1

J

«
TM −

„
B

J

«
Ω

Ω: shaft speed, B ≥ 0: friction coefficient, J > 0: shaft

inertia, TM : motor torque

• Feedback diagram

  1

  J

Ω

-

TM
 1

s

B

Ω
.

• Transfer function:

Ω(s) =
1

sJ

1 + B
sJ

TM(s) =
1/B

sJ/B + 1
TM(s)

• Constant torque ⇒ speed goes to a steady state value:

Ωss = TM/B

• NOTE: with no friction (B = 0), system is unstable!

- constant torque implies Ω(t) →∞
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Motor Equations, Electrical

• equations of armature winding (ignoring back emf)

Lİ = V − RI

İ =

„
1

L

«
V −

„
R

L

«
I

I: current, R: resistance, J : inductance, V : applied voltage

• Feedback diagram

  1

  L

Ι

-

V
 1

s

R

Ι
.

• Transfer function:

I(s) =
1

sL

1 + R
sL

V (s) =
1/R

sL/R + 1
V (s)

• Constant voltage ⇒ current goes to a steady state value:

Iss = V/R
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First Order Systems

• Shaft dynamics and circuit dynamics are each examples of a

first order systems; i.e., they each have one integrator

• In general, a first order system may be written in the form

ẋ = −ax + bu

where x is the “integrator state”, u is the input, and a and b

are constants.

• Feedback diagram:

u
x

Σ
-

a

.
x

b

• Equivalently

u
x

Σ
-

a/b

.
x

b

• Transfer function:

X(s) = H(s)U(s)

H(s) =

„
b

a

« „
1

s/a + 1

«
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Stability and Time Constant

• Time response:

x(t) = e
−at

x(0) +

Z t

0

e
−a(t−σ)

bu(σ)dσ

• Response to a unit step, u(t) = 1, t ≥ 0:

x(t) =
b

a

“
1− e

−at
”

• The system is stable if a > 0

- stability implies that x(t) → b
a as t →∞

• Rate of convergence determined by time constant, τ = 1/a

- at t = τ , step response achieves 63% of its final value

- at t = 2τ , step response achieves 87% of its final value

- at t = 3τ , step response achieves 95% of its final value

• To easily compare rate of convergence, normalize so that b = a

• Normalized frequency response:

x = H(jω)u, H(jω) =

„
1

jτω + 1

«
• NOTE: The time constant determines the rate at which the

response of the system must be sampled in order to adequately

represent it in digital form.
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Bandwidth and Response Speed

• Time constant, τ determines1

- bandwidth of frequency response:
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- speed of response to unit step input, u(t) = 1:
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 τ = 10

1Plots created with Matlab file first order.m.
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Complete Motor Model

• The motor has both electrical and mechanical components,

interconnected by the back EMF feedback loop:

-

V-VB
KM

KV

  1

  L

Ι 1

s

R

Ι
.

  1

  J

Ω

-

TM
 1

s

B

Ω
.

V

-

VB

• Two integrators ⇒ a second order system

• Rules for combining transfer functions ⇒

Ω(s) =

“
1

sL+R

” “
KM

sJ+B

”
1 +

“
Kv

sL+R

” “
KM

sJ+B

”V (s)

=
KM

(sJ + B)(sL + R) + KvKM

V (s)

EECS461, Lecture 7, updated September 24, 2008 17



Second Order Systems

• Question: How to analyze and describe properties of second

order systems?

- stability

- steady state response

- transient response

• Approach 1:

- If the system can be decomposed into component first order

subsystems, then (perhaps) properties of the overall system

can be deduced from those of these subsystems.

- Example: DC motor

• Approach 2: General analysis procedure.

- Roots of characteristic equation

- Damping coefficient and natural frequency determine

response

- Example: Virtual spring/mass/damper systems

⇒ We will need to understand the relation between transient

response and characteristic roots (natural frequency and damping)

in order to design force feedback algorithms in Lab 6!
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Time Scale Separation

• For a DC motor, the time constants for each first order

subsystem may be very different:

- electrical subsystem: τe = L/R = 0.001

- mechanical subsystem: τm = J/B = 0.35

• Mechanical subsystem is much slower than the electrical

subsystem

- Response of motor shaft is dominated by the mechanical

subsystem

- On the shaft speed time scale, current appears to be

instantaneous

- Since current and torque are related directly, TM = KMI,

torque also responds rapidly2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
response of DC motor to a unit step in voltage input

time, seconds

speed 
torque

2Matlab files motor linear.m and DC motor linear.mdl
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Second Order Systems

• Electrical dynamics can be ignored by setting L = 03

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0
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0.1
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0.35
response of DC motor to a unit step in voltage input

time, seconds

speed, L = 0    
torque, L = 0   
speed, L = 0.01 
torque, L = 0.01

• Detail:

0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05
0

0.02

0.04

0.06

0.08

0.1

0.12
response of DC motor to a unit step in voltage input

time, seconds

L = 0   
L = 0.01

• Will need to model current when we implement torque control

3Matlab files motor neglect circuit.m and DC motor linear.mdl
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Second Order Systems

• Systems with two integrators

- DC motor

- system with input and output described by the differential

equation

ÿ + bẏ + ay = cu

Σ

-

u

Σ

-

c

y

a

.
y

b

..
y

• The frequency response function can be written as

H(s) =
c

s2 + bs + a

• Example: DC Motor

H(s) =

KM
JL

s2 +
`

BL+JR
JL

´
s +

“
BR+KMKV

JL

”
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Characteristic Roots

• Suppose the frequency response is given by

H(s) =
c

s2 + bs + a

• Define the characteristic equation:

s
2
+ bs + a = 0

• Characteristic roots

s =
−b±

√
b2 − 4a

2
(1)

• Possibilities:

(i) b2 − 4a > 0 ⇒ two distinct real roots

s-plane

xx

(ii) b2 − 4a = 0 ⇒ one repeated real root

s-plane

x+

(iii) b2 − 4a < 0 ⇒ two complex conjugate roots

s-planex

x
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Characteristic Roots and Stability

• Second order system is

- stable if the characteristic roots lie in the Open Left Half

Plane (OLHP)

- unstable if the characteristic roots lie in the Closed Right

Half Plane (CRHP)

- (roots on the imaginary axis are sometimes called marginally

stable)

stable unstable

s-plane
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Natural Frequency and Damping

• Parameterize roots of s2 + bs + a = 0 by

s = −ζωn ± jωn

p
1− ζ2 (2)

where natural frequency, ωn, and damping coefficient, ζ, are

defined by (compare (2) with (1))

b = 2ζωn, a = ω
2
n

• roots lie on circle of radius ωn at an angle

θ = arctan ζ/
p

1− ζ2

with the imaginary axis:

jωn

θ
+

+

• Roots are

- real if ζ2 ≥ 1

- complex and stable if 0 < ζ < 1

- imaginary if ζ = 0
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Frequency and Time Response

• Natural frequency, ωn and damping ratio, ζ determine4

- bandwidth and peak of frequency response:
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- speed and overshoot of unit step response:
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0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

step response of second order filter, 1/((jω/ω
n
)2 + 2ζ(jω/ω

n
)+1)

ω
n
t

ζ = 1   
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 ζ = 0  

4Plots created with Matlab m-file second order.m.
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General Systems

• The characteristic equation of an n-th order system will have

n roots; these roots are either real, or they occur in complex

conjugate pairs.

• The characteristic polynomial can be factored as

NRY
i=1

(s + pi)

NC/2Y
i=1

(s
2
+ bis + ai)

• Each pair of complex roots may be written as

si± =
−bi

2
±

q
b2

i − 4ai

2
= xi ± jyi

and have natural frequency and damping defined from

si± = −ζiωni ± jωni

q
1− ζ2

i

• Hence ζ and ωn can be computed from the real and imaginary

parts as

ωni =
q

x2
i + y2

i , ζi = −xi/ωni

• Note: It often happens that the response of a high order system

is well approximated by one complex pair of characteristic

roots.
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Spring/Mass/Damper System

K

B
M

F

y

• Newton’s laws:

Mÿ + Bẏ + Ky = F

⇒ ÿ = −
B

M
ẏ −

K

M
y +

F

M

• Second Order System

Σ
-

F

-

1
M

y

K

.
y

B

..
y

• Transfer Function:

Y (s) =
1
M

s2 + B
M s + K

M

F (s)
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Motor Control Strategies

• Can conceive of controlling four signals associated with the

motor

- input voltage, V

- shaft position, Θ

- shaft velocity, Ω

- torque, TM (equivalently, current, I)

-

V-VB
KM

KV

  1

  L

Ι 1

s

R

Ι
.

  1

  J

Ω

-

TM
 1

s

B

Ω
.

V

-

VB

-

TL

Θ 1

s

• Issues:

- Input (V ) vs. output (Θ, Ω, I) variables

- Open loop vs. feedback control (i.e., do we use sensors?)

- Effect of load torque

- Control algorithm (P, I, ...)

• Motor control results in higher order systems (more than two

integrators)

• Higher order systems

- Can still define characteristic polynomial and roots

- Stability dictates that characteristic roots must lie in OLHP

- Integral control may still be used to obtain zero error

(provided that stability is present)

- More complex control algorithms may be required to obtain

stability
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Voltage Control

• Apply desired V (either with a linear or a PWM amplifier)

• Suppose there is a constant load torque, TL. Then steady

state speed and torque depend on the load:

Ω =
KMV − RTL

KMKV + RB

TM =
KM(V B + KV TL)

KMKV + RB

• Position →∞

-

V-VB
KM

KV

  1

  L

Ι 1

s

R

Ι
.

  1

  J

Ω

-

TM
 1

s

B

Ω
.

V

-

VB

-

TL

Θ 1

s

• Issues:

- V is an input variable, and usually not as important as TM ,

Θ, or Ω

- Suppose we want to command a desired speed (or torque),

independently of load or friction

* Problem: usually load torque (and often friction) are

unknown

- Suppose we want to command a desired position

* Problem: no control at all over position!

EECS461, Lecture 7, updated September 24, 2008 29



Position Control, I

• Suppose we want to control position

• We can use a sensor (e.g., potentiometer) to produce a voltage

proportional to position, and compare that to a commanded

position (also in volts).

   1
sL+R

  1
sJ+B

V-VB
KM

KV

I Ω

-

TM

 1
s

Θ

potentiometer
radiansvolts

-

Θ* (volts) Θ error
P-I

• an integral controller cannot stabilize the system. Instead use

a proportional-integral (P-I) controller: 10 + 1
s

• responses of speed, torque, and position due to a unit step

command to position5
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torque  
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5Matlab files motor position FB.m and DC motor position.mdl
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Position Control, II

• P-I control: if feedback system is stable, then error approaches

zero, and position tracks desired value

• Can implement analog P-I control using op amp circuit

• Control can also be implemented digitally using a

microprocessor

• An encoder can be used instead of a potentiometer to obtain

digital measurement

• PWM can be used instead of linear amplifier
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Velocity Control, I

• Using an analog velocity measurement, from a tachometer,

and an analog integral controller, allows us to track velocity

controller
   1
sL+R

  1
sJ+B

Ω

radians/second

V-VB
KM

KV

I

-

TM

tachometer
volts

-

Ω* (volts) Ω error

VB

V

TL

-

• despite the presence of an unknown load torque6
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load torque, T
L
 = 0.5

speed 
torque

6Matlab files motor speed FB.m and DC motor speed.mdl
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Velocity Control, II

• microprocessor control

- use encoder measurement to generate digital velocity

estimate

- compare measured speed with desired speed

- feed error signal into digital integral controller

- generate PWM signal proportional to error

• Note: Performance depends on the controller gain7. Consider

the difference between 10/s and 100/s:

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
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speed, K = 10  
torque, K = 10 
speed, K = 100 
torque, K = 100

• Usually,excessively high gain leads to oscillatory response or

instability!

7Matlab files motor speed FB.m and DC motor speed.mdl
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Torque Control

• Using a measurement of current and an analog integral

controller, allows us to track torqe, which is directly

proportional to current: TM = KMI

controller
   1

sL+R

  1

sJ+B

ΩV-VB
KM

KV

I

-

TM

-

I* I error

VB

V

TL

-

• despite the presence of an unknown load torque8
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load torque, T
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 = 0.5

speed 
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• Question: How does our lab setup implement torque control?

8Matlab files and motor current FB.m and DC motor current.mdl
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PWM Amplifier, I

• Copley 4122D DC brush servo amplifier with PWM inputs [1]

• Two feedback control modes:

- velocity control (requires a tachomoter)

- torque (current) control

• We use torque control so that we can provide force feedback

through our haptic interface

+HV

GND

+

1

2

3

4

5

J1

J1

MOTOR

ENCODER

+
6

16

J2

10

13

12

11

GND

ENABLE

POS ENABLE

NEG ENABLE

PWM

DIR

VELOCITY MODE

Note: JP1 on pins 2-3 ( default )

J2 TACH

+

5

4

+HV

GND

+

1

2

3

4

5

J1

J1

MOTOR

ENCODER

+
6

16

J2

10

13

12

11

GND

ENABLE

POS ENABLE

NEG ENABLE

PWM

DIR

TORQUE MODE

Note: JP1 on pins 2-3 ( default )

Notes

1. All amplifier grounds are common (J1-3, J1-4, J2-2, J2-7, and J2-10 ) Amplifier grounds are isolated from case &
heatplate..

2. Jumper JP1 default position is on pins 2-3 for ground active /Enable input ( J2-11 )
For /Inhibit function at J2-11 ( +5V enables ), move JP1 to pins 1-2

3. For best noise immunity, use twisted shielded pair cable for tachometer inputs.
    Twist motor and power cables and shield to reduce radiated electrical noise from pwm outputs.
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PWM Amplifier, II

• “one-wire” mode: 50% duty cycle corresponds to zero

requested torque

• analog integral controller with anti-windup

• H bridge PWM amplifier

• 25 kHz PWM output

NEG ENABLE

POS ENABLE

ENABLE *

-

+
-

+
RH7

RH6 CH8

RH10 CH11

100PF

TACH AMP
Gv = 1

DIR

PWM

RH1

CURRENT LIMIT
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Gv = +HV
10

PWM

MOSFET
"H"
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STAGE

GND

GND

MOTOR +

MOTOR -

+HV

-

+

CH17
RH15

CH16
47K

47K

PEAK

CONT

PEAK

RH13

RH12

CH14

Voltage gain = 1

TIME

1K

33NF

1K

33NF

CURRENT
MONITOR

CURRENT
REF

1K

OUTPUT
CURRENT

SENSE

+HV

DC / DC
CONVERTER

-15

+15

GND

+FAULT OUTPUT
+5V

CONTROL
LOGIC

STATUS
&

MOTOR

AUXILIARY
DC OUTPUTS

SERVO
PREAMP

CW

TACH LEAD

INTEGRATOR

CURRENT
ERROR

AMP

LED

GREEN = NORMAL
RED = FAULT

+15V

-15V

BALANCE
50K

CASE GROUND
NOT CONNECTED
TO CIRCUIT GROUND

CASE MAY BE GROUNDED

MOMENTARY SWITCH CLOSURE RESETS FAULT
WIRE RESET TO GROUND FOR SELF-RESET

+5

+15

-15

POWER GROUND AND SIGNAL GROUNDS ARE COMMON

J2 SIGNAL CONNECTOR

J1 MOTOR & POWER CONNECTOR

-+

VOLTAGE
GAIN

+/-6V for
+/-Ipeak

+/-6V at
+/-Ipeak

60.4 K

100 K

10 MEG

4.8 kHz FILTER

4.8 kHz FILTER

RESET

10k

10k

INTEGRATOR RESET SWITCHES 
TURN ON WHEN AMP IS DISABLED

FOR SHIELDING

16

6

GND
7

4

5

9

8

1

3

15

14

13

11

12

1

2

3

4

5

VALUE DEPENDS ON MODEL
SEE "ARMATURE INDUCTANCE" TABLE

2
TACH(-) / GND

+15V

-15V

CH9 (OPEN)

 *JP1

10

-

+

123

*  JP1: PINS 2-3 FOR /ENABLE AT J2-11
PINS 1-2 FOR /INHIBIT AT J2-11

0.47U

4.7MEG

182K

NOTE:

DEFAULT VALUE OF CH11 IS 0 OHMS
FOR TORQUE MODE OPERATION

FOR VELOCITY MODE ( BRUSH TACH )
SEE APPLICATIONS SECTION

CURRENT

CURRENT

*

*

PWM
TO

+/-10v
ANALOG

CONVERSION

-

+

RH5

100 K

PWM BOARD

+/-10V
MAX

TACH

Rext

Rin = 47K

LM-629

PWM MAG

PWM SIGN

19

18
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