
Interfacing a Microprocessor to the Analog World

In many systems, the embedded processor must interface to

the non-digital, analog world.

The issues involved in such interfacing are complex, and go

well beyond simple A/D and D/A conversion.

A/D CPU D/A

? ?

Two questions:

1. How do we represent information about the analog world in a

digital microprocessor?

2. How do we use a microprocessor to act on the analog world?

We shall explore each of these questions in detail, both

conceptually in the lectures, and practically in the laboratory

exercises.
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Sensors

• Used to measure physical quantities such as

- position

- velocity

- temperature

- sound

- light

• Two basic types:

- sensors that measure an (analog) physical quantity and

generate an analog signal, such as a voltage or current

A/Dsensor

physical
quantity

analog
voltage digital

* tachometer

* potentiometer

- sensors that directly generate a digital value

sensor

physical
quantity

digital

* digital camera

* position encoders
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Sensor Interfacing Issues

• Shall focus on issues that involve

- loss of information

- distortion of information

• Such issues include

- quantization

- sampling

- noise

• Fundamental difference between quantization and sampling

errors:

- Quantization errors affect the precision with which we can

represent a single analog value in digital form.

- Sampling errors affect how well we can represent an entire

analog waveform (or time function) digitally.
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Quantization

Digital representation of an analog number [2, 3, 6]

• Issue:

- an analog voltage can take a continuum of values

- a binary number can take only finitely many values

• Binary representation of (unsigned or signed) real number

- unipolar coding

- unipolar coding with centering

- offset binary coding

- two’s complement

• Resolution [2, 3]

- Idea: two analog numbers whose values differ by < 1/2n

may yield the same digital representation

- an n-bit A/D converter has a resolution equal to 2−n times

the input voltage range, v ∈ [0, Vmax]

- least significant bit (LSB) represents Vmax/2n
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Quantization: Example

• Suppose we quantize an analog voltage in the range (0, Vmax)

using a two bit binary number.

• The LSB thus represents Vmax/4

0 Vmax3Vmax
   4

Vmax
   2

Vmax
   4

input voltage

00

01

10

11

• Quantization error: from 0 to 1 LSB (e.g., 01 represents any

voltage from Vmax/4 to Vmax/2)

• For 11 to uniquely represent Vmax, divide voltage range into

2n − 1 intervals. LSB = Vmax/(2n − 1)

• Centering: 01 represents Vmax/8 to 3Vmax/8

0 Vmax3Vmax
   4

Vmax
   2

Vmax
   4

input voltage

00

01

10

11

• Quantization error: ±1
2LSB
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A/D Conversion

A/D

analog
voltage

n-bit binary
 number

• Types of A/D converters [2]:

- flash

- successive approximation (MPC555)

- single-slope (or dual-slope) integration

- sigma-delta converters

- redundant signed digit (RSD) [5] (MPC5553)

• Design issues

- precision

- accuracy

- speed

- cost

- relative amount of analog and digital circuitry

• Performance Metrics [4]

- quantization error

- offset and gain error

- differential nonlinearity

- monotonicity

- missing codes

- integral nonlinearity
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Successive Approximation A/D Converter

• Used on the Freescale MPC555

• Bits set in succession, from most to least significant

comparator

+

-

control
  logic

n-bit binary

   D/A
converter

MSB

LSB

Vs

• Control logic [1]

go to next
  lower bit

set all bits to 0

start at MSB

set bit = 1

is D/A output
         > Vs?

yes
reset bit = 0

  all bits
checked?

no

yes

conversion done

start

end

no

• Issues

- timing (bits set one at a time)

- signal to noise ratio (lower bits based on small signals)

- cannot correct for wrong decisions on a given bit

EECS461, Lecture 2, updated September 3, 2008 7



Sampling

• Convert an analog function of time into a sequence of binary

numbers

o o
o o

o
o

o

A/Dsensor

physical

signal

   analog
waveform

  digital
sequence

sampler

• sampler [3]

C

-

+

analog
input output

switch

• Information loss in representing an analog function as a discrete

sequence [2, 3, 8, 6]

time
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Information Loss in Sampling

• How to describe information loss?

• Idea: Try to reconstruct the analog signal from its digital

representation. This may be done by a D/A converter.

o o
o o

o
o

o
A/Dsensor

physical

signal

   analog
waveform

  digital
sequence

sampler

o o
o o

o

o

o

reconstructed
analog signal

ZOH

• “Staircase” output1: sin(2πt) sampled with sampling period

T = 0.05 seconds (sampling frequency f = 20 Hz)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time, sec

sin(2π t), sin(2 π kT), T = 0.05 sec, and ZOH output

analog input
samples
ZOH output

• a staircase approximation of the input delayed by T/2 seconds

1created with MATLAB files staircase approx.m and simulate ZOH.mdl
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Fast Sampling

• Compare fast and slow sampling2

• Input: a 1 Hz sinusoid, sin(2πt), sampled at 20 Hz

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
sample period, T = 0.05 sec,  sample frequency, 1/T = 20 Hz

time, sec

• Input: a 1 Hz sinusoid, sin(2πt), sampled at 10 Hz

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
sample period, T = 0.1 sec,  sample frequency, 1/T = 10 Hz

time, sec

2MATLAB m-file fast slow sampling.m
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Slow Sampling

• Input: a 1 Hz sinusoid, sin(2πt), sampled at 2 Hz

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
sample period, T = 0.5 sec,  sample frequency, 1/T = 2 Hz

time, sec

• Input: a 1 Hz sinusoid, sin(2πt), sampled at 1.11 Hz

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
sample period, T = 0.9 sec,  sample frequency, 1/T = 1.1111 Hz

time, sec
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Observations on Sampling

• If sampling period is fast with respect to period of the signal,

then the reproduced signal approximates the original signal.

- slight staircase effect

- slight time delay

• If sampling period is relatively slow, then there are the

reproduced signal may differ significantly from the original

signal.

- It may equal zero!

- It may look like a periodic signal of equal amplitude but

longer period.

• Other issues[6]

- irregular sampling interval

- synchronizing sampling with the signal
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Aliasing

• Suppose we have two analog signals whose values are identical

at the sample points. Then their digital representations will

also be identical.

- Impossible to reconstruct original signal from its digital

representation.

- Any algorithm on the CPU will be unable to distinguish

between signals.

- Especially problematic when sampling noisy analog signals.

- sin(2πt) sampled at 0, 0.5, 1, 1.5, ... seconds is

indistinguishable from zero!

- cos(t) and cos((1 + π)t) are identical at 0, 2, 4, ...

seconds3!

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time, seconds

sample period, T = 2

cos(t)          
cos((1+ 1π) t)
cos(2k)         
cos((1+ 1π)2k)

• A higher frequency signal that “masquerades” as a low

frequency signal after sampling is said to be aliased.

3MATLAB m-file aliasing.m
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Effects of Aliasing

• Aliasing is a type of information distortion that results from

undersampling.

• Questions:

1. How fast must one sample an arbitrary signal to avoid

aliasing?

2. When is aliasing likely to be a problem in sensor interfacing?

3. How does one minimize the effects of aliasing?

• We shall return to these questions after an example and a

review of some ideas from signals and systems.

Example: Consider a video of a rotating wheel marked with an

arrow, and made with a camcorder at a rate of 30 frames/second

[8]...
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Aliasing and the Wheel,I

• The effects of aliasing can be striking...

• Consider a wheel rotating counterclockwise (CCW) at R

rev/seconds.

• Suppose we

- View the wheel with a strobe light every T seconds, or

- Use a camcorder to make a video with one frame every T

seconds.

θ

R rev/sec

• Depending upon the relative values of T and R, the wheel

may appear to be

- rotating CCW – as we expect to see

- stationary – not moving!

- rotating clockwise (CW) – backwards!
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Aliasing and the Wheel, II

• We visually determine the direction of motion by noting the

difference between consecutive measurements of the position

of the arrow.

• If T is fast with respect to the speed of rotation, then motion

appears to be CCW:

T

2T

3T

actual

perceived

• If T is slow with respect to the speed of rotation, then motion

appears to be CW:

T

2T

3T

actual

perceived

EECS461, Lecture 2, updated September 3, 2008 16



Aliasing and the Wheel, III

• At an even slower value of T , wheel appears to be stationary:

T, 2T, 3T,...

actual

perceived

• At an intermediate value of T , we are only confused:

T, 3T,...

actual

2T, 4T,...

?

?
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Aliasing and the Wheel, IV

• Suppose the wheel rotates CCW at a fixed rate R rev/sec.

Can we determine the maximum value of T so that the wheel

always seems to be rotating (and rotating CCW)?

• Terminology

- sample period, T seconds

- sampling frequency, f = 1/T Hz or ωs = 2π/T rad/sec

- rotation rate, R rev/sec, or 2πR rad/sec

• Position of wheel in (x, y) coordinates is given by

θ

x

y

x(t) = cos(2πRt)

y(t) = sin(2πRt)

⇒ Taking a picture of the wheel every T seconds is equivalent

to “sampling” a sine wave every T seconds
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Aliasing and the Wheel, V

• It takes 1/R seconds for the wheel to make a complete

revolution.

• Suppose that initially θ(0) = 0◦. Hence if we sample at

T = 1/R samples/second, then the position coordinates at

the sample times kT, k = 1, 2, 3... satisfy

x(kT ) = cos(2πk) = x(0) = 1

y(kT ) = sin(2πk) = y(0) = 0

⇒ the wheel looks as though it were stationary

• To determine the correct direction of rotation, we need to take

at least one sample before it reaches the halfway point:

θ

x

y

T

0

• The wheel reaches θ = 180◦ in 1/2R seconds, hence we

require

- sample period T < 1/2R sec

- sample frequency ωs > 4πR rad/sec (f > 2R Hz)

• Later we shall rederive this result from the Shannon sampling

theorem [6, 8]
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Fourier Series

• Consider a periodic time signal f(t), t ≥ 0, with period T :

f(t) = f(t + kT ), k = 0, 1, 2, . . ..

• Examples:

- sine wave

- square wave

- sawtooth wave

• Then f(t) may be expressed as a sum of (possibly infinitely

many) sines and cosines.

• Terminology

- T : period of signal

- ω0 = 2π/T : frequency in rad/sec

- f = 1/T : frequency in Hz

• Then

f(t) = a0 +

∞X
n=1

(an cos(nω0t) + bn sin(nω0t))

• More terminology

- Fourier coefficients: ai, bi

- DC term: a0

- fundamental: n = 1, sinusoids of frequency ω0

- harmonics: n > 1, sinusoids of frequency > ω0
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Examples of Fourier Series

• Example: A sine wave with period T

f(t) = sin

„
2π

T
t

«
is its own Fourier series expansion

• Unit amplitude square wave with period T has Fourier

expansion

f(t) =

∞X
n=1
n,odd

4

nπ
sin(nω0t)

where ω0 = 2π/T is the frequency of the square wave in

rad/sec (f = 1/T is the frequency in Hz)

- Fundamental: n = 1, 4
π sin(ω0t)

- 1st harmonic: n = 3, 4
3π sin(3ω0t)

- 2nd harmonic: n = 5, 4
5π sin(5ω0t)
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More Terms ⇒ Better Approximation

Fourier series of a square wave with period T = 2 seconds4.

0 0.5 1 1.5 2 2.5 3 3.5 4
−1.5

−1

−0.5

0

0.5

1

1.5

time, seconds

square      
fundamental 
1st harmonic
2nd harmonic
fund+1st+2nd

0 0.5 1 1.5 2 2.5 3 3.5 4
−1.5

−1

−0.5

0

0.5

1

1.5

time, seconds

square      
fundamental 
fund+...+5th

4Matlab m-file sq wave.m
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Frequency of a Signal

• Consider a periodic signal, such as a square wave, that has

“sharp corners”.

• In general, many high frequency terms are needed to construct

such “sharp corners”. In fact, any signal with relatively abrupt

changes will contain high frequencies, even if the changes are

not discontinuous.

• It is useful to sketch the location, and relative amplitude, of

the various frequency components of a signal

• Example: unit amplitude square wave

ω0 2ω0

4/π

4/3π

4/5π

3ω0 4ω0 5ω0
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Fourier Transform

• Most signals are not periodic. Nevertheless, it is possible to

think of “almost any” signal as the sum of sines and cosines

of all frequencies.

• Fourier transform [7]: Under certain conditions, we can write

F (ω) =
1

2π

Z ∞

−∞
f(t)e

jωt
dt

=
1

2π

Z ∞

−∞
f(t) cos(ωt)dt +

j

2π

Z ∞

−∞
f(t) sin(ωt)dt

• We will not need any of the details of the Fourier transform.

However, it is important to remember that time signals may

be given a frequency representation.

• Can visualize the frequency content of a signal by plotting

F (ω) as a function of frequency:

|F(ω)|

ω
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Fourier Transform of a Periodic Signal

• The Fourier transform of a sinusoid of frequency f Hz consists

of two “delta” functions located at frequencies ±f Hz.

• The frequency response of a square wave consists of “delta”

functions corresponding to all frequency components of the

Fourier series expansion of the square wave.

• Example5: Square wave of period T = 2 seconds, f = 0.5

Hz has frequency components at ±f,±3f,±5f, . . .. The

Fourier transform of a square wave may be approximated using

algorithms from [7]

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

frequency, Hz

approx. Fourier transform of square wave with period T = 2 sec, f = 0.5 Hz

5MATLAB m-file sq wave.m
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Frequency Response in Embedded Systems
Applications

• Many embedded systems for control, communications, and

signal processing applications – and anything to do with audio

or video – require knowledge of frequency content of signals.

• an important class of embedded processors – DSP chips –

has a special architecture that allows rapid computation of

the frequency response of a signal using the Fast Fourier

Transform (FFT) algorithm.

• Knowledge of frequency content is needed to design the

interface electronics for an embedded system. For example,

circuits that implement lowpass filters to remove unwanted

high frequencies.

• Frequency response ideas arise in the study of sampling and

aliasing, and in the use of Pulse Width Modulation (PWM) to

drive a DC motor.
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Shannon Sampling Theorem

• Recall Question 1: How fast must we sample to avoid aliasing?

• Shannon’s Theorem [6, 8]

- Consider a signal f(t) with frequency response F (ω).

- Suppose we sample f(t) periodically, with period T sec, and

define the Nyquist frequency ωN = π/T radians/second

(fN = 1/T Hz).

|F(ω)|

ωωΝ
-ωΝ

0

- If F (ω) = 0, for |ω| ≥ ωN , then it is possible to

reconstruct f(t) exactly from its samples f(kT ).

• Reconstruction requires an ideal lowpass filter :

o o
o o

o
o

o
A/D

  f(t)   f(kT)

sampler ideal LPF

  f(t)

• In practice, reconstruction can only be done approximately,

because perfect reconstruction requires all samples of the

signal, even those in the future!

• Nevertheless, this result tells how fast we must, in principle,

sample to avoid aliasing: at least twice as fast as the highest

frequency in the signal!
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Aliasing and the Wheel, VI

• Suppose that the wheel rotates at R rev/sec, or 2πR rad/sec.

• Then position coordinates

x(t) = cos(2πRt)

y(t) = sin(2πRt)

are sinusoids with frequency ω0 = 2πR.

• Nyquist says that to avoid aliasing we sample fast enough that

ω0 < ωN =
π

T
rad/sec ⇒ T <

1

2R
sec

• Same result as we derived before!

EECS461, Lecture 2, updated September 3, 2008 28



Nyquist and Embedded System Applications

• A frequency analysis is done of each analog signal that must

be measured with a sensor and represented in digital form.

• Although the signals will have energy at all frequencies, usually

the “information” lies in some low frequency range, say

ω < ω0.

• If possible, set the sample period T so that the Nyquist and

sampling frequencies satisfy

ωN =
π

T
> ω0 ⇔ ωs =

2π

T
> 2ω0

(usually, we set sampling frequency ωs > (5 − 10)ω0, twice

as fast is only the theoretical limit)
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Problems with Aliasing

• When is aliasing likely to be a problem?

• Almost all signals are corrupted by noise

- 60 Hz hum

- EMI from spark ignition

-

• Often the noise is at a higher frequency than the information

contained in the signal. If the noise is at a sufficiently high

frequency, it will get “aliased” to a lower frequency, and

corrupt the signal we are trying to measure.

• How to resolve?
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Frequency Response Functions

• a linear filter has a frequency response that determines how it

responds to periodic input signals

• Example: RC circuit

vi(t) vo(t)+
-

R

C

- frequency response function

H(jω) =
1

1 + jωRC

- magnitude, or gain

|H(jω)| =
1

√
1 + ω2R2C2

- phase

∠H(jω) = − tan
−1

(ωRC)

• After transients die out, the steady state response of the filter

to a sinusoid is determined by it frequency response function:

vi(t) = sin(ω0t) ⇒ vo(t) → |H(jω0)| sin(jω0t+∠H(jω0))
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Gain and Phase Plots

• Bode plots: gain and phase vs frequency6
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Bode plots of RC filters

Frequency  (rad/sec)

RC = 0.01
RC = 0.1
RC = 1
RC = 10

• Lowpass filter

- passes low frequencies

- attenuates high frequencies

- introduces phase lag

• Bandwidth of RC filter proportional to 1/RC

6MATLAB m-file RC filter.m
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Anti-Aliasing Filters

• Potential solution to aliasing problem: “anti-aliasing filters”

that are inserted before the sampler to remove high frequencies

o o
o o

o
o

o
A/Dsensor

physical

signal

 signal +
     noise

  digital
sequence

sampler
anti-alias
   filter

noise

+

• Commercial devices often have an AA filter built in, but may

need to build another one to configure the frequency response

for the application.

• Problems:

- may not have frequency separation between signal and noise

- phase lag in control applications
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