
1

L b 7 C t ll A N t kLab 7: Controller Area Network

2

Lab 7: Controller Area Network
• For a general description of CAN, see the

document posted on the course websitedocument posted on the course website
• Lab 7 has two parts:

– Part 1: you will write a program that communicatesPart 1: you will write a program that communicates
with a neighboring lab station to implement the
virtual spring-wall on adjacent haptic wheels
Part 2 “virtual chain”: Each haptic wheel is– Part 2 virtual chain : Each haptic wheel is
connected to adjacent wheels with virtual springs
and dampers. When all groups are online, moving
your wheel will push and pull on the wheels ofyour wheel will push and pull on the wheels of
your immediate neighbors, and if no one is holding
the other wheels, all the wheels in the lab can be
moved from just one lab stationmoved from just one lab station.

3

MPC5553 FlexCAN

• 3 FlexCAN2 Modules
– We will use FlexCAN “A”

• Up to 64 message buffers each
Holds queue of received messages and messages– Holds queue of received messages and messages
ready to be transmitted

• Maskable interruptp
– Jump to ISR when message is received

• Debugging mode available
– Programmable loop-back for self test operation

• See Chapter 22 of Reference Manual

4

MPC5553 FlexCAN Message Buffersg

• Each buffer holds the
message ID datamessage ID, data,
timestamp and flags

• Can vector to one of 20Can vector to one of 20
ISRs on receipt of
message

• We will set up one
receive and one transmit
buffer to share wheelbuffer to share wheel
angle and torque
information across the
bbus

5

FlexCAN Buffer Structure
Activates
the buffer

CODE value for receive (Rx) Buffers CODE value for transmit (Tx) Buffers

and
indicates
status

Before After Description

0000 - Buffer not active

CODE value for receive (Rx) Buffers
Before After Description

1000 - Buffer not ready

CODE value for transmit (Tx) Buffers

0010 0010 Buffer is full

0100 0100 Buffer is active
and empty

1100 1000 Buffer ready to Tx

1100 0100 Remote frame will
be Tx; Buffer

0110 0110 Overrun

0101 0010 An empty buffer
was filled

becomes Rx
1010 1010 Data frame will Tx

0011 0110 A full/overrun
buffer was filled

6

FlexCAN Buffer Structure
Field Description

Substitute Remote Fixed recessive bit used only in extended formatSubstitute Remote
Request (SRR)

Fixed recessive bit, used only in extended format.
- Tx buffers: It must be set to ‘1’ by the user.
- Rx buffers: It will be stored as received.

ID Extended (IDE) Should be set to ‘1’ for extended frames, ‘0’ for standard.

Remote Transmission
Request (RTR)

0: Current MB has a data frame to be transmitted
1: Current MB has a remote frame to be transmitted

LENGTH Length of data in bytes.g y

TIME STAMP Contains a copy of the free running timer, captured for Tx and Rx
frames at the time when the beginning of the Identifier fields
appears on the CAN bus.

Frame Identifier (ID) Standard format: 11 most significant bits (28 to 18) are used, others
are ignored. Extended format: all bits are used.

DATA Up to 8 bytes of data.

7

Transmission

• Transmit Process: CPU prepares a
buffer for transmission by:
– Write Control/Status word to deactivate TX

buffer (code = 1000)
– Write ID High and Low
– Write data to be transmitted into TX buffer
– Write Control/Status word to activate buffer

(code 1100), and TX length

8

Receptionp

• Receive Process: CPU prepares a
buffer for reception by:
– Write Control/Status word to deactivate RX

buffer (code =0000)
– Write ID High and Low
– Write Control/Status word to activate RX

buffer (code =0100)

9

Reading the Receive Message Bufferg g
• Activation of RX buffer causes the following to occur upon a

frame reception:
– Frame is transferred to the first (lowest entry) matching RX

message buffer.
– Value of the free running timer is written into the message buffer

time stamp fielde s a p e d
– ID field, Data field (8 bytes at most), and receive length are stored.
– Code field is updated, (Status flag is set in IFLAG register).

• The CPU reads a receive frame from the message buffer in the g
order of:
– Control/Status word (mandatory, as activates the internal lock for

this buffer)
ID (optional)– ID (optional)

– Data field words
– Free-running timer (optional)

10Additional FlexCAN Special Purpose
RegistersRegisters

• Module Configuration Register (MCR)
– Selects mode (normal, debug, low (g

power)
• Control Register (CTL)

– Establishes CAN clock according to g
Bosch specification for bus
synchronization

• Interrupt Mask Register and Interrupt
Flag Register
– Establishes ISR vector for received

messages
E d S Fl R i• Error and Status Flag Register

• See Chapter 22 in the Reference
Manual and flexcan.h/c

11

FlexCAN Error & Status Register ESR)

RST 0 0

BITERR[1:0] ACKERR CRCERR FORMERR STUFFERR TXWARN RXWARN

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IDLE TX/RX FCS[1:0] 0 BOFFINT ERRINT WAKEINT

THE ERROR CONDITIONS ARE THOSE SINCE THE
LAST TIME THIS REGISTER WAS READ. A

READ CLEARS ALL ERROR BITS.

RST: 0…….0

CRCERR: Cyclic Redundancy Check Error
• 0: No CRC error in last message

BITERR[1:0]: Transmit bit error
• Used to identify type of transmit errors
• 00 = No transmit bit error

• 1: CRC error in last message
FORMERR: Message Format Error
• 0: No format error in last message
• 1: Format error in last message• 00 = No transmit bit error

• 01 = At least one bit sent as dominant; received
as recessive

• 10 = At least one bit sent as recessive; received
as dominant

1: Format error in last message
STUFFERR: Bit Stuff Error
• 0: No bit errors in last message
• 1: Bit stuffing errors in last message

as dominant
• 11 = Not Used
ACKERR: Acknowledge Error
• 0: No ACK error since last read

TXWARN: Transmit Error Status Flag
• 0: Transmit error counter < 96
• 1: Transmit error counter > 96
RXWARN: Receive Error Status Flag

• 1: At least one ACK error since last read
g

• 0: Receive error counter < 96
• 1: Receive error counter > 96

12

Lab 7: Software

• Good news: FlexCAN driver software has
b itt f f L b 7been written for you for Lab 7:
– See flexcan.h and flexcan.c

Lab documentation describes the sequence of– Lab documentation describes the sequence of
operations required

• You need to write the software for the virtualYou need to write the software for the virtual
spring-wall and virtual chain
– Use, DEC, FQD, PWM from previous labs

13

Lab 7: Virtual Spring-Wall Softwarep g

• DEC ISR of User A reads its wheel angle in degrees
as a 32 bit float (use a 1kHz interrupt frequency) andas a 32-bit float (use a 1kHz interrupt frequency) and
transmits a 4-byte wheel angle message onto the
CAN bus.

• User B's CAN message-received ISR is called when
User A's message is received

Extracts the wheel angle– Extracts the wheel angle
– Calculates the virtual spring-wall torque in N-mm
– Transmits a 4-byte message with the torque value

• User A's CAN message-received ISR updates the
motor torque with the value received from User B.

14

Lab 7: Virtual Chain Software

ωi, θi ω, θ ωj, θj
• Each wheel does this:

Read the wheel angle

i, i , j, j

– Read the wheel angle.
– Estimate the wheel velocity.
– Transmit an 8-byte message with the wheel angle and velocity,

each as 32-bit float valueseach as 32 bit float values.
– Compute the torque based on the most recent wheel angles

and velocities from the two neighboring lab stations.
– Update the motor torque.Update the motor torque.

