Lab 5: Interrupts, Timing, and
Frequency Analysis of PWM Signals

Lab 5: Interrupts and Timing

 Thus far, we have not worried about time in
our real-time code

— Almost all real-time code involves sampling (recall
our discussion about sampling and aliasing)

« MPC5553 incorporates several timers that
can be configured to generate periodic
interrupt requests (IRQ)

— Application code stops what its doing and control
transfers to an interrupt service routine (ISR); ISR
may sample a signal (using the eQADC, for

example) or generate a signal (using the eMIOS
or eTPU, for example)

— Interrupt requests may also be generated by an
= external event

_ InterruptService

Program Instruction

Save processor state
and jump to ISR

Program Instruction

IRQ
Program Instruction
Program Instruction
Last ISR instruction is Interrupt Service Routine

“return from interrupt.”
Restore processor state
and jump back

ISR Instruction

ISR Instruction

ISR Instruction

rfi

MPC5553 IRQ and Exception Sources

¥

$ Software

1 Watchdog

L 2

1 ECC Error

> 66 DMA

» 2PLL

L 2

6 IRQ Pins

24 eMIOS

A i

65 eTPU

- 31 eQADC

L J

20 DSPI

> 2 eSCI

> 60 FlexCAN

Interrupt Request Sources

Interrupt Controller
286 Interrupt Request Sources

Exception Sources

CPU Core

Lab 5: Basic Idea (see Lecture 6)

Generate a sine wave which Sine Modulated
will be periodically sampled Wave PWM

: Signal
— S|gna| generator Generator :> MPC5553:>
— “C” sine function
— Look-up table

Create a PWM signal with duty

cycle equivalent to the sampled

value (0-100% in our example)

Appropriately filter the
modulated PWM signal to
recover the sine wave
What's the point?
— Learn to use the DEC timer
— RT S/W overhead issues
— Demonstrate motor response

04rF

tO PWM E: : ; ! fime. EIEecnn:s :

Lab 5: Basic Idea (see Lecture 6)

requancy reEponsa of BWW sigral

« Suppose we sample at
0.1 second intervals and
generate a 10 Hz PWM
(we’ll use much higher
frequency and faster
sampling in the lab)

* Neglecting the DC bias 7 |
(rescale from 0 to10 volts | 1‘/

to -5 to 5 volts), |
frequency spectrum of e
PWM signal has

components at +/- 0.1 Hz,

and multiples of the 10

Hz switching frequency

Fa=
=

Lab 5: Basic Idea (see Lecture 6)

Now all we have to dois | |

low-pass filter the high 2|

frequency components of .|

our signal to reconstruct - ;

the original sine wave —
Filter with unity gain at S
0.1 Hz; very small gainat *] i
10 Hz ot lu'é’b;:"

Lab 5: DEC (Decrementer)

* Timers are not peripheral
devices like the eMIOS or it we-S—

[T ; ok
[RLe A oL = FRICE WAL
| i1 {Time Ealee Clock)

_________________________ e el [
eT P U .‘J A core_tholk
Watchcog timer events bazed on ore of the TB bits (

selected by the Book E-defined TCR[WP] concatenated - ,

— P a rt Of the “CO re” processor with the EIS-defied TCRIWPEXT] (WPEXT|WP). !_. i

— See "e200z6 PowerPC™ Core’ sl b ecel esoed enrs omesirens 4+
Reference Manual for details ' L=

Auta-reload
A4

° Fixed I nte rval Timer Decrementer event = 01 detect 5 i
® “WatChdog” Tl mer Figure 2-23. Relationship of Timer Facil?t':es to the Time Base

e Decrement Timer
— General software timer

— 32-bit register counts down and
generates an IRQ

— Automatically reloaded from
DECAR register

Lab 5: Software

Use |/O software you developed in labs 3 and 4

— gadc.h and gadc.c
* Read the input sine wave

- mios.handmios.c
« Generate the PWM signal
Code required to initialize the DEC and set up
Interrupt service routines
- isr.handisr.c
— Routines are written for you

Three ISRs required
— Read duty cycle from signal generator
— Calculate duty cycle using C function
— Calculate duty cycle using look-up table

Isr.c Initializes Decrementer

/* from example by S.Mihalik see e200z6 Reference Manual for register defs */
asm void init DEC(long count) {
#pragma unused (count)

/* count 1s r3 */
wrteeil O

mtdec r3
mtdecar r3
lis rQ,
mttcr r0
1i rQ,
mthid0 r0
lis r4,

ori r4,
mtivorlO r4

/*
/*
/*
/*
0x0440 /*
/*

*

0x4000 /*

dec isr@h
r4, dec isr@l

eei: enable extern interrupts */
Stop interrupts if enabled */
Move to DEC register */
Load same initial value to DECAR */
Enable DEC interrupt and auto-reload */
0000 0100 0100 0000
DIE = 1 decrementer interrupt enable
ARE = 1 auto-reload enable */

Enable Time Base and Decrementer */

/* IVOR10 contains interrupt vector for DEC */

Routine enables interrupts and writes a count value to DECAR register

(assembly code - more about this later)
 init DEC (count) called by

init interrupts(void (*fctn ptr) (), int freq)

plt interrupts (isrB,

Example: Call your ISR by invoking

1000); /* Run 1isrB at 1000 Hz */

10

IsSrA: Read Duty Cycle from Signal
- Generator

« See lab assignment for details
* ISR frequency: 20 kHz
« Sine wave: 1 kHz, 1 to 4 volts, external input
- PWM:
— 20 kHz and 60 kHz frequency (DIP selectable)
— Duty cycle proportional to voltage input
* Procedure:
— Turn on LED 0.
— Read ANO analog input
— Calculate duty cycle

— Set the PWM duty cycle
{g)— Turn off LED 0.

12

isrB: Calculate Duty Cycle from sin()

See lab assignment for details
ISR frequency: 1 kHz

Sine wave: 100 Hz, numerically calculated by
sin() function

PWM: 60 kHz, 40% to 60% duty cycle

Procedure:
— Turn on LED 0.

— Calculate sin(2*pi *i1/10), i.e., 10 times per
period, hence i is incremented by 1 each
iInvocation.

— Set the PWM duty cycle
o= — Turn off LED 0.

IsrC: Calculate Duty Cycle Table Look-up

» See lab assignment for details

* Essentially the same as isrB, except
pre-calculate sin() and store as a look-
up table

 What's the advantage?

13

