Lab 5: Interrupts, Timing, and
Frequency Analysis of PWM Signals




Lab 5: Interrupts and Timing

 Thus far, we have not worried about time in
our real-time code

— Almost all real-time code involves sampling (recall
our discussion about sampling and aliasing)

« MPC5553 incorporates several timers that
can be configured to generate periodic
interrupt requests (IRQ)

— Application code stops what its doing and control
transfers to an interrupt service routine (ISR); ISR
may sample a signal (using the eQADC, for

example) or generate a signal (using the eMIOS
or eTPU, for example)

— Interrupt requests may also be generated by an
= external event
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Lab 5: Basic Idea (see Lecture 6)

Generate a sine wave which Sine Modulated
will be periodically sampled Wave PWM

: Signal
— S|gna| generator Generator :> MPC5553:>
— “C” sine function
— Look-up table

Create a PWM signal with duty

cycle equivalent to the sampled

value (0-100% in our example)

Appropriately filter the
modulated PWM signal to
recover the sine wave
What's the point?
— Learn to use the DEC timer
— RT S/W overhead issues
— Demonstrate motor response
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Lab 5: Basic Idea (see Lecture 6)

requancy reEponsa of BWW sigral

« Suppose we sample at
0.1 second intervals and
generate a 10 Hz PWM
(we’ll use much higher
frequency and faster
sampling in the lab)

* Neglecting the DC bias 7 |
(rescale from 0 to10 volts | 1‘/

to -5 to 5 volts), |
frequency spectrum of e
PWM signal has

components at +/- 0.1 Hz,

and multiples of the 10

Hz switching frequency
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Lab 5: Basic Idea (see Lecture 6)

Now all we have to dois | |

low-pass filter the high 2|

frequency components of .|

our signal to reconstruct - ;

the original sine wave —
Filter with unity gain at S
0.1 Hz; very small gainat  *] i
10 Hz ot lu'é’b;:"




Lab 5: DEC (Decrementer)

* Timers are not peripheral
devices like the eMIOS or it we-S—
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e Decrement Timer
— General software timer

— 32-bit register counts down and
generates an IRQ

— Automatically reloaded from
DECAR register




Lab 5: Software

Use |/O software you developed in labs 3 and 4

— gadc.h and gadc.c
* Read the input sine wave

- mios.handmios.c
« Generate the PWM signal
Code required to initialize the DEC and set up
Interrupt service routines
- isr.handisr.c
— Routines are written for you

Three ISRs required
— Read duty cycle from signal generator
— Calculate duty cycle using C function
— Calculate duty cycle using look-up table




Isr.c Initializes Decrementer

/* from example by S.Mihalik see e200z6 Reference Manual for register defs */
asm void init DEC(long count) {
#pragma unused (count)

/* count 1s r3 */
wrteeil O

mtdec r3
mtdecar r3
lis rQ,
mttcr r0
1i rQ,
mthid0 r0
lis r4,

ori r4,
mtivorlO r4

/*
/*
/*
/*
0x0440 /*
/*

*

0x4000 /*

dec isr@h
r4, dec isr@l

eei: enable extern interrupts */
Stop interrupts if enabled */
Move to DEC register */
Load same initial value to DECAR */
Enable DEC interrupt and auto-reload */
0000 0100 0100 0000
DIE = 1 decrementer interrupt enable
ARE = 1 auto-reload enable */

Enable Time Base and Decrementer */

/* IVOR10 contains interrupt vector for DEC */

Routine enables interrupts and writes a count value to DECAR register

(assembly code - more about this later)
 init DEC (count) called by

init interrupts(void (*fctn ptr) (), int freq)

plt interrupts (isrB,

Example: Call your ISR by invoking

1000); /* Run 1isrB at 1000 Hz */
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IsSrA: Read Duty Cycle from Signal
- Generator

« See lab assignment for details
* ISR frequency: 20 kHz
« Sine wave: 1 kHz, 1 to 4 volts, external input
- PWM:
— 20 kHz and 60 kHz frequency (DIP selectable)
— Duty cycle proportional to voltage input
* Procedure:
— Turn on LED 0.
— Read ANO analog input
— Calculate duty cycle

— Set the PWM duty cycle
{g)— Turn off LED 0.
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isrB: Calculate Duty Cycle from sin()

See lab assignment for details
ISR frequency: 1 kHz

Sine wave: 100 Hz, numerically calculated by
sin() function

PWM: 60 kHz, 40% to 60% duty cycle

Procedure:
— Turn on LED 0.

— Calculate sin( 2*pi *i1/10), i.e., 10 times per
period, hence i is incremented by 1 each
iInvocation.

— Set the PWM duty cycle
o= — Turn off LED 0.




IsrC: Calculate Duty Cycle Table Look-up

» See lab assignment for details

* Essentially the same as isrB, except
pre-calculate sin() and store as a look-
up table

 What's the advantage?
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