
1

Lab 5: Interrupts, Timing, and
Frequency Analysis of PWM Signals

2

Lab 5: Interrupts and Timing
• Thus far, we have not worried about time in
our real-time code
– Almost all real-time code involves sampling (recall
our discussion about sampling and aliasing)

• MPC5553 incorporates several timers that
can be configured to generate periodic can be configured to generate periodic
interrupt requests (IRQ)
– Application code stops what its doing and control
transfers to an interrupt service routine (ISR); ISR
may sample a signal (using the eQADC, for
example) or generate a signal (using the eMIOS
or eTPU, for example)

– Interrupt requests may also be generated by an
external event

3

Interrupt Service

Program Instruction

Program Instruction

…

Program Instruction

Program Instruction

IRQ

Save processor state
and jump to ISR

Interrupt Service Routine

ISR Instruction

ISR Instruction

…

ISR Instruction

rfi

Last ISR instruction is
“return from interrupt.”
Restore processor state

and jump back

4

MPC5553 IRQ and Exception Sources

5

Lab 5: Basic Idea (see Lecture 6)
• Generate a sine wave which

will be periodically sampled
– Signal generator
– “C” sine function
– Look-up table

• Create a PWM signal with duty
cycle equivalent to the sampled
value (0-100% in our example)

Signal
Generator

MPC5553

Sine
Wave

Modulated
PWM

value (0-100% in our example)
• Appropriately filter the

modulated PWM signal to
recover the sine wave

• What’s the point?
– Learn to use the DEC timer
– RT S/W overhead issues
– Demonstrate motor response
to PWM

6

Lab 5: Basic Idea (see Lecture 6)

• Suppose we sample at
0.1 second intervals and
generate a 10 Hz PWM
(we’ll use much higher
frequency and faster
sampling in the lab)

• Neglecting the DC bias • Neglecting the DC bias
(rescale from 0 to10 volts
to –5 to 5 volts),
frequency spectrum of
PWM signal has
components at +/- 0.1 Hz,
and multiples of the 10
Hz switching frequency

7

Lab 5: Basic Idea (see Lecture 6)

• Now all we have to do is
low-pass filter the high
frequency components of
our signal to reconstruct
the original sine wave

• Filter with unity gain at
0.1 Hz; very small gain at
10 Hz

8

Lab 5: DEC (Decrementer)

• Timers are not peripheral
devices like the eMIOS or
eTPU
– Part of the “core” processor
– See “e200z6 PowerPC™ Core”
Reference Manual for details

• Fixed Interval Timer • Fixed Interval Timer
• “Watchdog” Timer
• Decrement Timer

– General software timer
– 32-bit register counts down and
generates an IRQ

– Automatically reloaded from
DECAR register

9

Lab 5: Software

• Use I/O software you developed in labs 3 and 4
– qadc.h and qadc.c

• Read the input sine wave
– mios.h and mios.c

• Generate the PWM signal

• Code required to initialize the DEC and set up • Code required to initialize the DEC and set up
interrupt service routines
– isr.h and isr.c
– Routines are written for you

• Three ISRs required
– Read duty cycle from signal generator
– Calculate duty cycle using C function
– Calculate duty cycle using look-up table

10

isr.c Initializes Decrementer
/* from example by S.Mihalik see e200z6 Reference Manual for register defs */
asm void init_DEC(long count) {
#pragma unused (count)
/* count is r3 */ /* eei: enable extern interrupts */

wrteei 0 /* Stop interrupts if enabled */
mtdec r3 /* Move to DEC register */
mtdecar r3 /* Load same initial value to DECAR */
lis r0, 0x0440 /* Enable DEC interrupt and auto-reload */

/* 0000 0100 0100 0000
* DIE = 1 decrementer interrupt enable
* ARE = 1 auto-reload enable */

mttcr r0mttcr r0
li r0, 0x4000 /* Enable Time Base and Decrementer */
mthid0 r0
lis r4, dec_isr@h
ori r4, r4, dec_isr@l
mtivor10 r4 /* IVOR10 contains interrupt vector for DEC */

}

• Routine enables interrupts and writes a count value to DECAR register
(assembly code - more about this later)

• init_DEC(count) called by
init_interrupts(void (*fctn_ptr)(), int freq)

• Example: Call your ISR by invoking
init_interrupts(isrB, 1000); /* Run isrB at 1000 Hz */

11

isrA: Read Duty Cycle from Signal
Generator

• See lab assignment for details
• ISR frequency: 20 kHz
• Sine wave: 1 kHz, 1 to 4 volts, external input
• PWM:

– 20 kHz and 60 kHz frequency (DIP selectable)– 20 kHz and 60 kHz frequency (DIP selectable)
– Duty cycle proportional to voltage input

• Procedure:
– Turn on LED 0.
– Read AN0 analog input
– Calculate duty cycle
– Set the PWM duty cycle
– Turn off LED 0.

12

isrB: Calculate Duty Cycle from sin()

• See lab assignment for details
• ISR frequency: 1 kHz
• Sine wave: 100 Hz, numerically calculated by
sin() function

• PWM: 60 kHz, 40% to 60% duty cycle• PWM: 60 kHz, 40% to 60% duty cycle
• Procedure:

– Turn on LED 0.
– Calculate sin(2*pi * i / 10), i.e., 10 times per
period, hence i is incremented by 1 each
invocation.

– Set the PWM duty cycle
– Turn off LED 0.

13

isrC: Calculate Duty Cycle Table Look-up

• See lab assignment for details
• Essentially the same as isrB, except
pre-calculate sin() and store as a look-
up tableup table

• What’s the advantage?

