
1

Lab 4: Pulse Width Modulation and
Introduction to Simple Virtual Worlds

(PWM)

2

Virtual Wall and Virtual Spring-Mass

•  Virtual Spring-Mass
–  Puck attached to a reference point by a

virtual spring with constant k
–  If the puck is moved to either side,

spring exerts a restoring force Fs = -kx
–  We will use a motor and encoder to

create a virtual torsional spring

•  Virtual Wall
–  On one side of a virtual wall (x < xo),

wheel spins freely (motor applies no
force)

–  Once the wheel rotates into (x > xo),
motor applies a force

Virtual Spring-Mass (top)
and Virtual Wall

Equations

•  Tw = KΘw

•  Tw = Wheel Torque, Nmm

•  K = Spring Constant, Nmm/degree
•  Θw = Displacement, degrees

•  Embedded system units are encoder
counts and PWM duty cycle!
–  (Counts/Encoder Rev)(Wheel Rev/Degree)

= Counts/Degree

3

4

Duty Cycle-to-Motor Torque

50% 100%

Duty Cycle (%)

971

0

-971

35%-65% DC
+/- 631 Nmm

M
ot

or
 T

or
qu

e
(N

m
m

)
Motor Limits

Tm = 1.942(DC-.5) Nm

5 Enhanced Modular Input/Output
Subsystem (eMIOS)

•  Use eMIOS to generate Pulse Width Modulation (PWM) signal to the motor
–  24 channels with many different operating modes
–  See Chapter 17 MPC5553-RM

•  eMIOS Operation Modes
–  Timer Mode
–  Input Channel Modes

•  Single Action Input Capture
•  Input Pulse Width Measurement
•  Input Period Measurement
•  Pulse/Edge Accumulation
•  Pulse Edge Counting
•  Quadrature Decode

–  Output Channel Modes
•  Single Action Output Compare
•  Double Action Output Compare
•  Output Pulse Width Modulation
•  Output Pulse Width and Frequency Modulation
•  Center Aligned Output Pulse Width Modulation

6

eMIOS PWM
•  Programming data

registers A and B
configure PWM duty
cycle
–  Example: 10% DC:

•  A = 10; B = 100
•  Resolution = 1%

•  Note that the value in
register B is the pulse
width (in clock ticks)
–  Resolution and frequency

are related

7

PWM Frequency Configuration
•  2 “prescalers” located in the

module control register (MCR)
and the channel control register
(CCR) determine the PWM
frequency
–  Global Prescaler

•  GPRE: eMIOS_MCR[16:23] global
prescaler divides system clock by 1 to
256 (see Table 17-7)

–  System clock is 40MHz
–  We want PWM frequency = 20000

HZ
–  Channel Prescaler

•  UCPRE: eMIOS_CCR[4:5]
•  Additional timebase scaling (divide by

1 to 4)

8

Programming the eMIOS

•  Like other peripherals, the eMIOS must
be configured by writing commands to
special purpose registers
– eMIOS Module Configuration Register

(MCR)
– eMIOS Channel Control Register (CCR)
– eMIOS Channel A/B Data Registers

(CADR, CBDR)
•  Structure to access these registers is

contained in MPC5553.h

9

EMIOS_MCR

•  GPRE: Global prescaler - selects the clock
divider as shown in Table 17-7

•  GPREN: Prescaler enable (enabled = 1)
•  GTBE: Timebase enable (enabled = 1)

10

EMIOS_CCR

•  See Table 17-10
•  UCPRE: Selects clock divider

–  0b00 = divide by 1
–  0b11 = divide by 4

•  UCPREN: Prescaler enable (enabled = 1)
•  BSL: Bus select (use internal counter, BSL = 0b11)
•  EDPOL: Edge polarity (trigger on falling edge = 0)
•  MODE: Selects the mode of operation. See Table 17-11 (we want output pulse

width and frequency modulation with next period update)

11

Lab 4 Software

•  As usual, you are given mios.h with
function prototypes; you will write the
functions in mios.c, plus application
code in lab4.c

•  Four functions are required:
– Init_MIOS_clock
– Init_PWM
– Set_PWMPeriod
– Set_PWMDutyCycle

12

Lab 4 Software
•  Init_MIOS_clock, Init_PWM:

–  Configure the MCR, CCR and set initial values for the data
registers

–  Use the structure defined in MPC5553.h to access the registers
–  Initialize the data registers to 50% duty cycle (zero torque

output)
–  Don’t forget to turn on the output pads for the PWM channel

/* Init data registers A and B for 50% duty cycle */
EMIOS.CH[miosChannel].CADR.R = newPeriod>>1; /* divide by 2 */
EMIOS.CH[miosChannel].CBDR.R = newPeriod;

 /* Turn on the output pads for our PWM channel */
 SIU.PCR[179 + miosChannel].B.PA = 0b11;
 SIU.PCR[179 + miosChannel].B.OBE = 0b1;

13

Lab 4 Software

•  Set_PWMPeriod,
Set_PWMDutyCycle
–  24 bit values written to

data registers CADRn,
CBDRn determine period
and duty cycle

–  Values are NOT units of
time

•  “Clock Ticks” per period
•  For 40MHz system clock:

counts_per_period =
40000000/PWM_FREQ

14

Lab 4 Assignment

•  Use everything you’ve learned so far:
–  Read a duty cycle value from a QADC pin and

output a PWM signal to the oscilloscope
–  Drive the motor and haptic wheel with the PWM

signal
•  Experiment with different frequencies and observe motor

response
–  What do you expect to happen at 2Hz? 20KHz?

•  Output a constant 200 Nmm torque
–  Implement the virtual spring and virtual wall using

FQD function of the eTPU and the eMIOS PWM
•  Experiment with different values of the spring constant

and observe the effect

15

Lab 4 Assignment

•  You will need to write the following code
(template files are provided)
–  worlds.h and worlds.c

•  Code for the virtual spring and virtual wall
•  As usual, prototypes are contained in worlds.h; you write

the code for these functions in worlds.c

–  motor.h and motor.c
•  Code to generate motor output torque

–  lab4.c
•  Read the encoder, calculate the restoring torque and

output the appropriate PWM to the motor

