
1

Lab 2: Quadrature Decoding
using the eTPU

2

Lab 2: Quadrature Decode
•  Use “slow mode” quadrature decode
•  Read the optical encoder and update a 16-bit

position count register to track wheel position
–  in counts and
–  as angular position

•  Use the debugger to verify wheel position
•  Output position to 16 LEDs and demonstrate

overflow and underflow

3

Lab 2: eTPU

•  Time Processing Unit
(TPU) is a co-
processor designed
for timing control.

•  TPU operates in
parallel with the CPU

•  Built-in functions or
user-programmable
out of dedicated RAM

4

Lab 2: eTPU
•  Freescale provides

special purpose eTPU
software for many
different functions
–  AC and DC motor control
–  Automotive applications

including crankshaft
position sensing, spark
and fuel control

–  Quadrature decode
•  MPC5553 has built-in

quadrature decode on a
different peripheral device
(eMIOS) – but we’ll use
the eTPU

5

Typical eTPU Example

Ignition control can
be accomplished
without CPU
intervention

6

Files and Documents
• Reference material you will want to
read:
– Freescale Application Note AN2842: Using the

Quadrature Decoder (QD) eTPU Function
•  Operating modes, performance
•  Application programming examples: initialization, value

return functions

– MPC5553 Microcontroller Reference Manual
•  Section 18.4 Memory Map/Register Definition

7

Files and Documents
• Freescale files that you will have to include in

your code:
– etpu_set.h /* Auto-generated etpu code */
– etpu_util.h /* Function prototypes */
– etpu_util.c /* Functions */
– etpu_qd.h /* fqd function prototypes */
– etpu_ppa.h /* Pulse and period accumulation
function prototypes */

8

Files and Documents
•  You are given fqd.h, function prototype header file
•  You need to write the functions in fqd.c
•  You are given a template file fqd_template.c

–  init_FQD(); /* initialize the eTPU */
–  ReadFQD_pc(); /* read encoder position */
–  updateCounter(); /* update wheel position */
–  updateAngle(); /* convert counts to angle */

•  Also need to write
– Lab2.c /* read the encoder position, update
position count and output the result to the
LED */

– Lab2angle.c /* convert count to angle */

9

Notes on Casting

•  We need to read the position count
register and accumulate a running
count of wheel position:

NEW_TOTAL = LAST_TOTAL + (CURR_FQDPC - PREV_FQDPC);

• NEW_TOTAL and LAST_TOTAL are
signed 32-bit integers

• CURR_FQDPC and PREV_FQDPC are
unsigned 16-bit integers*

•  Will this code work?
* Count register is really 24 bits … we’ll use only the lower 16 bits to make life difficult and demonstrate a point

10

Notes on Casting
•  Recall integral promotion:

–  Before basic operation (+ - * /), both operands converted to
same type

–  The smaller type is “promoted” to the larger type
–  Value of promoted type is preserved

•  Suppose
–  LAST TOTAL = 0x00007FFF
–  CURR FQDPC = 0xFFFF
–  PREV FQDPC = 0x0000

•  CURR FQDPC - PREV FQDPC = 0xFFFF
•  CURR FQDPC - PREV FQDPC promoted to 32-bit

signed integer = 0x0000FFFF
•  Wrong! Large positive value, not one step negative

1 step
backwards

11

Notes on Casing
•  Do this:

NEW_TOTL = LAST_TOTAL + (int16_t)(CURR_FQDPC - PREV_FQDPC);

•  First cast CURR_FQPC and PREV_FQPC as 16-
bit signed integers

•  The result will be sign-extended and summed
with the 32-bit signed value, LAST_TOTAL

0x0007FFF + 0xFFFFFFFF = 0x0007FFE

-1 (base 10) The correct answer:
1 step backwards

