Lab 2: Quadrature Decoding
using the eTPU

Lab 2: Quadrature Decode

Use “slow mode” quadrature decode

Read the optical encoder and update a 16-bit
position count register to track wheel position
— In counts and

— as angular position

Use the debugger to verify wheel position

Output position to 16 LEDs and demonstrate
overflow and underflow

Lab 2: eTPU

Time Processing Unit
(TPU) is a co-
processor designed
for timing control.

TPU operates in
parallel with the CPU

Built-in functions or
user-programmable
out of dedicated RAM

Channel m Channel

Lab 2: eTPU

Freescale provides
special purpose eTPU
software for many
different functions
— AC and DC motor control
— Automotive applications
including crankshaft
position sensing, spark
and fuel control
— Quadrature decode

« MPC5553 has built-in
quadrature decode on a
different peripheral device
(eMIOS) — but we’ll use
the eTPU

2 eTPU Product Summary Page - Microsoft Internet Explorer ‘

File Edit View Favorites Tools Help

=101

|

Address

@ http:/fwww.freescale.comr fwebapp/sps/site /prod_simmary.jsp?code=eTPU

jGo

Set1
General

Pulse Width Mcdulstion
Inpui Capture
Output Compare

Pulse & Frequency
Messurement

FPuls=/Pericd
Acaumulste

Stepoer Motor

Queued Dutput Match

Gzl Puipuse 1O

SPI

UART

Synchronized PWM

<

Some Ssat 1 Functions
Angle Clodck

Cam Decode

Fuel Control

Spark Control

Angle Pulse

Setd
DC Motors

Some Set 1 Functions

Setd
AC Motors

Some Set 1 Functions

Motor Speed Controller Motor Speed Controller

Quadrsture Decoder

Hall Sensar Nemndes

Motor Control PWM
Generstor

Analog Sensing

Current Controller
DC Bus Break Control

Quadraiure Decoder &
Commutator

Hall Sensor Decode
using Angle Mode

Quadrature Decoder

Hsll Decoder

Motor Control PWM
Generstor

Analog Sensing and
Current Processing

ACIM V/Hz Control

DC Bus Bizuk Conbivl

ACIM Vector Control

PMSM Vector Control

eTPU Functions Library

=

_

Typical eTPU Example

’< |_| |_| Signal PIN Input
= Conditioni 4":
0 Condtioning Channel
PIN
Sianal Input
5 0 — SITTUNTLSTUTUTUTUULY | Sonaioning L1 channes
™ Logic & Driver
Sianal PIN
/T % Clc?::itioning I, Output
| \—{ Logic & Driver Channel
o "SPARK PLUG _
Ignition control can YLZZA [PIN | [Gutput
. = Logic & Driver - Channel
be accomplished FUEL INJECTOR
. | VAL | oanat Output
without CPU - comaonny | et — QP
. . FUEL INJECTOR
Intervention —ZZZZ7] [Sgna
|_ N\~ Conditioning ‘4@¢ Output
- Logic & Driver Channel

C oM

Files and Documents

» Reference material you will want to

read:

— Freescale Application Note AN2842: Using the
Quadrature Decoder (QD) eTPU Function
» Operating modes, performance
» Application programming examples: initialization, value
return functions
— MPC5553 Microcontroller Reference Manual
« Section 18.4 Memory Map/Register Definition

Files and Documents

* Freescale files that you will have to include in

your code:

- etpu set.h /* Auto-generated etpu code */
—etpu util.h /* Function prototypes */
—etpu util.c /* Functions */

—etpu gd.h /* fgd function prototypes */

—etpu ppa.h /* Pulse and period accumulation
function prototypes */

Files and Documents

* You are given fgd.h, function prototype header file
* You need to write the functions in £gd. c
* You are given a template file fgd template.c

— init FQD(); /* initialize the eTPU */

— ReadFQD pc(); /* read encoder position */

— updateCounter(); /* update wheel position */

— updateAngle () ; /* convert counts to angle */

* Also need to write

— Lab2.c /* read the encoder position, update
position count and output the result to the
LED */

— Lab2angle.c /* convert count to angle */

Notes on Casting

* We need to read the position count
register and accumulate a running
count of wheel position:

NEW TOTAL = LAST TOTAL + (CURR FQDPC - PREV FQDPC);

« NEW TOTAL and LAST TOTAL are
signed 32-bit integers

« CURR_FQDPC and PREV FQDPC are
unsigned 16-bit integers™

 Will this code work?

* Count register is really 24 bits ... we’ll use only the lower 16 bits to make life difficult and demonstrate a point

10

Notes on Casting

Recall integral promotion:

— Before basic operation (+ - * /'), both operands converted to
same type

— The smaller type is “promoted” to the larger type
— Value of promoted type is preserved

Suppose

— LAST TOTAL = 0xO0007FFF

— CURR FQDPC = OxFFFF |1 step

— PREV FQDPC = 0x0000 [|backwards
CURR FQDPC - PREV FQDPC = OxFFFF

CURR FQDPC - PREV FQDPC promoted to 32-bit
signed integer = 0x0000FFFF

Wrong! Large positive value, not one step negative

11

Notes on Casing

* Do this:
NEW TOTL = LAST TOTAL + (intl6 t) (CURR FQDPC - PREV FQDPC) ;
* First cast CURR FQPC and PREV FQPC as 16-
bit signed integers

* The result will be sign-extended and summed
with the 32-bit signed value, LAST TOTAL

0x0007FFF + OxFFFFFFFF = 0x0007FFE

-1 (base 10) The correct answer:
1 step backwards

