
e200z6RM
6/2004
Rev. 0

e200z6 PowerPC™ Core
Reference Manual

rxzb30
ForwardLine

rxzb30
fslcopyrightline

rxzb30
freescalecolorjpeg

rxzb30
hibbertleft

rxzb30
disclaimer

rxzb30
freescalecolorjpeg

Contents
Section
Number Title

 Page
Number

Contents iii
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Contents
Paragraph
Number Title

 Page
Number

Contents

Chapter 1
e200z6 Overview

1.1 Overview of the e200z6... 1-1
1.1.1 Features.. 1-3
1.2 Programming Model .. 1-4
1.2.1 Register Set .. 1-4
1.3 Instruction Set .. 1-6
1.4 Interrupts and Exception Handling .. 1-7
1.4.1 Exception Handling ... 1-8
1.4.2 Interrupt Classes .. 1-8
1.4.3 Interrupt Types... 1-9
1.4.4 Interrupt Registers.. 1-9
1.5 Microarchitecture Summary .. 1-12
1.5.1 Instruction Unit Features ... 1-13
1.5.2 Integer Unit Features ... 1-13
1.5.3 Load/Store Unit (LSU) Features.. 1-14
1.5.4 L1 Cache Features ... 1-14
1.5.5 MMU Features... 1-14
1.5.6 e200z6 System Bus (Core Complex Interface) Features 1-15
1.5.7 Nexus3 Module Features ... 1-15
1.6 Legacy Support of PowerPC Architecture... 1-15
1.6.1 Instruction Set Compatibility... 1-16
1.6.1.1 User Instruction Set ... 1-16
1.6.1.2 Supervisor Instruction Set.. 1-16
1.6.2 Memory Subsystem ... 1-16
1.6.3 Exception Handling ... 1-16
1.6.4 Memory Management.. 1-17
1.6.5 Reset... 1-17
1.6.6 Little-Endian Mode.. 1-17

Contents
Paragraph
Number Title

Page
Number

iv e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Chapter 2
Register Model

2.1 PowerPC Book E Registers ... 2-3
2.2 e200z6-Specific Registers.. 2-5
2.3 Processor Control Registers... 2-7
2.3.1 Machine State Register (MSR) .. 2-7
2.3.2 Processor ID Register (PIR) .. 2-9
2.3.3 Processor Version Register (PVR)... 2-9
2.3.4 System Version Register (SVR)... 2-10
2.4 Registers for Integer Operations .. 2-11
2.4.1 General-Purpose Registers (GPRs).. 2-11
2.4.2 Integer Exception Register (XER)... 2-11
2.5 Registers for Branch Operations.. 2-12
2.5.1 Condition Register (CR) .. 2-12
2.5.1.1 CR Setting for Integer Instructions.. 2-14
2.5.1.2 CR Setting for Store Conditional Instructions... 2-14
2.5.1.3 CR Setting for Compare Instructions .. 2-14
2.5.2 Link Register (LR)... 2-15
2.5.3 Count Register (CTR).. 2-16
2.6 SPE and SPFP APU Registers ... 2-16
2.6.1 Signal Processing/Embedded Floating-Point Status and Control

Register (SPEFSCR).. 2-16
2.6.2 Accumulator (ACC)... 2-19
2.7 Interrupt Registers.. 2-19
2.7.1 Interrupt Registers Defined by Book E.. 2-19
2.7.1.1 Save/Restore Register 0 (SRR0).. 2-20
2.7.1.2 Save/Restore Register 1 (SRR1).. 2-20
2.7.1.3 Critical Save/Restore Register 0 (CSRR0) .. 2-20
2.7.1.4 Critical Save/Restore Register 1 (CSRR1) .. 2-21
2.7.1.5 Data Exception Address Register (DEAR).. 2-21
2.7.1.6 Interrupt Vector Prefix Register (IVPR) .. 2-22
2.7.1.7 Interrupt Vector Offset Registers (IVORs) .. 2-22
2.7.1.8 Exception Syndrome Register (ESR) .. 2-24
2.7.2 e200z6-Specific Interrupt Registers... 2-25
2.7.2.1 Debug Save/Restore Register 0 (DSRR0) ... 2-25
2.7.2.2 Debug Save/Restore Register 1 (DSRR1) ... 2-26
2.7.2.3 Machine Check Syndrome Register (MCSR).. 2-26
2.8 Software-Use SPRs (SPRG0–SPRG7 and USPRG0) 2-27
2.9 Timer Registers .. 2-28
2.9.1 Timer Control Register (TCR)... 2-29
2.9.2 Timer Status Register (TSR).. 2-31

Contents
Paragraph
Number Title

Page
Number

Contents v
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

2.9.3 Time Base (TBU and TBL) ... 2-32
2.9.4 Decrementer Register .. 2-34
2.9.5 Decrementer Auto-Reload Register (DECAR).. 2-34
2.10 Debug Registers ... 2-35
2.10.1 Debug Address and Value Registers.. 2-35
2.10.1.1 Instruction Address Compare Registers (IAC1–IAC4)............................. 2-35
2.10.1.2 Data Address Compare Registers (DAC1–DAC2).................................... 2-36
2.10.2 Debug Counter Register (DBCNT) ... 2-36
2.10.3 Debug Control and Status Registers (DBCR0–DBCR3)............................... 2-37
2.10.3.1 Debug Control Register 0 (DBCR0).. 2-37
2.10.3.2 Debug Control Register 1 (DBCR1).. 2-40
2.10.3.3 Debug Control Register 2 (DBCR2).. 2-42
2.10.3.4 Debug Control Register 3 (DBCR3).. 2-43
2.10.4 Debug Status Register (DBSR).. 2-50
2.11 Hardware Implementation-Dependent Registers... 2-51
2.11.1 Hardware Implementation-Dependent Register 0 (HID0)............................. 2-52
2.11.2 Hardware Implementation-Dependent Register 1 (HID1)............................. 2-54
2.12 Branch Target Buffer (BTB) Registers .. 2-54
2.12.1 Branch Unit Control and Status Register (BUCSR)...................................... 2-54
2.13 L1 Cache Configuration Registers... 2-55
2.13.1 L1 Cache Control and Status Register 0 (L1CSR0) 2-55
2.13.2 L1 Cache Configuration Register 0 (L1CFG0) ... 2-57
2.13.3 L1 Cache Flush and Invalidate Register (L1FINV0)..................................... 2-59
2.14 MMU Registers.. 2-59
2.14.1 MMU Control and Status Register 0 (MMUCSR0) 2-59
2.14.2 MMU Configuration Register (MMUCFG) .. 2-60
2.14.3 TLB Configuration Registers (TLBnCFG).. 2-61
2.14.3.1 TLB Configuration Register 0 (TLB0CFG) .. 2-61
2.14.3.2 TLB Configuration Register 1 (TLB1CFG) .. 2-62
2.14.4 MMU Assist Registers (MAS0–MAS4, MAS6) ... 2-63
2.14.5 Process ID Register (PID0).. 2-67
2.15 Support for Fast Context Switching... 2-67
2.15.1 Context Control Register (CTXCR) .. 2-68
2.16 SPR Register Access.. 2-70
2.16.1 Invalid SPR References ... 2-70
2.16.2 Synchronization Requirements for SPRs... 2-70
2.16.3 Special Purpose Register Summary... 2-71
2.16.4 Reset Settings... 2-74

Contents
Paragraph
Number Title

Page
Number

vi e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Chapter 3
Instruction Model

3.1 Operand Conventions .. 3-1
3.1.1 Data Organization in Memory and Data Transfers.. 3-1
3.1.2 Alignment and Misaligned Accesses... 3-1
3.1.3 e200z6 Floating-Point Implementation ... 3-2
3.2 Unsupported Instructions and Instruction Forms... 3-2
3.3 Memory Synchronization and Reservation Instructions...................................... 3-4
3.4 Branch Prediction .. 3-5
3.5 Interruption of Instructions by Interrupt Requests... 3-5
3.6 e200z6-Specific Instructions.. 3-5
3.6.1 Integer Select APU .. 3-6
3.6.2 Debug APU.. 3-6
3.6.3 SPE APU Instructions.. 3-7
3.6.4 Embedded Vector and Scalar Single-Precision Floating-Point APU

Instructions .. 3-15
3.6.4.1 Options for Embedded Floating-Point APU Implementations.................. 3-16
3.7 Unimplemented SPRs and Read-Only SPRs ... 3-17
3.8 Invalid Instruction Forms... 3-17
3.9 Instruction Summary.. 3-18
3.9.1 Instruction Index Sorted by Mnemonic ... 3-18
3.9.2 Instruction Index Sorted by Opcode .. 3-25

Chapter 4
L1 Cache

4.1 Overview.. 4-1
4.2 32-Kbyte Cache Organization.. 4-2
4.2.1 32-Kbyte Cache Line Tag Format ... 4-3
4.3 Cache Lookup .. 4-4
4.4 Cache Control .. 4-5
4.5 Cache Coherency ... 4-6
4.6 Address Aliasing.. 4-6
4.7 Cache Parity ... 4-6
4.8 Operation of the Cache .. 4-6
4.8.1 Cache at Reset.. 4-6
4.8.2 Cache Enable/Disable .. 4-7
4.8.3 Cache Fills ... 4-7
4.8.4 Cache Line Replacement ... 4-8
4.8.5 Cache-Inhibited Accesses .. 4-8
4.8.6 Cache Invalidation ... 4-8

Contents
Paragraph
Number Title

Page
Number

Contents vii
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

4.8.7 Cache Flush/Invalidate by Set and Way .. 4-9
4.9 Push and Store Buffers... 4-9
4.10 Cache Management Instructions.. 4-10
4.11 Touch Instructions.. 4-11
4.12 Cache Line Locking/Unlocking APU.. 4-12
4.12.1 Effects of Other Cache Instructions on Locked Lines 4-14
4.12.2 Flash Clearing of Lock Bits ... 4-14
4.13 Cache Instructions and Exceptions .. 4-14
4.13.1 Exception Conditions for Cache Instructions .. 4-15
4.13.2 Transfer Type Encodings for Cache Management Instructions..................... 4-16
4.14 Sequential Consistency .. 4-16
4.15 Self-Modifying Code Requirements .. 4-16
4.16 Page Table Control Bits ... 4-17
4.16.1 Write-Through Stores .. 4-17
4.16.2 Cache-Inhibited Accesses .. 4-17
4.16.3 Memory Coherence Required.. 4-17
4.16.4 Guarded Storage .. 4-17
4.16.5 Misaligned Accesses and the Endian (E) Bit... 4-18
4.17 Reservation Instructions and Cache Interactions... 4-18
4.18 Effect of Hardware Debug on Cache Operation .. 4-18
4.19 Cache Memory Access during Debug ... 4-18
4.19.1 Merging Line-Fill and Late-Write Buffers into the Cache Array 4-19
4.19.2 Cache Memory Access through JTAG/OnCE Port.. 4-19
4.19.2.1 Cache Debug Access Control Register (CDACNTL) 4-19
4.19.2.2 Cache Debug Access Data Register (CDADATA) 4-20

Chapter 5
Interrupts and Exceptions

5.1 Overview.. 5-1
5.2 e200z6 Interrupts ... 5-2
5.3 Exception Syndrome Register (ESR) .. 5-4
5.4 Machine State Register (MSR) .. 5-5
5.4.1 Machine Check Syndrome Register (MCSR).. 5-7
5.4.1.1 Interrupt Vector Prefix Register (IVPR) .. 5-7
5.5 Interrupt Vector Offset Registers (IVORn).. 5-8
5.6 Interrupt Definitions .. 5-9
5.6.1 Critical Input Interrupt (IVOR0).. 5-9
5.6.2 Machine Check Interrupt (IVOR1).. 5-10
5.6.2.1 Machine Check Interrupt Enabled (MSR[ME]=1) 5-11
5.6.2.2 Checkstop State ... 5-11
5.6.3 Data Storage Interrupt (IVOR2) .. 5-12

Contents
Paragraph
Number Title

Page
Number

viii e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

5.6.4 Instruction Storage Interrupt (IVOR3) .. 5-13
5.6.5 External Input Interrupt (IVOR4) .. 5-14
5.6.6 Alignment Interrupt (IVOR5).. 5-14
5.6.7 Program Interrupt (IVOR6) ... 5-15
5.6.8 Floating-Point Unavailable Interrupt (IVOR7).. 5-16
5.6.9 System Call Interrupt (IVOR8).. 5-17
5.6.10 Auxiliary Processor Unavailable Interrupt (IVOR9)..................................... 5-17
5.6.11 Decrementer Interrupt (IVOR10) .. 5-17
5.6.12 Fixed-Interval Timer Interrupt (IVOR11).. 5-18
5.6.13 Watchdog Timer Interrupt (IVOR12) .. 5-19
5.6.14 Data TLB Error Interrupt (IVOR13) ... 5-20
5.6.15 Instruction TLB Error Interrupt (IVOR14).. 5-20
5.6.16 Debug Interrupt (IVOR15) .. 5-21
5.6.17 System Reset Interrupt... 5-23
5.6.18 SPE APU Unavailable Interrupt (IVOR32)... 5-25
5.6.19 SPE Floating-Point Data Interrupt (IVOR33) ... 5-25
5.6.20 SPE Floating-Point Round Interrupt (IVOR34) .. 5-26
5.7 Exception Recognition and Priorities .. 5-26
5.7.1 Exception Priorities.. 5-28
5.8 Interrupt Processing ... 5-30
5.8.1 Enabling and Disabling Exceptions... 5-32
5.8.2 Returning from an Interrupt Handler ... 5-32
5.9 Process Switching .. 5-33

Chapter 6
Memory Management Unit

6.1 Overview.. 6-1
6.1.1 MMU Features... 6-1
6.1.2 TLB Entry Maintenance Features Summary ... 6-1
6.2 Effective-to-Real Address Translation... 6-2
6.2.1 Effective Addresses ... 6-3
6.2.2 Address Spaces .. 6-3
6.2.3 Virtual Addresses and Process ID.. 6-4
6.2.4 Translation Flow .. 6-4
6.2.5 Permissions .. 6-5
6.3 Translation Lookaside Buffer .. 6-7
6.3.1 IPROT Invalidation Protection in TLB1 ... 6-7
6.3.2 Replacement Algorithm for TLB1... 6-8
6.3.3 TLB Access Time .. 6-8
6.3.4 The G Bit (of WIMGE) ... 6-9
6.3.5 TLB Entry Field Summary .. 6-9

Contents
Paragraph
Number Title

Page
Number

Contents ix
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

6.4 Software Interface and TLB Instructions... 6-10
6.4.1 TLB Read Entry Instruction (tlbre)... 6-10
6.4.2 TLB Write Entry Instruction (tlbwe)... 6-11
6.4.3 TLB Search Indexed Instruction (tlbsx).. 6-11
6.4.4 TLB Invalidate (tlbivax) Instruction ... 6-12
6.4.5 TLB Synchronize Instruction (tlbsync)... 6-12
6.5 TLB Operations ... 6-13
6.5.1 Translation Reload ... 6-13
6.5.2 Reading the TLB.. 6-13
6.5.3 Writing the TLB... 6-13
6.5.4 Searching the TLB... 6-14
6.5.5 TLB Coherency Control .. 6-14
6.5.6 TLB Miss Exception Update ... 6-14
6.5.7 TLB Load on Reset.. 6-14
6.6 MMU Configuration and Control Registers .. 6-15
6.6.1 MMU Configuration Register (MMUCFG) .. 6-15
6.6.2 TLB0 and TLB1 Configuration Registers ... 6-15
6.6.3 DEAR Register .. 6-16
6.6.4 MMU Control and Status Register 0 (MMUCSR0) 6-16
6.6.5 MMU Assist Registers (MAS) .. 6-16
6.6.5.1 MAS Registers Summary .. 6-16
6.6.5.2 MAS Register Updates .. 6-17
6.7 Effect of Hardware Debug on MMU Operation .. 6-18

Chapter 7
Instruction Pipeline and Execution Timing

7.1 Overview of Operation .. 7-1
7.1.1 Instruction Unit .. 7-3
7.2 Instruction Pipeline .. 7-3
7.2.1 Fetch Stages ... 7-6
7.2.1.1 Instruction Buffer... 7-6
7.2.1.2 Branch Target Buffer (BTB).. 7-7
7.2.2 Decode Stage ... 7-9
7.2.3 Execute Stages ... 7-9
7.2.3.1 Integer Execution Unit... 7-10
7.2.3.2 SPE Execution Unit ... 7-11
7.2.3.3 Embedded Floating-Point Execution Units ... 7-11
7.2.3.4 Load/Store Unit (LSU) .. 7-11
7.2.3.5 Branch Execution Unit .. 7-11
7.3 Pipeline Drawings.. 7-12
7.3.1 Pipeline Operation for Instructions with Single-Cycle Latency.................... 7-12

Contents
Paragraph
Number Title

Page
Number

x e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7.3.2 Basic Load and Store Instruction Pipeline Operation.................................... 7-12
7.3.3 Change-of-Flow Instruction Pipeline Operation.. 7-13
7.3.4 Basic Multiple-Cycle Instruction Pipeline Operation.................................... 7-13
7.3.5 Additional Examples of Instruction Pipeline Operation for Load and Store. 7-14
7.3.6 Move to/from SPR Instruction Pipeline Operation.. 7-16
7.4 Control Hazards ... 7-18
7.5 Instruction Serialization ... 7-18
7.5.1 Completion Serialization ... 7-18
7.5.2 Dispatch Serialization .. 7-19
7.5.3 Refetch Serialization.. 7-19
7.6 Interrupt Recognition and Exception Processing... 7-19
7.7 Instruction Timings .. 7-22
7.7.1 SPE and Embedded Floating-Point APU Instruction Timing........................ 7-23
7.7.1.1 SPE Integer Simple Instruction Timing... 7-24
7.7.1.2 SPE Load and Store Instruction Timing .. 7-25
7.7.1.3 SPE Complex Integer Instruction Timing ... 7-27
7.7.1.4 SPE Vector Floating-Point Instruction Timing.. 7-30
7.7.1.5 Embedded Scalar Floating-Point Instruction Timing 7-31
7.8 Effects of Operand Placement on Performance ... 7-36

Chapter 8
External Core Complex Interfaces

8.1 Overview.. 8-1
8.2 Signal Index ... 8-2
8.3 Signal Descriptions .. 8-7
8.3.1 Processor State Signals .. 8-21
8.3.2 JTAG ID Signals .. 8-30
8.4 Internal Signals .. 8-31
8.5 Timing Diagrams ... 8-31
8.5.1 Processor Instruction/Data Transfers... 8-31
8.5.1.1 Basic Read Transfer Cycles ... 8-33
8.5.1.2 Read Transfer with Wait State ... 8-34
8.5.1.3 Basic Write Transfer Cycles .. 8-35
8.5.1.4 Write Transfer with Wait States ... 8-37
8.5.1.5 Read and Write Transfers .. 8-38
8.5.1.6 Misaligned Accesses.. 8-41
8.5.1.7 Burst Accesses ... 8-44
8.5.1.8 Error Termination Operation ... 8-48
8.5.2 Power Management ... 8-52
8.5.3 Interrupt Interface .. 8-52

Contents
Paragraph
Number Title

Page
Number

Contents xi
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Chapter 9
Power Management

9.1 Overview.. 9-1
9.1.1 Power Management Signals... 9-2
9.1.2 Power Management Control Bits... 9-3
9.1.3 Software Considerations for Power Management ... 9-3
9.1.4 Debug Considerations for Power Management ... 9-4

Chapter 10
Debug Support

10.1 Introduction.. 10-1
10.2 Overview.. 10-1
10.2.1 Software Debug Facilities.. 10-2
10.2.1.1 PowerPC Book E Compatibility .. 10-2
10.2.2 Additional Debug Facilities ... 10-2
10.2.3 Hardware Debug Facilities .. 10-3
10.3 Debug Registers ... 10-4
10.4 Software Debug Events and Exceptions.. 10-5
10.5 External Debug Support... 10-10
10.5.1 OnCE Introduction... 10-11
10.5.2 JTAG/OnCE Signals .. 10-14
10.5.3 OnCE Internal Interface Signals .. 10-15
10.5.3.1 CPU Address and Attributes.. 10-15
10.5.3.2 CPU Data ... 10-15
10.5.4 OnCE Interface Signals ... 10-15
10.5.5 e200z6 OnCE Controller and Serial Interface ... 10-17
10.5.5.1 e200z6 OnCE Status Register (OSR) .. 10-18
10.5.5.2 e200z6 OnCE Command Register (OCMD) ... 10-18
10.5.5.3 e200z6 OnCE Control Register (OCR) ... 10-21
10.5.6 Access to Debug Resources... 10-22
10.5.7 Methods for Entering Debug Mode ... 10-24
10.5.8 CPU Status and Control Scan Chain Register (CPUSCR) 10-26
10.5.8.1 Instruction Register (IR) .. 10-26
10.5.8.2 Control State Register (CTL)... 10-27
10.5.8.3 Program Counter Register (PC)... 10-29
10.5.8.4 Write-Back Bus Register (WBBR (lower) and WBBR (upper)) 10-29
10.5.8.5 Machine State Register (MSR) .. 10-30
10.5.9 Instruction Address FIFO Buffer (PC FIFO)... 10-30
10.5.10 Reserved Registers... 10-32
10.6 Watchpoint Support ... 10-32

Contents
Paragraph
Number Title

Page
Number

xii e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

10.7 MMU and Cache Operation during Debug.. 10-33
10.8 Cache Array Access During Debug... 10-34
10.9 Basic Steps for Enabling, Using, and Exiting External Debug Mode 10-34

Chapter 11
Nexus3 Module

11.1 Introduction.. 11-1
11.1.1 General Description ... 11-1
11.1.2 Terms and Definitions.. 11-1
11.1.3 Feature List .. 11-2
11.2 Enabling Nexus3 Operation... 11-4
11.3 TCODEs Supported ... 11-5
11.4 Nexus3 Programmer’s Model ... 11-9
11.4.1 Client Select Control Register (CSC) .. 11-10
11.4.2 Port Configuration Register (PCR).. 11-10
11.4.3 Development Control Register 1, 2 (DC1, DC2)... 11-12
11.4.4 Development Status Register (DS) .. 11-14
11.4.5 Read/Write Access Control/Status Register (RWCS).................................. 11-14
11.4.6 Read/Write Access Data Register (RWD) ... 11-16
11.4.7 Read/Write Access Address Register (RWA) .. 11-16
11.4.8 Watchpoint Trigger Register (WT) .. 11-16
11.4.9 Data Trace Control Register (DTC)... 11-18
11.4.10 Data Trace Start Address 1 and 2 Registers (DTSA1 and DTSA2) 11-19
11.4.11 Data Trace End Address Registers 1 and 2 (DTEA1 and DTEA2)............. 11-19
11.5 Nexus3 Register Access through JTAG/OnCE.. 11-20
11.6 Ownership Trace .. 11-21
11.6.1 Overview.. 11-21
11.6.2 Ownership Trace Messaging (OTM)... 11-21
11.6.3 OTM Error Messages... 11-22
11.6.4 OTM Flow ... 11-23
11.7 Program Trace.. 11-23
11.7.1 Branch Trace Messaging (BTM) ... 11-23
11.7.1.1 e200z6 Indirect Branch Message Instructions (Book E) 11-24
11.7.1.2 e200z6 Direct Branch Message Instructions (Book E)............................ 11-24
11.7.1.3 BTM using Branch History Messages... 11-25
11.7.1.4 BTM using Traditional Program Trace Messages 11-25
11.7.2 BTM Message Formats.. 11-25
11.7.2.1 Indirect Branch Messages (History) .. 11-25
11.7.2.2 Indirect Branch Messages (Traditional) .. 11-26
11.7.2.3 Direct Branch Messages (Traditional) ... 11-26
11.7.2.4 Resource Full Messages .. 11-26

Contents
Paragraph
Number Title

Page
Number

Contents xiii
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

11.7.2.5 Debug Status Messages ... 11-27
11.7.2.6 Program Correlation Messages.. 11-27
11.7.2.7 BTM Overflow Error Messages .. 11-27
11.7.2.8 Program Trace Synchronization Messages.. 11-28
11.7.3 BTM Operation.. 11-30
11.7.3.1 Enabling Program Trace .. 11-30
11.7.3.2 Relative Addressing... 11-30
11.7.3.3 Branch/Predicate Instruction History (HIST).. 11-31
11.7.3.4 Sequential Instruction Count (I-CNT) ... 11-31
11.7.3.5 Program Trace Queueing ... 11-32
11.7.4 Program Trace Timing Diagrams (2 MDO/1 MSEO Configuration).......... 11-32
11.8 Data Trace ... 11-33
11.8.1 Data Trace Messaging (DTM) ... 11-33
11.8.2 DTM Message Formats ... 11-34
11.8.2.1 Data Write Messages ... 11-34
11.8.2.2 Data Read Messages .. 11-34
11.8.2.3 DTM Overflow Error Messages .. 11-35
11.8.2.4 Data Trace Synchronization Messages .. 11-35
11.8.3 DTM Operation.. 11-37
11.8.3.1 DTM Queueing.. 11-37
11.8.3.2 Relative Addressing... 11-37
11.8.3.3 Data Trace Windowing .. 11-38
11.8.3.4 Data Access/Instruction Access Data Tracing... 11-38
11.8.3.5 e200z6 Bus Cycle Special Cases ... 11-38
11.8.4 Data Trace Timing Diagrams (8 MDO/2 MSEO Configuration) 11-39
11.9 Watchpoint Support ... 11-40
11.9.1 Overview.. 11-40
11.9.2 Watchpoint Messaging... 11-40
11.9.3 Watchpoint Error Message... 11-41
11.9.4 Watchpoint Timing Diagram (2 MDO/1 MSEO Configuration)................. 11-41
11.10 Nexus3 Read/Write Access to Memory-Mapped Resources.......................... 11-42
11.10.1 Single Write Access ... 11-42
11.10.2 Block Write Access (Non-Burst Mode)... 11-43
11.10.3 Block Write Access (Burst Mode) ... 11-43
11.10.4 Single Read Access.. 11-44
11.10.5 Block Read Access (Non-Burst Mode) ... 11-45
11.10.6 Block Read Access (Burst Mode).. 11-45
11.10.7 Error Handling ... 11-46
11.10.7.1 AHB Read/Write Error .. 11-46
11.10.7.2 Access Termination ... 11-46
11.10.7.3 Read/Write Access Error Message .. 11-47

Contents
Paragraph
Number Title

Page
Number

xiv e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

11.11 Nexus3 Pin Interface.. 11-47
11.11.1 Pins Implemented .. 11-47
11.11.2 Pin Protocol ... 11-49
11.12 Rules for Output Messages .. 11-52
11.13 Auxiliary Port Arbitration.. 11-52
11.14 Examples.. 11-52
11.15 IEEE 1149.1 (JTAG) RD/WR Sequences.. 11-55
11.15.1 JTAG Sequence for Accessing Internal Nexus Registers 11-55
11.15.2 JTAG Sequence for Read Access of Memory-Mapped Resources 11-56
11.15.3 JTAG Sequence for Write Access of Memory-Mapped Resources............. 11-56

Figures
Figure
Number Title

 Page
Number

Figures xv
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Figures

1-1 e500z6 Block Diagram.. 1-2
1-2 e200z6 Programmer’s Model.. 1-5
2-1 e200z6 Programmer’s Model.. 2-2
2-2 Machine State Register (MSR) ... 2-7
2-3 Processor ID Register (PIR).. 2-9
2-4 Processor Version Register (PVR) .. 2-10
2-5 System Version Register (SVR).. 2-10
2-6 Integer Exception Register (XER) .. 2-11
2-7 Condition Register (CR) ... 2-12
2-8 Link Register (LR) .. 2-15
2-9 Count Register (CTR) ... 2-16
2-10 Signal Processing and Embedded Floating-Point Status and Control

Register (SPEFSCR) .. 2-16
2-11 Save/Restore Register 0 (SRR0) ... 2-20
2-12 Save/Restore Register 1 (SRR1) ... 2-20
2-13 Critical Save/Restore Register 0 (CSRR0) ... 2-21
2-14 Critical Save/Restore Register 1 (CSRR1) ... 2-21
2-15 Data Exception Address Register (DEAR)... 2-22
2-16 Interrupt Vector Prefix Register (IVPR) ... 2-22
2-17 Interrupt Vector Offset Registers (IVOR) ... 2-23
2-18 Exception Syndrome Register (ESR).. 2-24
2-19 Debug Save/Restore Register 0 (DSRR0) .. 2-26
2-20 Debug Save/Restore Register 1 (DSRR1) .. 2-26
2-21 Machine Check Syndrome Register (MCSR)... 2-26
2-22 Software-Use SPRs (SPRG0–SPRG7 and USPRG0)... 2-27
2-23 Relationship of Timer Facilities to the Time Base.. 2-28
2-24 Timer Control Register (TCR) .. 2-29
2-25 Timer Status Register (TSR) ... 2-31
2-26 Time Base Upper/Lower Registers (TBU/TBL)... 2-33
2-27 Decrementer Register (DEC) .. 2-34
2-28 Decrementer Auto-Reload Register (DECAR)... 2-35
2-29 Instruction Address Compare Registers (IAC1–IAC4) .. 2-36
2-30 Data Address Compare Registers (DAC1–DAC2)... 2-36
2-31 DBCNT Register... 2-37
2-32 DBCR0 Register ... 2-38

Figures
Figure
Number Title

Page
Number

xvi e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

2-33 Debug Control Register 1 (DBCR1) ... 2-40
2-34 DBCR2 Register ... 2-42
2-35 DBCR3 Register ... 2-46
2-36 DBSR Register .. 2-50
2-37 Hardware Implementation-Dependent Register 0 (HID0).. 2-52
2-38 Hardware Implementation-Dependent Register 1 (HID1).. 2-54
2-39 Branch Unit Control and Status Register (BUCSR) ... 2-55
2-40 L1 Cache Control and Status Register 0 (L1CSR0).. 2-56
2-41 L1 Cache Configuration Register 0 (L1CFG0)... 2-58
2-42 L1 Flush/Invalidate Register (L1FINV0) ... 2-59
2-43 MMU Control and Status Register 0 (MMUCSR0) ... 2-60
2-44 MMU Configuration Register 1 (MMUCFG) .. 2-60
2-45 TLB Configuration Register 0 (TLB0CFG) ... 2-61
2-46 TLB Configuration Register 1 (TLB1CFG) ... 2-62
2-47 MAS Register 0 (MAS0) Format.. 2-63
2-48 MMU Assist Register 1 (MAS1) .. 2-63
2-49 MMU Assist Register 2 (MAS2) .. 2-64
2-50 MMU Assist Register 3 (MAS3) .. 2-65
2-51 MMU Assist Register 4 (MAS4) .. 2-66
2-52 MMU Assist Register 6 (MAS6)) ... 2-67
2-53 Process ID Register (PID0)... 2-67
2-54 Context Control Register (CTXCR) ... 2-68
4-1 e200z6 Unified Cache... 4-2
4-2 Cache Organization and Line Format ... 4-3
4-3 Cache Tag Format ... 4-3
4-4 32-Kbyte Cache Lookup Flow.. 4-5
4-5 CDACNTL Register ... 4-19
4-6 Cache Debug Access Data Register (CDADATA) ... 4-20
5-1 Machine State Register (MSR) ... 5-5
5-2 Interrupt Vector Prefix Register (IVPR) ... 5-8
5-3 Interrupt Vector Offset Registers (IVOR) ... 5-8
6-1 Effective-to-Real Address Translation Flow... 6-3
6-2 Virtual Address and TLB-Entry Compare Process ... 6-5
6-3 Granting of Access Permission ... 6-6
6-4 e200z6 TLB1 Organization... 6-7
6-5 Victim Selection .. 6-8
6-6 MMU Assist Registers Summary ... 6-17
7-1 e200z6 Block Diagram.. 7-1
7-2 Seven-Stage Instruction Pipeline .. 7-4
7-3 Pipeline.. 7-5
7-4 e200z6 Instruction Buffer ... 7-7

Figures
Figure
Number Title

Page
Number

Figures xvii
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7-5 e200z6 Branch Target Buffer .. 7-8
7-6 Updating Branch History .. 7-9
7-7 Pipelining—Execute and Write Back Stages .. 7-9
7-8 Basic Pipeline Flow, Single-Cycle Instructions .. 7-12
7-9 Basic Pipeline Flow, Load and Store Instructions .. 7-13
7-10 Basic Pipeline Flow, Branch Instructions ... 7-13
7-11 Basic Pipeline Flow, Branch Speculation ... 7-13
7-12 Basic Pipeline Flow, Multiple-Cycle Instructions .. 7-14
7-13 Pipelined Load/Store Instructions ... 7-14
7-14 Pipelined Load/Store Instructions with Wait-State ... 7-15
7-15 Pipelined Load Instructions with Load Target Data Dependency 7-15
7-16 Pipelined Instructions with Base Register Update Data Dependency 7-16
7-17 mtspr, mfspr Instruction Execution - (1) ... 7-16
7-18 mtmsr, wrtee, and wrteei Execution ... 7-17
7-19 Cache/MMU mtspr, mfspr, and MMU Instruction Execution 7-18
7-20 Interrupt Recognition and Exception Processing Timing ... 7-20
7-21 Interrupt Recognition and Handler Instruction Execution—Load/Store

in Progress .. 7-21
7-22 Interrupt Recognition and Handler Instruction Execution—Multiple-Cycle

Instruction Abort .. 7-22
8-1 e200z6 Signal Groups ... 8-3
8-2 Example External JTAG Register Design... 8-29
8-3 Basic Read Transfer—Single-cycle Reads, Full Pipelining 8-33
8-4 Read with Wait-State, Single-Cycle Reads, Full Pipelining 8-35
8-5 Basic Write Transfers—Single-Cycle Writes, Full Pipelining.................................. 8-36
8-6 Write with Wait-state, Single-Cycle Writes, Full Pipelining 8-37
8-7 Single-Cycle Reads, Single-Cycle Write, Full Pipelining .. 8-38
8-8 Single-Cycle Read, Write, Read—Full Pipelining.. 8-39
8-9 Multiple-Cycle Reads with Wait-State, Single-Cycle Writes, Full Pipelining 8-40
8-10 Multi-Cycle Read with Wait-State, Single-cycle write, Read with Wait-State,

Single-Cycle Write, Full Pipelining ... 8-41
8-11 Misaligned Read, Read, Full Pipelining ... 8-42
8-12 Misaligned Write, Write, Full Pipelining.. 8-43
8-13 Misaligned Write, Single Cycle Read Transfer, Full Pipelining............................... 8-44
8-14 Burst Read Transfer .. 8-45
8-15 Burst Read with Wait-State Transfer... 8-46
8-16 Burst Write Transfer.. 8-47
8-17 Burst Write with Wait-State Transfer.. 8-47
8-18 Read and Write Transfers: Instruction Read with Error, Data Read, Write, Full

Pipelining ... 8-48
8-19 Data Read with Error, Data Write Retracted, Instruction Read, Full Pipelining 8-50

Figures
Figure
Number Title

Page
Number

xviii e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

8-20 Misaligned Write with Error, Data Write Retracted, Burst Read Substituted, Full
Pipelining ... 8-51

8-21 Burst Read with Error Termination, Burst Write .. 8-52
8-22 Wakeup Control Signal (p_wakeup) .. 8-52
8-23 Interrupt Interface Input Signals ... 8-53
8-24 Interrupt Pending Operation.. 8-53
8-25 Interrupt Acknowledge Operation .. 8-54
8-26 Interrupt Acknowledge Operation—2 .. 8-55
9-1 Power Management State Diagram... 9-2
10-1 e200z6 Debug Resources .. 10-4
10-2 OnCE TAP Controller and Registers .. 10-12
10-3 OnCE Controller as an FSM ... 10-13
10-4 e200z6 OnCE Controller and Serial Interface .. 10-17
10-5 OnCE Status Register (OSR) .. 10-18
10-6 OnCE Command Register (OCMD) ... 10-19
10-7 OnCE Control Register ... 10-21
10-8 CPU Scan Chain Register (CPUSCR) .. 10-26
10-9 Control State Register (CTL) .. 10-27
10-10 OnCE PC FIFO ... 10-31
11-1 Nexus3 Functional Block Diagram... 11-4
11-2 Client Select Control Register... 11-10
11-3 Port Configuration Register ...11-11
11-4 Development Control Register 1 (DC1) ... 11-12
11-5 Development Control Register 2 (DC2) ... 11-13
11-6 Development Status Register (DS) ... 11-14
11-7 Read/Write Access Control/Status Register (RWCS)... 11-15
11-8 Read/Write Access Data Register (RWD) .. 11-16
11-9 Read/Write Access Address Register (RWA) ... 11-16
11-10 Watchpoint Trigger Register (WT) ... 11-17
11-11 Data Trace Control Register (DTC) .. 11-18
11-12 Data Trace Start Address Registers 1 and 2 (DTSAn).. 11-19
11-13 Data Trace End Address Registers 1 and 2 (DTEAn) .. 11-19
11-14 Nexus3 Register Access through JTAG/OnCE (Example) 11-20
11-15 Ownership Trace Message Format.. 11-22
11-16 Error Message Format... 11-22
11-17 Indirect Branch Message (History) Format .. 11-26
11-18 Indirect Branch Message Format .. 11-26
11-19 Direct Branch Message Format... 11-26
11-20 Resource Full Message Format... 11-27
11-21 Debug Status Message Format.. 11-27
11-22 Program Correlation Message Format .. 11-27

Figures
Figure
Number Title

Page
Number

Figures xix
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

11-23 Error Message Format... 11-28
11-24 Direct/Indirect Branch with Synchronization Message Format.............................. 11-29
11-25 Indirect Branch History with Synchronization Message Format............................ 11-29
11-26 Relative Address Generation and Re-Creation Example .. 11-30
11-27 Program Trace—Indirect Branch Message (Traditional).. 11-32
11-28 Program Trace—Indirect Branch Message (History) ... 11-32
11-29 Program Trace—Direct Branch (Traditional) and Error Messages 11-33
11-30 Program Trace—Indirect Branch with Synchronization Message.......................... 11-33
11-31 Data Write Message Format.. 11-34
11-32 Data Read Message Format .. 11-34
11-33 Error Message Format... 11-35
11-34 Data Write/Read with Synchronization Message Format 11-36
11-35 Data Trace—Data Write Message... 11-39
11-36 Data Trace—Data Read with Synchronization Message .. 11-39
11-37 Error Message (Data Trace Only Encoded) .. 11-39
11-38 Watchpoint Message Format... 11-40
11-40 Watchpoint Message and Watchpoint Error Message... 11-41
11-39 Error Message Format... 11-41
11-41 Error Message Format... 11-47
11-42 Single-Pin MSEO Transfers.. 11-50
11-43 Dual-Pin MSEO Transfers .. 11-51

Figures
Figure
Number Title

Page
Number

xx e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Tables
Table
Number Title

 Page
Number

Tables xxi
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Tables

1-1 Cache Block Lock and Unlock APU Instructions .. 1-6
1-2 Scalar and Vector Embedded Floating-Point APU Instructions 1-7
1-3 Interrupt Registers... 1-9
1-4 Exceptions and Conditions.. 1-10
2-1 MSR Field Descriptions.. 2-8
2-2 PIR Field Descriptions .. 2-9
2-3 PVR Field Descriptions .. 2-10
2-4 SVR Field Description .. 2-11
2-5 XER Field Descriptions .. 2-11
2-6 BI Operand Settings for CR Fields ... 2-13
2-7 CR0 Field Descriptions ... 2-14
2-8 CR Setting for Compare Instructions.. 2-14
2-9 SPEFSCR Field Descriptions.. 2-17
2-10 IVPR Field Descriptions ... 2-22
2-11 IVOR Field Descriptions .. 2-23
2-12 IVOR Assignments ... 2-23
2-13 ESR Field Descriptions ... 2-25
2-14 MCSR Field Descriptions ... 2-27
2-15 TCR Field Descriptions .. 2-29
2-16 Timeout Period Selection (at 80 MHz) ... 2-30
2-17 Timer Status Register Field Descriptions.. 2-32
2-18 DBCR0 Field Descriptions ... 2-38
2-19 DBCR1 Field Descriptions ... 2-40
2-20 DBCR2 Field Descriptions ... 2-42
2-21 DBCR3 Field Descriptions ... 2-46
2-22 DBSR Field Descriptions.. 2-50
2-23 HID0 Field Descriptions ... 2-52
2-24 HID1 Field Descriptions ... 2-54
2-25 Branch Unit Control and Status Register .. 2-55
2-26 L1CSR0 Field Descriptions .. 2-56
2-27 L1CFG0 Field Descriptions .. 2-58
2-28 L1FINV0 Field Descriptions .. 2-59
2-29 MMUCSR0 Field Descriptions... 2-60
2-30 MMUCFG Field Descriptions .. 2-61
2-31 TLB0CFG Field Descriptions ... 2-61

Tables
Table
Number Title

Page
Number

xxii e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

2-32 TLB1CFG Field Descriptions ... 2-62
2-33 MAS0—MMU Read/Write and Replacement Control... 2-63
2-34 MAS1 —Descriptor Context and Configuration Control ... 2-64
2-35 MAS2—EPN and Page Attributes .. 2-65
2-36 MAS3—RPN and Access Control .. 2-66
2-37 MAS4—Hardware Replacement Assist Configuration Register.............................. 2-66
2-38 MAS6—TLB Search Context Register 0.. 2-67
2-39 CTXCR Field Descriptions ... 2-68
2-40 System Response to Invalid SPR Reference... 2-70
2-41 Additional Synchronization Requirements for SPRs.. 2-70
2-42 Special Purpose Registers ... 2-71
2-43 Reset Settings for e200z6 Resources .. 2-74
3-1 Unsupported 32-Bit Book E Instructions.. 3-3
3-2 Memory Synchronization and Reservation Instructions—e200z6-Specific

Details... 3-4
3-3 SPE APU Vector Multiply Instruction Mnemonic Structure 3-8
3-4 Mnemonic Extensions for Multiply-Accumulate Instructions.................................... 3-8
3-5 SPE APU Vector Instructions ... 3-9
3-6 Vector and Scalar SPFP APU Floating-Point Instructions.. 3-15
3-7 Embedded Floating–Point APU Options .. 3-16
3-8 Invalid Instruction Forms.. 3-17
3-9 Instructions Sorted by Mnemonic ... 3-18
3-10 Instructions Sorted by Opcode.. 3-26
4-1 Tag Entry Field Descriptions .. 4-3
4-2 Cache Management Instructions ... 4-11
4-3 Cache Locking APU Instructions ... 4-14
4-4 Special Case Handling .. 4-15
4-5 Transfer Type Encoding .. 4-16
4-6 Cache Debug Access Control Register Definition... 4-20
4-7 CDADATA Field Descriptions ... 4-21
5-1 Interrupt Classifications .. 5-3
5-2 Exceptions and Conditions.. 5-3
5-3 ESR Field Descriptions ... 5-5
5-4 MSR Field Descriptions.. 5-6
5-5 MCSR Field Descriptions ... 5-7
5-6 IVPR Field Descriptions ... 5-8
5-7 IVOR Assignments ... 5-9
5-8 Critical Input Interrupt Register Settings .. 5-10
5-9 Machine Check Interrupt Register Settings .. 5-11
5-10 Data Storage Interrupt Register Settings... 5-13
5-11 Instruction Storage Interrupt Register Settings ... 5-13

Tables
Table
Number Title

Page
Number

Tables xxiii
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

5-12 External Input Interrupt Register Settings .. 5-14
5-13 Alignment Interrupt Register Settings .. 5-15
5-14 Program Interrupt Register Settings.. 5-16
5-15 Floating-Point Unavailable Interrupt Register Settings .. 5-16
5-16 System Call Interrupt Register Settings .. 5-17
5-17 Decrementer Interrupt Register Settings... 5-18
5-18 Fixed-Interval Timer Interrupt Register Settings .. 5-18
5-19 Watchdog Timer Interrupt Register Settings... 5-19
5-20 Data TLB Error Interrupt Register Settings .. 5-20
5-21 Instruction TLB Error Interrupt Register Settings .. 5-20
5-22 Debug Exceptions ... 5-22
5-23 Debug Interrupt Register Settings... 5-23
5-24 TSR Watchdog Timer Reset Status ... 5-24
5-25 DBSR Most Recent Reset ... 5-24
5-26 System Reset Interrupt Register Settings.. 5-24
5-27 SPE Unavailable Interrupt Register Settings .. 5-25
5-28 SPE Floating-Point Data Interrupt Register Settings .. 5-26
5-29 SPE Floating-Point Round Interrupt Register Settings... 5-26
5-30 e200z6 Exception Priorities .. 5-28
5-31 MSR Setting Due to Interrupt ... 5-31
6-1 TLB Maintenance Programming Model ... 6-2
6-2 Page Size (for e200z6 Core) and EPN Field Comparison .. 6-5
6-3 TLB Entry Bit Fields for e200z6 .. 6-9
6-4 tlbivax EA Bit Definitions .. 6-12
6-5 TLB Entry 0 Values after Reset .. 6-15
6-6 MMU Assist Register Field Updates .. 6-17
7-1 Instruction Cycle Counts... 7-23
7-2 Timing for SPE Integer Simple Instructions ... 7-24
7-3 SPE Load and Store Instruction Timing ... 7-26
7-4 SPE Complex Integer Instruction Timing... 7-27
7-5 SPE Vector Floating-Point Instruction Timing ... 7-31
7-6 Scalar SPE Floating-Point Instruction Timing.. 7-32
7-7 Instruction Timing by Mnemonic ... 7-33
7-8 Performance Effects of Operand Placement ... 7-37
8-1 Interface Signal Definitions .. 8-4
8-2 Processor Clock Signal Description.. 8-7
8-3 Descriptions of Signals Related to Reset .. 8-8
8-4 Descriptions of Signals for the Address and Data Buses.. 8-9
8-5 Descriptions of Transfer Attribute Signals ... 8-9
8-6 Descriptions of Signals for Byte Lane Specification .. 8-12
8-7 Byte Strobe Assertion for Transfers.. 8-12

Tables
Table
Number Title

Page
Number

xxiv e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

8-8 Big-and Little-Endian Storage (64-bit GPR contains ‘A B C D E F G H’.)............ 8-14
8-9 Descriptions of Signals for Transfer Control Signals ... 8-17
8-10 Descriptions of Master ID Configuration Signals... 8-18
8-11 Descriptions of Interrupt Signals .. 8-18
8-12 Descriptions of Timer Facility Signals ... 8-20
8-13 Descriptions of Processor Reservation Signals... 8-20
8-14 Descriptions of Miscellaneous Processor Signals... 8-20
8-15 Descriptions of Processor State Signals .. 8-22
8-16 Descriptions of Power Management Control Signals ... 8-23
8-17 Descriptions of Debug Events Signals.. 8-24
8-18 e200z6 Debug / Emulation Support Signals ... 8-24
8-19 Descriptions of Debug/Emulation (Nexus 1/ OnCE) Support Signals 8-25
8-20 e200z6 Development Support (Nexus3) Signals .. 8-26
8-21 JTAG Primary Interface Signals ... 8-26
8-22 Descriptions of JTAG Interface Signals.. 8-26
8-23 JTAG Register ID Fields ... 8-30
8-24 JTAG ID Register Inputs... 8-30
8-25 Descriptions of JTAG ID Signals.. 8-30
8-26 Internal Signal Descriptions.. 8-31
9-1 Power States .. 9-1
9-2 Descriptions of Timer Facility and Power Management Signals................................ 9-2
9-3 Power Management Control Bits .. 9-3
10-1 Debug Registers .. 10-4
10-2 Debug Event Descriptions .. 10-7
10-3 JTAG/OnCE Primary Interface Signals .. 10-14
10-4 OnCE Internal Interface Signals ... 10-15
10-5 OnCE Interface Signals... 10-16
10-6 OSR Field Descriptions .. 10-18
10-7 OCMD Field Descriptions .. 10-19
10-8 OnCE Control Register Bit Definitions .. 10-21
10-9 OnCE Register Access Requirements... 10-23
10-10 Methods for Entering Debug Mode .. 10-25
10-11 CTL Field Definitions ... 10-27
10-12 Watchpoint Output Signal Assignments ... 10-33
11-1 Terms and Definitions ... 11-1
11-2 Public TCODEs Supported ... 11-5
11-3 Error Code Encodings (TCODE = 8).. 11-8
11-4 Resource Code Encodings (TCODE = 27) ... 11-8
11-5 Event Code Encodings (TCODE = 33)... 11-8
11-6 Data Trace Size Encodings (TCODE = 5, 6, 13, or 14).. 11-8
11-7 Nexus3 Register Map.. 11-9

Tables
Table
Number Title

Page
Number

Tables xxv
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

11-8 CSC Field Descriptions... 11-10
11-9 PCR Field Descriptions..11-11
11-10 DC1 Field Descriptions... 11-12
11-11 DC2 Field Descriptions... 11-13
11-12 DS Field Descriptions ... 11-14
11-13 RWCS Field Descriptions ... 11-15
11-14 Read/Write Access Status Bit Encodings.. 11-16
11-15 WT Field Descriptions .. 11-17
11-16 DTC Field Descriptions .. 11-18
11-17 Data Trace—Address Range Options ... 11-20
11-18 Nexus Register Example ... 11-20
11-19 Indirect Branch Message Sources ... 11-24
11-20 Direct Branch Message Sources ... 11-24
11-21 Program Trace Exception Summary ... 11-29
11-22 Data Trace Exception Summary ... 11-36
11-23 e200z6 Bus Cycle Cases ... 11-38
11-24 Watchpoint Source Encoding.. 11-40
11-25 Single Write Access Field Settings ... 11-42
11-26 Single Read Access Parameter Settings.. 11-44
11-27 JTAG Pins for Nexus3 .. 11-48
11-28 Nexus3 Auxiliary Pins .. 11-48
11-29 Nexus Port Arbitration Signals ... 11-49
11-30 MSEO Pin(s) Protocol .. 11-49
11-31 MDO Request Encodings.. 11-52
11-32 Indirect Branch Message Example (2 MDO/1 MSEO) .. 11-53
11-33 Indirect Branch Message Example (8 MDO/2 MSEO) .. 11-53
11-34 Direct Branch Message Example (2 MDO/1 MSEO)... 11-54
11-35 Direct Branch Message Example (8 MDO / 2 MSEO)... 11-54
11-36 Data Write Message Example (8 MDO/1 MSEO).. 11-54
11-37 Data Write Message Example (8 MDO/2 MSEO).. 11-55
11-38 Accessing Internal Nexus3 Registers through JTAG/OnCE................................... 11-55
11-39 Accessing Memory-Mapped Resources (Reads) .. 11-56
11-40 Accessing Memory-Mapped Resources (Writes) ... 11-56

Tables
Table
Number Title

Page
Number

xxvi e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Chapter 1. e200z6 Overview 1-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Chapter 1
e200z6 Overview
This chapter provides an overview of the PowerPC e200z6 microprocessor core. It includes
the following:

• An overview of the Book E version of the PowerPC architecture features as
implemented in this core

• A summary of the core feature set

• An overview of the programming model

• An overview of interrupts and exception handling

• A summary of instruction pipeline and flow

• A description of the memory-management architecture

• High-level details of the e200z6 core memory and coherency model

• A summary of the Book E architecture compatibility and migration from the original
version of the PowerPC architecture as it is defined by Apple, IBM, and Motorola
(referred to as the AIM version of the PowerPC architecture)

• Information regarding e200z6 features that are defined by the Motorola Book E
implementation standards (EIS)

1.1 Overview of the e200z6
The e200z6 processor family is a set of CPU cores that implement low-cost versions of the
PowerPC Book E architecture. e200z6 processors are designed for deeply embedded
control applications that require low-cost solutions rather than maximum performance.

Figure 1-1 is a block diagram of the e200z6 core.

The e200z6 is a single-issue, 32-bit Book E–compliant design with 64-bit general-purpose
registers (GPRs).

1-2 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Overview of the e200z6

Figure 1-1. e500z6 Block Diagram

A signal processing extension (SPE) APU and embedded vector and scalar floating-point
APUs are provided to support real-time integer and single-precision, embedded numeric
operations using the GPRs. The e200z6 does not support Book E floating-point instructions
in hardware, but traps them so they can be emulated by software.

All arithmetic instructions that execute in the core operate on data in the GPRs, which have
been extended to 64 bits to support vector instructions defined by the SPE and embedded
vector floating-point APUs. These instructions operate on a vector pair of 16-bit or 32-bit
data types and deliver vector and scalar results.

The e200z6 contains a32-Kbyte unified cache and memory management unit (MMU). A
Nexus Class 3+ module is also integrated.

The e200z6 platform is specified in such a way that functional units can be added or
removed. The e200z6 can be configured with a powerful vectored interrupt controller and
one or more IP slave interfaces, as well as support for configured memory units.

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

Fetch Unit

Branch Processing Unit

Instruction/Control Unit

Instruction Buffer

Core Interface Unit

Software-Managed

Unified 8-Way Set-Associative

Unified Memory Unit

MAS
Registers

32 GPRs
(64-bit)

XER
CR

4-, 16-, 64-, 256-Kbyte;
1-, 4-, 16-, 64-,

256-Mbyte page sizes

Execution Units

SPRs

Integer

+ x ÷
Unit

SPE APU

+ x ÷
Unit

Embedded

+ x ÷
Scalar FPU

Embedded

+ x ÷
Vector FPU

Load/Store

Branch
Unit

(7 instructions)

Decode

32-Kbyte Cache

8-Entry Branch

Write-Back Stage

•
•
•

128

8 ways

Two
instructions

64

32 64 N

Address Data Control

Additional Features
 • OnCe/Nexus 1/Nexus 3

control logic
 • Cache line locking
 • Cache partitioning
 • AMBA AHB-Lite bus
 • SPE APU (SIMD)
 • Embedded scalar/

vector floating-point
 • Power management
 • Time base/ decrementer

counter

Stage

64

64

Data

+

+ EA calc

L1 Unified MMU

Line Fill Buffer
(critical double-word

Unit

CTR
LR

Single-instruction, in-order dispatch

Single-instruction, in-order write back

Two-stage
fetch

Program Counter

•
•
•

32-Entry
Fully Associative

TLB

EA calc

forwarding)

Three-stage
single-path
execute
pipeline with
overlapped
execution
and feed-
forwarding

Push Buffer

8-Entry Store Buffer

sets

Target Buffer

Pipeline stage

Chapter 1. e200z6 Overview 1-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Overview of the e200z6

1.1.1 Features

The following lists key features of the e200z6:

• Single-issue, 32-bit Book E–compliant core

• In-order execution and retirement

• Precise exception handling

• Branch processing unit (BPU)

— Dedicated branch address calculation adder

— Branch target prefetching using an eight-entry branch target buffer (BTB)

• Load/store unit (LSU)

— 3-cycle load latency

— Fully pipelined

— Big- and little-endian support on a per-page basis

— Misaligned access support

• 64-bit GPR file

• AMBA™ (advanced microcontroller bus architecture) AHB (advanced
high-performance bus)-Lite 64-bit system bus

• MMU with 32-entry fully associative TLB and multiple page-size support

• 32-Kbyte, 8-way set-associative unified cache

• Signal processing extension (SPE) APU supporting integer operations using both
halves of the 64-bit GPRs

• Single-precision embedded scalar floating-point APU

• Single-precision embedded vector floating-point APU that uses both halves of the
64-bit GPRs

• Nexus Class 3+ real-time development unit

• Power management

— Low-power design–extensive clock gating

— Power-saving modes: doze, nap, sleep

— Dynamic power management of execution units, caches, and MMUs

• e200z6-specific debug interrupt. The e200z6 implements the debug interrupt as
defined in Book E with the following changes:

— When the debug APU is enabled (MSR[DE] = 1), debug is no longer a critical
interrupt, but uses DSRR0 and DSRR1 for saving machine state on context
switch.

— A Return From Debug Interrupt instruction (rfdi) is implemented to support the
debug APU save/restore registers (DSRR0 and DSRR1).

1-4 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Programming Model

— A critical interrupt taken debug event is defined to allow critical interrupts to
generate a debug event.

— A critical return debug event is defined to allow debug events to be generated for
rfci instructions.

• Testability

— Synthesizeable, full MuxD scan design

— ABIST/MBIST for arrays

1.2 Programming Model
This section describes the register model, instruction model, and the interrupt model as they
are defined by Book E, Motorola EIS, and the e200z6 implementation.

1.2.1 Register Set

Figure 1-2 shows the e200z6 register set, indicating which registers are accessible in
supervisor mode and which are accessible in user mode. The number to the left of the
special-purpose registers (SPRs) is the decimal number used in the instruction syntax to
access the register. (For example, the integer exception register (XER) is SPR 1.)

GPRs are accessed through instruction operands. Access to other registers can be explicit
(by using instructions for that purpose such as the Move to Special Purpose Register
(mtspr) and Move from Special Purpose Register (mfspr) instructions) or implicit as part
of the execution of an instruction. Some registers are accessed both explicitly and
implicitly.

Chapter 1. e200z6 Overview 1-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Programming Model

Figure 1-2. e200z6 Programmer’s Model

User-Level Registers
General-Purpose Registers Instruction-Accessible Registers User General SPR (Read/Write)

0 31 32 63 0 31 32 63 32 63
User SPR
general 0(upper) GPR0 1 (lower)

1 The 64-bit GPR registers are accessed by the SPE as separate 32-bit registers by SPE instructions. Only SPE vector instructions can access the upper word.

General-
purpose
registers

CR Condition register spr 256 USPRG0 2

2 USPRG0 is a separate physical register from SPRG0.

GPR1
spr 9 CTR Count register General SPRs (Read-Only)

GPR2
• • • spr 8 LR Link register spr 260 SPRG4

SPR general
registers 4–7

GPR31 spr 261 SPRG5
spr 1 XER Integer exception

register spr 262 SPRG6
L1 Cache (Read-Only)

spr 512 SPEFSCR 3

3 EIS–specific registers; not part of the Book E architecture.

SP/embedded FP
status/control register spr 263 SPRG7

L1 cache
configuration
register 0

spr 515 L1CFG03

ACC3 Accumulator Time-Base Registers (Read-Only)

spr 268 TBL Time base
lower/upperspr 269 TBU

Supervisor-Level Registers
Interrupt Registers Configuration Registers

32 63 32 63 32 63

 spr 63 IVPR Interrupt vector
prefix register spr 400 IVOR0

Interrupt vector offset
registers 0–15 4

4 IVOR9 (handles auxiliary processor unavailable interrupt) is defined by the EIS but not supported by the e200z6.

MSR Machine state register

spr 401 IVOR1
 spr 26 SRR0 Save/restore

registers 0/1
spr 1023 SVR3 System version

register• • •
spr 27 SRR1

spr 415 IVOR15 spr 286 PIR Processor ID register

spr 58 CSRR0
Critical SRR 0/1 Processor version

registerspr 528 IVOR323

Interrupt vector offset
registers 32–34

spr 287 PVR
spr 59 CSRR1

spr 529 IVOR333

spr 574 DSRR03
Debug interrupt
SRR 0/1

spr 530 IVOR343

Timer/Decrementer Registers
spr 575 DSRR13

Exception syndrome
register

 spr 22 DEC Decrementer
 spr 62 ESR MMU Control and Status (Read/Write)

Decrementer
auto-reload registerMMU control and status

register 0
 spr 54 DECAR

spr 572 MCSR3 Machine check
syndrome register spr 1012 MMUCSR03

 spr 284 TBL Time base
lower/upper spr 61 DEAR Data exception

address register
 spr 624 MAS03

MMU assist registers
0–4 and 6

 spr 285 TBU
spr 625 MAS13

Debug Registers spr 626 MAS23 spr 340 TCR Timer control register

spr 627 MAS33
 spr 308 DBCR0

Debug control
registers 0–3

 spr 336 TSR Timer status register
spr 628 MAS43

spr 309 DBCR1
spr 630 MAS63 Miscellaneous Registers

spr 310 DBCR2
Process ID
register 0spr 561 DBCR3 spr 48 PID0 spr 1008 HID03 Hardware

implementation
dependent 0–1spr 1009 HID13

 spr 304 DBSR Debug status register MMU Control and Status (Read Only)
spr 1013 BUCSR 5

5 e200z6-specific registers

Branch control and
status register spr 562 DBCNT 5 Debug count register spr 1015 MMUCFG3 MMU configuration

spr 272–279 SPRG0–7 General SPRs 0–7
spr 312 IAC1

Instruction address
compare
registers 1–4

spr 688 TLB0CFG3
TLB configuration 0/1

spr 313 IAC2 spr 689 TLB1CFG3 Context Control (Read/Write)
spr 314 IAC3 Context control

registerL1 Cache (Read/Write) spr 560 CTXCR5
spr 315 IAC4

L1 cache control/status
registers 0Data address

compare
registers 1 and 2

spr 1010 L1CSR03
Alternate context
control registerspr 316 DAC1 spr 568 ALTCTXCR5

spr 317 DAC2 L1 cache
flush/invalidate control
register 0

spr 1016 L1FINV05

1-6 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Set

1.3 Instruction Set
The e200z6 implements the following instructions:

• The Book E instruction set for 32-bit implementations. This is composed primarily
of the user-level instructions defined by the PowerPC user instruction set
architecture (UISA). The e200z6 does not include the Book E floating-point, load
string, or store string instructions.

• The e200z6 supports the following implementation-specific instructions:

— Integer select APU. This APU consists of the Integer Select instruction (isel),
which functions as an if-then-else statement that selects between two source
registers by comparison to a CR bit. This instruction eliminates conditional
branches, takes fewer clock cycles than the equivalent coding, and reduces the
code footprint.

— Cache line lock and unlock APU. The cache block lock and unlock APU consists
of the instructions described in Table 1-1.

— Debug APU. This APU defines the Return from Debug Interrupt instruction
(rfdi).

— SPE APU vector instructions. New vector instructions are defined that view the
64-bit GPRs as being composed of a vector of two 32-bit elements. (Some of the
instructions also read or write 16-bit elements.) Some scalar instructions are
defined for DSP that produce a 64-bit scalar result.

— The embedded floating-point APUs provide single-precision scalar and vector
floating-point instructions. Scalar floating-point instructions use only the lower
32 bits of the GPRs for single-precision floating-point calculations. Table 1-2
lists embedded floating-point instructions.

Table 1-1. Cache Block Lock and Unlock APU Instructions

Name Mnemonic Syntax

Data Cache Block Lock Clear dcblc CT,rA,rB

Data Cache Block Touch and Lock Set dcbtls CT,rA,rB

Data Cache Block Touch for Store and Lock Set dcbtstls CT,rA,rB

Instruction Cache Block Lock Clear icblc CT,rA,rB

Instruction Cache Block Touch and Lock Set icbtls CT,rA,rB

Chapter 1. e200z6 Overview 1-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupts and Exception Handling

1.4 Interrupts and Exception Handling
The core supports an extended exception handling model, with nested interrupt capability
and extensive interrupt vector programmability. The following sections define the
exception model, including an overview of exception handling as implemented on the
e200z6 core, a brief description of the exception classes, and an overview of the registers
involved in the processes.

Table 1-2. Scalar and Vector Embedded Floating-Point APU Instructions

Instruction
Mnemonic

Syntax
Scalar Vector

Convert Floating-Point from Signed Fraction efscfsf evfscfsf rD,rB

Convert Floating-Point from Signed Integer efscfsi evfscfsi rD,rB

Convert Floating-Point from Unsigned Fraction efscfuf evfscfuf rD,rB

Convert Floating-Point from Unsigned Integer efscfui evfscfui rD,rB

Convert Floating-Point to Signed Fraction efsctsf evfsctsf rD,rB

Convert Floating-Point to Signed Integer efsctsi evfsctsi rD,rB

Convert Floating-Point to Signed Integer with Round toward Zero efsctsiz evfsctsiz rD,rB

Convert Floating-Point to Unsigned Fraction efsctuf evfsctuf rD,rB

Convert Floating-Point to Unsigned Integer efsctui evfsctui rD,rB

Convert Floating-Point to Unsigned Integer with Round toward Zero efsctuiz evfsctuiz rD,rB

Floating-Point Absolute Value efsabs evfsabs rD,rA

Floating-Point Add efsadd evfsadd rD,rA,rB

Floating-Point Compare Equal efscmpeq evfscmpeq crD,rA,rB

Floating-Point Compare Greater Than efscmpgt evfscmpgt crD,rA,rB

Floating-Point Compare Less Than efscmplt evfscmplt crD,rA,rB

Floating-Point Divide efsdiv evfsdiv rD,rA,rB

Floating-Point Multiply efsmul evfsmul rD,rA,rB

Floating-Point Negate efsneg evfsneg rD,rA

Floating-Point Negative Absolute Value efsnabs evfsnabs rD,rA

Floating-Point Subtract efssub evfssub rD,rA,rB

Floating-Point Test Equal efststeq evfststeq crD,rA,rB

Floating-Point Test Greater Than efststgt evfststgt crD,rA,rB

Floating-Point Test Less Than efststlt evfststlt crD,rA,rB

1-8 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupts and Exception Handling

1.4.1 Exception Handling

In general, interrupt processing begins with an exception that occurs due to external
conditions, errors, or program execution problems. When the exception occurs, the
processor checks whether interrupt processing is enabled for that particular exception. If
enabled, the interrupt causes the state of the processor to be saved in the appropriate
registers and prepares to begin execution of the handler located at the associated vector
address for that particular exception.

Once the handler is executing, the implementation may need to check one or more bits in
the exception syndrome register (ESR), the machine check syndrome register (MCSR), or
the signal processing and embedded floating-point status and control register (SPEFSCR),
depending on the exception type, to verify the specific cause of the exception and take
appropriate action.

The core complex supports the interrupts described in Section 1.4.4, “Interrupt Registers.”

1.4.2 Interrupt Classes

All interrupts may be categorized as asynchronous/synchronous and critical/noncritical.

• Asynchronous interrupts (such as machine check, critical input, and external
interrupts) are caused by events that are independent of instruction execution. For
asynchronous interrupts, the address reported in a save/restore register is the address
of the instruction that would have executed next had the asynchronous interrupt not
occurred.

• Synchronous interrupts are those that are caused directly by the execution or
attempted execution of instructions. Synchronous inputs are further divided into
precise and imprecise types.

— Synchronous precise interrupts are those that precisely indicate the address of the
instruction causing the exception that generated the interrupt or, in some cases,
the address of the immediately following instruction. The interrupt type and
status bits allow determination of which of the two instructions has been
addressed in the appropriate save/restore register.

— Synchronous imprecise interrupts are those that may indicate the address of the
instruction causing the exception that generated the interrupt, or some instruction
after the instruction causing the interrupt. If the interrupt was caused by either
the context synchronizing mechanism or the execution synchronizing
mechanism, the address in the appropriate save/restore register is the address of
the interrupt-forcing instruction. If the interrupt was not caused by either of those
mechanisms, the address in the save/restore register is the last instruction to start
execution, and may not have completed. No instruction following the instruction
in the save/restore register has executed.

Chapter 1. e200z6 Overview 1-9
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupts and Exception Handling

1.4.3 Interrupt Types

The e200z6 core processes all interrupts as either debug, critical, or noncritical types.
Separate control and status register sets are provided for each type of interrupt. The core
handles interrupts from these three categories in the following priority order:

1. Debug interrupt—The e200z6 core defines a separate set of resources for the debug
interrupt. They use the debug save and restore registers (DSRR0/DSRR1) to save
state when they are taken, and they use the rfdi instruction to restore state. These
interrupts can be masked by the debug enable bit, MSR[DE]. If MSR[DE] = 0, the
debug interrupt is disabled, and debug interrupts are handled as critical interrupts.

2. Noncritical interrupts—First-level interrupts that allow the processor to change
program flow to handle conditions generated by external signals, errors, or unusual
conditions arising from program execution or from programmable timer-related
events. These interrupts are largely identical to those previously defined by the
OEA portion of the PowerPC architecture. They use the save and restore registers
(SRR0/SRR1) to save state when they are taken, and they use the rfi instruction to
restore state. Asynchronous noncritical interrupts can be masked by the external
interrupt enable bit, MSR[EE].

3. Critical interrupts—Critical interrupts can be taken during a noncritical interrupt or
during regular program flow. They use the critical save and restore registers
(CSRR0/CSRR1) to save state when they are taken, and they use the rfci
instruction to restore state. These interrupts can be masked by the critical enable
bit, MSR[CE]. Book E defines the critical input, watchdog timer, and machine
check interrupts as critical interrupts, but the e200z6 core defines a third set of
resources for the debug interrupt, as described in Table 1-3.

All interrupts except debug interrupts are ordered within the two categories of noncritical
and critical, such that only one interrupt of each category is reported, and when it is
processed (taken), no program state is lost. Because save/restore register pairs are serially
reusable, program state may be lost when an unordered interrupt is taken.

1.4.4 Interrupt Registers

The registers associated with interrupt and exception handling are described in Table 1-3.

Table 1-3. Interrupt Registers

Register Description

Noncritical Interrupt Registers

SRR0 Save/restore register 0 —Stores the address of the instruction causing the exception or the address of the
instruction that will execute after the rfi instruction.

SRR1 Save/restore register 1—Saves machine state on noncritical interrupts and restores machine state after an
rfi instruction is executed.

1-10 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupts and Exception Handling

Each interrupt has an associated interrupt vector address, obtained by concatenating
IVPR[32–47] with the address index in the associated IVOR (that is,
IVPR[32–47] || IVORn[48–59] || 0b0000). The resulting address is that of the instruction to
be executed when that interrupt occurs. IVPR and IVOR values are indeterminate on reset,
and must be initialized by the system software using mtspr. Table 1-3 lists IVOR registers
implemented on the e200z6 core and the associated interrupts.

Critical Interrupt Registers

CSRR0 Critical save/restore register 0—On critical interrupts, stores either the address of the instruction causing
the exception or the address of the instruction that will execute after the rfci instruction.

CSRR1 Critical save/restore register 1—Saves machine state on critical interrupts and restores machine state after
an rfci instruction is executed.

Debug Interrupt Registers

DSRR0 Debug save/restore register 0—Used to store the address of the instruction that will execute after an rfdi
instruction is executed.

DSRR1 Debug save/restore register 1—Stores machine state on debug interrupts and restores machine state after
an rfdi instruction is executed.

Syndrome Registers

MCSR Machine check syndrome register—Saves machine check syndrome information on machine check
interrupts.

ESR Exception syndrome register—Provides a syndrome to differentiate between the different kinds of
exceptions that generate the same interrupt type. Upon generation of a specific exception type, the
associated bit(s) is set and all other bits are cleared.

SPE APU Interrupt Registers

SPEFSCR Signal processing and embedded floating-point status and control register—Provides interrupt control and
status as well as various condition bits associated with the operations performed by the SPE APU.

Other Interrupt Registers

DEAR Data exception address register—Contains the address that was referenced by a load, store, or cache
management instruction that caused an alignment, data TLB miss, or data storage interrupt.

IVPR
IVORs

Together, IVPR[32–47] || IVORn [48–59] || 0b0000 define the address of an interrupt-processing routine.
See Table 1-4 and Chapter 5, “Interrupts and Exceptions,” for more information.

Table 1-4. Exceptions and Conditions

Interrupt Type IVORn Causal Conditions Section/Page

System reset (not
an interrupt)

None 1, • Reset by assertion of p_reset_b
 • Watchdog timer reset control
 • Debug reset control

—

Critical input IVOR 0 2 p_critint_b is asserted and MSR[CE]=1. 5.6.1/5-9

Table 1-3. Interrupt Registers (continued)

Register Description

Chapter 1. e200z6 Overview 1-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupts and Exception Handling

Machine check IVOR 1 • p_mcp_b is asserted and MSR[ME] =1.
 • ISI, ITLB error on first instruction fetch for an exception handler

and current MSR[ME] = 1
 • Parity error signaled on cache access and current MSR[ME]=1
 • Write bus error on buffered store or cache line push

5.6.2/5-10

Data storage IVOR 2 • Access control
 • Byte ordering due to misaligned access across page boundary

to pages with mismatched E bits
 • Cache locking exception
 • Precise external termination error (p_tea_b assertion and

precise recognition)

5.6.3/5-12

Instruction storage IVOR 3 • Access control
 • Precise external termination error (p_tea_b assertion and

precise recognition)

5.6.4/5-13

External input IVOR 4 2 p_extint_b is asserted and MSR[EE]=1. 5.6.5/5-14

Alignment IVOR 5 • lmw, stmw not word aligned
 • lwarx or stwcx. not word aligned
 • dcbz with disabled cache or no cache present, or to W or I

storage
 • Misaligned SPE load and store instructions

5.6.6/5-14

Program IVOR 6 Illegal, privileged, trap, floating-point enabled, APU enabled,
unimplemented operation.

5.6.7/5-15

Floating-point
unavailable

IVOR 7 MSR[FP] = 0 and attempt to execute a Book E floating-point
operation

5.6.8/5-16

System call IVOR 8 Execution of the System Call (sc) instruction 5.6.9/5-17

APU unavailable IVOR 9 Unused by the e200z6 5.6.10/5-17

Decrementer IVOR 10 As specified in Book E 5.6.11/5-17

Fixed-interval timer IVOR 11 As specified in Book E 5.6.12/5-18

Watchdog timer IVOR 12 As specified in Book E 5.6.13/5-19

Data TLB error IVOR 13 Data translation lookup did not match a valid entry in the TLB. 5.6.14/5-20

Instruction TLB
error

IVOR 14 Instruction translation lookup did not match a valid entry in the TLB 5.6.15/5-20

Debug IVOR 15 Trap, instruction address compare, data address compare,
instruction complete, branch taken, return from interrupt, interrupt
taken, debug counter, external debug event, unconditional debug
event

5.6.16/5-21

Reserved IVOR 16–31 — —

SPE unavailable
exception

IVOR 32 See Section 5.6.18, “SPE APU Unavailable Interrupt (IVOR32).” 5.6.18/5-25

SPE data
exception

IVOR 33 See Section 5.6.19, “SPE Floating-Point Data Interrupt (IVOR33).” 5.6.19/5-25

SPE round
exception

IVOR 34 See Section 5.6.20, “SPE Floating-Point Round Interrupt
(IVOR34).”

5.6.20/5-26

Table 1-4. Exceptions and Conditions (continued)

Interrupt Type IVORn Causal Conditions Section/Page

1-12 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Microarchitecture Summary

1.5 Microarchitecture Summary
The e200z6 processor has a seven-stage pipeline for instruction execution.

1. Instruction fetch 0

2. Instruction fetch 1

3. Instruction decode/register file read

4. Execute 0

5. Execute 1/memory access 0

6. Execute 2/memory access 1

7. Register writeback

These stages are pipelined, allowing single-clock instruction throughput for most
instructions.

The integer execution unit consists of a 32-bit arithmetic unit (AU), a logic unit (LU), a
32-bit barrel shifter (shifter), a mask-insertion unit (MIU), a condition register
manipulation unit (CRU), a count-leading-zeros unit (CLZ), a 32 × 32 hardware multiplier
array, result feed-forward hardware, and support hardware for division.

Most arithmetic and logical operations are executed in a single cycle with the exception of
multiply, which is implemented with a pipelined hardware array, and the divide
instructions. A count-leading-zeros unit operates in a single clock cycle.

The instruction unit contains a PC incrementer and a dedicated branch address adder to
minimize delays during change-of-flow operations. Sequential prefetching is performed to
ensure a supply of instructions into the execution pipeline. Branch target prefetching is
performed to accelerate taken branches. Prefetched instructions are placed into an
instruction buffer capable of holding six instructions.

Branch target addresses are calculated in parallel with branch instruction decode, resulting
in execution time of 3 clocks. Conditional branches which are not taken execute in a single
clock. Branches with successful BTB target prefetching have an effective latency of
1 clock.

Memory load and store operations are provided for byte, half-word, word (32-bit), and
double-word data with automatic zero or sign extension of byte and half-word load data as
well as optional byte reversal of data. These instructions can be pipelined to allow effective
single-cycle throughput. Load and store multiple word instructions allow low-overhead
context save and restore operations. The load/store unit contains a dedicated effective
address adder to allow effective address generation to be optimized.

1 Vector to [p_rstbase[0:19]] || 0xFFC
2 Autovectored external and critical input interrupts use this IVOR. Vectored interrupts supply an interrupt vector offset

directly.

Chapter 1. e200z6 Overview 1-13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Microarchitecture Summary

The condition register unit supports the condition register (CR) and condition register
operations defined by the PowerPC architecture. The CR consists of eight 4-bit fields that
reflect the results of certain operations, such as move, integer and floating-point compare,
arithmetic, and logical instructions, and provide a mechanism for testing and branching.

Vectored and autovectored interrupts are supported by the CPU. Vectored interrupt support
is provided to allow multiple interrupt sources to have unique interrupt handlers invoked
with no software overhead.

The SPE APU supports vector instructions operating on 16- and 32-bit integer and
fractional data types. The vector and scalar floating-point APUs operate on 32-bit
IEEE-754 single-precision floating-point formats, and support single-precision
floating-point operations in a pipelined fashion.

The 64-bit GPRs are used for source and destination operands for all vector instructions,
and there is a unified storage model for single-precision floating-point data types of 32 bits
and the normal integer type. Low-latency integer and floating-point add, subtract, multiply,
divide, compare, and conversion operations are provided, and most operations can be
pipelined.

1.5.1 Instruction Unit Features

The features of the e200z6 instruction unit are as follows:

• 64-bit path to cache supports fetching of two 32-bit instructions per clock

• Instruction buffer holds up to seven sequential instructions

• Dedicated PC (program counter) incrementer supporting instruction fetches

• Branch processing unit with dedicated branch address adder and branch target buffer
(BTB) supporting single-cycle execution of successfully predicted branches

• Target instruction buffer holds up to two prefetched branch target instructions

1.5.2 Integer Unit Features

The integer unit supports single-cycle execution of most integer instructions:

• 32-bit AU for arithmetic and comparison operations

• 32-bit LU for logical operations

• 32-bit priority encoder for count-leading-zeros function

• 32-bit single-cycle barrel shifter for static shifts and rotates

• 32-bit mask unit for data masking and insertion

• Divider logic for signed and unsigned divide in 15 clocks with minimized execution
timing

1-14 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Microarchitecture Summary

• Pipelined 32 × 32 hardware multiplier array supports 32 × 32 → 32 multiply with
3-clock latency, 1-clock throughput

1.5.3 Load/Store Unit (LSU) Features

The e200z6 LSU supports load, store, and the load multiple/store multiple instructions:

• 32-bit effective address adder for data memory address calculations

• Pipelined operation supports throughput of one load or store operation per cycle

• Dedicated 64-bit interface to memory supports saving and restoring of up to two
registers per cycle for load multiple and store multiple word instructions

1.5.4 L1 Cache Features

The features of the cache are as follows:

• 32-Kbyte, 8-way set-associative unified cache

• Partitionable cache

• Copy-back and write-through support

• Eight-entry store buffer

• Push buffer

• Unified line-fill buffer with critical double-word forwarding for both data loads and
instruction fetches

• 32-bit address bus plus attributes and control

• Separate unidirectional 64-bit read and 64-bit write data buses

• Cache line locking supported by the Motorola Book E cache line locking APU

— Data cache locking control instructions—Data Cache Block Touch and Lock Set
(dcbtls), Data Cache Block Touch for Store and Lock Set (dcbtstls), and Data
Cache Block Lock Clear (dcblc)

— Instruction cache locking control instructions—Instruction Cache Block Touch
and Lock Set (icbtls) and Instruction Cache Block Lock Clear (icblc)

• Way allocation

• Tag and data parity

• e200z6-specific L1 cache flush and invalidate register (L1FINV0) supports
software-based flush and invalidation control on a set and way basis.

1.5.5 MMU Features

The e200z6 memory management unit (MMU) is a 32-bit Book E–compliant PowerPC
implementation, with the following feature set:

Chapter 1. e200z6 Overview 1-15
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Legacy Support of PowerPC Architecture

• Motorola Book E MMU architecture compliant

• Translates from 32-bit effective to 32-bit real addresses

• 8-bit process identifier (PID)

• 32-entry fully associative TLB

• Support for multiple 4-, 16-, 64-, 256-Kbyte; 1-, 4-, 16-, 64-, 256-Mbyte page sizes

• Hardware assist for TLB miss exceptions

• Software managed by tlbre, tlbwe, tlbsx, tlbsync, and tlbivax instructions

• Entry flush protection

• Byte ordering (endianness) configurable on a per-page basis

1.5.6 e200z6 System Bus (Core Complex Interface) Features

The features of the e200z6 core complex interface are as follows:

• AMBA AHB-Lite protocol

• 32-bit address bus plus attributes and control

• Separate unidirectional 64-bit read data bus and 64-bit write data bus

• Pipelined, in-order accesses

1.5.7 Nexus3 Module Features

The Nexus3 module provides real-time development capabilities for e200z6 processors in
compliance with the IEEE-ISTO Nexus 5001-2003 standard. This module provides
development support capabilities without requiring the use of address and data pins for
internal visibility.

A portion of the pin interface (the JTAG port) is also shared with the OnCE/Nexus1 unit.
The IEEE-ISTO 5001-2003 standard defines an extensible auxiliary port which is used in
conjunction with the JTAG port in e200z6 processors.

1.6 Legacy Support of PowerPC Architecture
This section provides an overview of the architectural differences and compatibilities of the
e200z6 core compared with the AIM PowerPC architecture. The two levels of the e200z6
core programming environment are as follows:

• User level—This defines the base user-level instruction set, registers, data types,
memory conventions, and the memory and programming models seen by
application programmers.

• Supervisor level—This defines supervisor-level resources typically required by an
operating system, the memory management model, supervisor level registers, and
the exception model.

1-16 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Legacy Support of PowerPC Architecture

In general, the e200z6 core supports the user-level architecture from the existing AIM
architecture. The following subsections are intended to highlight the main differences. For
specific implementation details refer to the relevant chapter.

1.6.1 Instruction Set Compatibility

The following sections generally describe the user and supervisor instruction sets.

1.6.1.1 User Instruction Set

The e200z6 core executes legacy user-mode binaries and object files except for the
following:

• The e200z6 core supports vector and scalar single-precision floating-point
operations as APUs. These instructions have different encoding than the AIM
definition of the PowerPC architecture. Additionally, the e200z6 core uses GPRs for
floating-point operations, rather than the FPRs defined by the UISA. Most porting
of floating-point operations can be handled by recompiling.

• String instructions are not implemented on the e200z6 core; therefore, trap
emulation must be provided to ensure backward compatibility.

1.6.1.2 Supervisor Instruction Set

The supervisor-mode instruction set defined by the AIM version of the PowerPC
architecture is compatible with the e200z6 core with the following exceptions:

• The MMU architecture is different, so some TLB manipulation instructions have
different semantics.

• Instructions that support the BATs and segment registers are not implemented.

1.6.2 Memory Subsystem

Both Book E and the AIM version of the PowerPC architecture provide separate instruction
and data memory resources. The e200z6 core provides additional cache control features,
including cache locking.

1.6.3 Exception Handling

Exception handling is generally the same as that defined in the AIM version of the
PowerPC architecture for the e200z6 core, with the following differences:

• Book E defines a new critical interrupt, providing an extra level of interrupt nesting.
The critical interrupt includes external critical and watchdog timer time-out inputs.

Chapter 1. e200z6 Overview 1-17
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Legacy Support of PowerPC Architecture

• The debug interrupt differs from the Book E and from the AIM definition. It defines
the Return from Debug Interrupt instruction, rfdi, and two debug save/restore
registers, DSRR0 and DSRR1.

• Book E processors can use IVPR and the IVORs to set exception vectors
individually, but they can be set to the address offsets defined in the OEA to provide
compatibility.

• Unlike the AIM version of the PowerPC architecture, Book E does not define a reset
vector; execution begins at a fixed virtual address, 0xFFFF_FFFC. The e200z6
allows this to be hard-wired to any page.

• Some Book E and e200z6 core-specific SPRs are different from those defined in the
AIM version of the PowerPC architecture, particularly those related to the MMU
functions. Much of this information has been moved to a new exception syndrome
register (ESR).

• Timer services are generally compatible, although Book E defines a new
decrementer auto reload feature, the fixed-interval timer critical interrupt, and the
watchdog timer interrupt, which are implemented in the e200z6 core.

An overview of the interrupt and exception handling capabilities of the e200z6 core can be
found in Section 1.4, “Interrupts and Exception Handling.”

1.6.4 Memory Management

The e200z6 core implements a straightforward virtual address space that complies with the
Book E MMU definition, which eliminates segment registers and block address translation
resources. Book E defines resources for multiple, variable page sizes that can be configured
in a single implementation. TLB management is provided with new instructions and SPRs.

1.6.5 Reset

Book E–compliant cores do not share a common reset vector with the AIM version of the
PowerPC architecture. Instead, at reset, fetching begins at address 0xFFFF_FFFC. In
addition to the Book E reset definition, the EIS and the e200z6 core define specific aspects
of the MMU page translation and protection mechanisms. Unlike the AIM version of the
PowerPC core, as soon as instruction fetching begins, the e200z6 core is in virtual mode
with a hardware-initialized TLB entry.

1.6.6 Little-Endian Mode

Unlike the AIM version of the PowerPC architecture, where little-endian mode is
controlled on a system basis, Book E allows control of byte ordering on a memory-page
basis. In addition, the little-endian mode used in Book E is true little-endian byte ordering
(byte invariance).

1-18 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Legacy Support of PowerPC Architecture

Chapter 2. Register Model 2-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Chapter 2
Register Model
This chapter describes the registers implemented in the e200z6 core. It includes an
overview of registers defined by the Book E architecture, highlighting differences in how
these registers are implemented in the e200z6 core, and provides a detailed description of
the e200z6-specific registers. Full descriptions of the architecture-defined register set are
provided in the EREF.

The Book E architecture defines register-to-register operations for all computational
instructions. Source data for these instructions is accessed from the on-chip registers or is
provided as immediate values embedded in the opcode. The three-register instruction
format allows specification of a target register distinct from the two source registers, thus
preserving the original data for use by other instructions. Data is transferred between
memory and registers with explicit load and store instructions only.

The e200z6 extends the general-purpose registers (GPRs) to 64 bits for supporting SPE
APU operations. PowerPC Book E instructions operate on the lower 32 bits of the GPRs
only, and the upper 32 bits are unaffected by these instructions. SPE vector instructions
operate on the entire 64-bit register. The SPE APU defines load and store instructions for
transferring 64-bit values to/from memory.

Figure 2-1 shows the complete e200z6 register set, indicating which registers are accessible
in supervisor mode and which are accessible in user mode. The number to the left of the
special-purpose registers (SPRs) is the decimal number used in the instruction syntax to
access the register. For example, the integer exception register (XER) is SPR 1.

GPRs are accessed through instruction operands. Access to other registers can be explicit
(by using instructions for that purpose such as Move to Special Purpose Register (mtspr)
and Move from Special Purpose Register (mfspr)) or implicit as part of the execution of an
instruction. Some registers are accessed both explicitly and implicitly.

2-2 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Figure 2-1. e200z6 Programmer’s Model

User-Level Registers
General-Purpose Registers Instruction-Accessible Registers User General SPR (Read/Write)

0 31 32 63 0 31 32 63 32 63
User SPR
general 0(upper) GPR0 1 (lower)

1 The 64-bit GPR registers are accessed by the SPE as separate 32-bit registers by SPE instructions. Only SPE vector instructions can access the upper word.

General-
purpose
registers

CR Condition register spr 256 USPRG0 2

2 USPRG0 is a separate physical register from SPRG0.

GPR1
spr 9 CTR Count register General SPRs (Read-Only)

GPR2
• • • spr 8 LR Link register spr 260 SPRG4

SPR general
registers 4–7

GPR31 spr 261 SPRG5
spr 1 XER Integer exception

register spr 262 SPRG6
L1 Cache (Read-Only)

spr 512 SPEFSCR 3

3 EIS–specific registers; not part of the Book E architecture.

SP/embedded FP
status/control register spr 263 SPRG7

L1 cache
configuration
register 0

spr 515 L1CFG03

ACC3 Accumulator Time-Base Registers (Read-Only)

spr 268 TBL Time base
lower/upperspr 269 TBU

Supervisor-Level Registers
Interrupt Registers Configuration Registers

32 63 32 63 32 63

 spr 63 IVPR Interrupt vector
prefix register spr 400 IVOR0

Interrupt vector offset
registers 0–15 4

4 IVOR9 (handles auxiliary processor unavailable interrupt) is defined by the EIS but not supported by the e200z6.

MSR Machine state register

spr 401 IVOR1
 spr 26 SRR0 Save/restore

registers 0/1
spr 1023 SVR3 System version

register• • •
spr 27 SRR1

spr 415 IVOR15 spr 286 PIR Processor ID register

spr 58 CSRR0
Critical SRR 0/1 Processor version

registerspr 528 IVOR323

Interrupt vector offset
registers 32–34

spr 287 PVR
spr 59 CSRR1

spr 529 IVOR333

spr 574 DSRR03
Debug interrupt
SRR 0/1

spr 530 IVOR343

Timer/Decrementer Registers
spr 575 DSRR13

Exception syndrome
register

 spr 22 DEC Decrementer
 spr 62 ESR MMU Control and Status (Read/Write)

Decrementer
auto-reload registerMMU control and status

register 0
 spr 54 DECAR

spr 572 MCSR3 Machine check
syndrome register spr 1012 MMUCSR03

 spr 284 TBL Time base
lower/upper spr 61 DEAR Data exception

address register
 spr 624 MAS03

MMU assist registers
0–4 and 6

 spr 285 TBU
spr 625 MAS13

Debug Registers spr 626 MAS23 spr 340 TCR Timer control register

spr 627 MAS33
 spr 308 DBCR0

Debug control
registers 0–3

 spr 336 TSR Timer status register
spr 628 MAS43

spr 309 DBCR1
spr 630 MAS63 Miscellaneous Registers

spr 310 DBCR2
Process ID
register 0spr 561 DBCR3 spr 48 PID0 spr 1008 HID03 Hardware

implementation
dependent 0–1spr 1009 HID13

 spr 304 DBSR Debug status register MMU Control and Status (Read Only)
spr 1013 BUCSR 5

5 e200z6-specific registers

Branch control and
status register spr 562 DBCNT 5 Debug count register spr 1015 MMUCFG3 MMU configuration

spr 272–279 SPRG0–7 General SPRs 0–7
spr 312 IAC1

Instruction address
compare
registers 1–4

spr 688 TLB0CFG3
TLB configuration 0/1

spr 313 IAC2 spr 689 TLB1CFG3 Context Control (Read/Write)
spr 314 IAC3 Context control

registerL1 Cache (Read/Write) spr 560 CTXCR5
spr 315 IAC4

L1 cache control/status
registers 0Data address

compare
registers 1 and 2

spr 1010 L1CSR03
Alternate context
control registerspr 316 DAC1 spr 568 ALTCTXCR5

spr 317 DAC2 L1 cache
flush/invalidate control
register 0

spr 1016 L1FINV05

Chapter 2. Register Model 2-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

PowerPC Book E Registers

2.1 PowerPC Book E Registers
The e200z6 supports most of the registers defined by Book E architecture. Notable
exceptions are the floating-point registers FPR0–FPR31 and the FPSCR. The e200z6 does
not support the Book E floating-point architecture in hardware. The GPRs have been
extended to 64 bits. The Book E registers implemented by the e200z6 are described as
follows (e200z6-specific registers are described in the next section):

• User-level registers—User-level registers can be accessed by all software with
either user or supervisor privileges. They include the following:

— General-purpose registers (GPRs). The thirty-two 64-bit GPRs (GPR0–GPR31)
serve as data source or destination registers for integer instructions and provide
data for generating addresses. PowerPC Book E instructions affect only the
lower 32 bits of the GPRs. SPE APU instructions operate on the entire 64-bit
register.

— Condition register (CR). The 32-bit CR consists of eight 4-bit fields, CR0–CR7,
that reflect results of certain arithmetic operations and provide a mechanism for
testing and branching.

The remaining user-level registers are SPRs. Note that the PowerPC architecture
provides the mtspr and mfspr instructions for accessing SPRs.

— Integer exception register (XER). The XER indicates overflow and carries for
integer operations.

— Link register (LR). The LR provides the branch target address for the branch
conditional to link register (bclr, bclrl) instructions and is used to hold the
address of the instruction that follows a branch and link instruction, typically
used for linking to subroutines.

— Count register (CTR). CTR holds a loop count that can be decremented during
execution of appropriately coded branch instructions. CTR also provides the
branch target address for the Branch Conditional to Count Register (bcctr,
bcctrl) instructions.

— The time base facility (TB) consists of two 32-bit registers—time base upper
(TBU) and time base lower (TBL). These two registers may be read (but not
written) by user-level software.

— SPRG4–SPRG7. Book E defines software-use special purpose registers
(SPRGs). SPRG4–SPRG7 are read only by user-level software. The e200z6 does
not allow user-mode access to SPRG3. (Such access is defined as
implementation dependent by Book E.)

— USPRG0. Book E defines user-software-use SPR USPRG0, which is read-write
accessible by user-level software.

• Supervisor-level registers—In addition to the registers accessible in user mode,
supervisor-level software has access to additional control and status registers an

2-4 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

PowerPC Book E Registers

operating system might use for configuration, exception handling, and other
operating system functions. Book E defines the following supervisor-level registers:

— Processor control registers

– Machine state register (MSR). The MSR defines the state of the processor.
The MSR can be modified by the Move to Machine State Register (mtmsr),
System Call (sc), and return from interrupt (rfi, rfci, rfdi) instructions. It can
be read by the Move from Machine State Register (mfmsr) instruction. When
an interrupt occurs, the contents of the MSR are saved to one of the machine
state save/restore registers (SRR1, CSRR1, DSRR1).

– Processor version register (PVR). This is a read-only register that identifies
the version (model) and revision level of the PowerPC processor.

– Processor identification register (PIR). This read-only register is provided to
distinguish the processor from other processors in the system.

— Process ID register (PID0, also referred to as PID). Provided to indicate the
current process or task identifier. It is used by the MMU as an extension to the
effective address, and by external Nexus 2/3/4 modules for ownership trace
message generation. PowerPC Book E allows for multiple PIDs; the e200z6
implements only one.

— SPRG0–SPRG7, USPRG0. SPRG0–SPRG7 and USPRG0 are provided for
software use. See Section 2.8, “Software-Use SPRs (SPRG0–SPRG7 and
USPRG0),” for more information on these registers.

Note that the e200z6 does not allow user-mode access to the SPRG3 register.
(Access to SPRG3 is defined as implementation dependent by Book E.)

— Interrupt registers

– Data exception address register (DEAR). After most data storage interrupts
(DSIs), or on an alignment interrupt or data TLB interrupt, DEAR is set to the
effective address (EA) generated by the faulting instruction.

– Exception syndrome register (ESR). ESR provides a syndrome to differentiate
between the different kinds of exceptions that can generate the same interrupt.

– Interrupt vector prefix register (IVPR) and the interrupt-specific interrupt
vector offset registers (IVORs). These registers together provide the address
of the interrupt handler for different classes of interrupts.

– Save/restore register 0 (SRR0). SRR0 is used to save machine state on a
non-critical interrupt, and contains the address of the instruction at which
execution resumes when an rfi instruction is executed at the end of a
non-critical-class interrupt handler routine.

– Save/restore register 1 (SRR1). SRR1 is used to save machine state from the
MSR on non-critical interrupts, and to restore machine state when rfi
executes.

Chapter 2. Register Model 2-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

e200z6-Specific Registers

– Critical save/restore register 0 (CSRR0). CSRR0 is used to save machine state
on a critical interrupt, and contains the address of the instruction at which
execution resumes when an rfci instruction is executed at the end of a
critical-class interrupt handler routine.

– Critical save/restore register 1 (CSRR1). CSRR1 is used to save machine state
from the MSR on critical interrupts and to restore machine state when rfci
executes.

— Debug facility registers

– Debug control registers (DBCR0–DBCR2). These registers provide control
for enabling and configuring debug events.

– Debug status register (DBSR). This register contains debug event status.

– Instruction address compare registers (IAC1–IAC4). These registers contain
addresses and/or masks which are used to specify instruction address compare
debug events.

– Data address compare registers (DAC1–DAC2). These registers contain
addresses and/or masks used to specify data address compare debug events.

Note that the e200z6 does not implement the data value compare registers
(DVC1 and DVC2).

— Timer registers

– Time base (TB). The 64-bit time base is provided for maintaining the time of
day and operating interval timers. The TB consists of two 32-bit registers,
time base upper (TBU) and time base lower (TBL). The time base registers
can be written to only by supervisor-level software, but can be read by both
user and supervisor-level software.

– Decrementer register (DEC). This 32-bit decrementing counter provides a
mechanism for causing a decrementer exception after a programmable delay.

– Decrementer auto-reload (DECAR). This register is provided to support the
auto-reload feature of the decrementer.

– Timer control register (TCR). TCR controls decrementer, fixed-interval timer,
and watchdog timer options.

– Timer status register (TSR). TSR contains status on timer events and the most
recent watchdog-timer-initiated processor reset.

2.2 e200z6-Specific Registers
Book E allows implementation-specific registers. Those incorporated in the e200z6 core
are as follows:

• User-level registers —The user-level registers can be accessed by all software with
either user or supervisor privileges. They include the following:

2-6 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

e200z6-Specific Registers

— Signal processing/embedded floating-point status and control register
(SPEFSCR). The SPEFSCR contains all integer and floating-point exception
signal bits, exception summary bits, exception enable bits, and rounding control
bits needed for compliance with the IEEE 754 standard.

— L1 cache configuration register (L1CFG0). This read-only register allows
software to query the configuration of the L1 unified cache.

• Supervisor-level registers—The following supervisor-level registers are defined in
the e200z6 in addition to the Book E registers described above:

— Configuration registers—Hardware implementation-dependent registers 0 and 1
(HID0 and HID1). These registers control various processor and system
functions.

— Exception handling and control registers

– Machine check syndrome register (MCSR). This register provides a syndrome
to differentiate between the different kinds of conditions that can generate a
machine check.

– Debug save/restore register 0 (DSRR0). When the debug APU is enabled,
DSRR0 is used to save the address of the instruction at which execution
continues when rfdi executes at the end of a debug interrupt handler routine.

– Debug save/restore register 1 (DSRR1). When the debug APU is enabled,
(MSR[DE] = 1, DSRR1 used to save machine state from the MSR on debug
interrupts and to restore machine state when rfdi executes.

— Debug facility registers

– Debug control register 3 (DBCR3). This register provides control for debug
functions not described in Book E

– Debug counter register (DBCNT). This register provides counter capability
for debug functions

— Context control registers

– Context control register (CTXCR). This register provides control for register
context selection.

– Alternate context control register (ALTCTXCR). This virtual register
provides access to the context control register of each register context when
multiple register contexts exist.

— Branch unit control and status register (BUCSR). This register controls operation
of the branch target buffer (BTB).

— Cache registers

– L1 cache configuration register (L1CFG0). This read-only register allows
software to query the configuration of the L1 cache.

Chapter 2. Register Model 2-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Processor Control Registers

– L1 cache control and status register (L1CSR0). This register controls
operation of the L1 unified cache, providing such facilities as cache enabling,
cache invalidation, and cache locking.

– L1 cache flush and invalidate register (L1FINV0). This register controls
software flushing and invalidation of the L1 unified cache.

— Memory management unit (MMU) registers

– MMU configuration register (MMUCFG). This is a read-only register that
allows software to query the configuration of the MMU.

– MMU assist (MAS0–MAS4, MAS6) registers. These registers provide the
interface to the e200z6 core from the MMU.

– MMU control and status register (MMUCSR0). This register controls MMU
invalidation.

– TLB configuration registers (TLB0CFG and TLB1CFG). These are read-only
registers that allow software to query the configuration of the TLBs.

— System version register (SVR). SVR is a read-only register that identifies the
version (model) and revision level of the system that includes an e200z6
processor.

— The EIS-defined accumulator, which is part of the SPE APU. See Section 2.6.2,
“Accumulator (ACC).”

Note that although other processors may implement similar or identical registers, it is not
guaranteed that the implementation of e200z6-core-specific registers is consistent among
PowerPC processors.

All e200z6 SPR definitions comply with the Motorola Book E definitions.

2.3 Processor Control Registers

2.3.1 Machine State Register (MSR)

The MSR, shown in Figure 2-2, defines the state of the processor. Chapter 5, “Interrupts
and Exceptions,” describes how the MSR is affected when interrupts occur.

MSR fields are described in Table 2-1.

32 36 37 38 39 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 63

Field — UCLE SPE — WE CE — EE PR FP ME FE0 — DE FE1 — IS DS —

Reset All zeros

R/W R/W

Figure 2-2. Machine State Register (MSR)

2-8 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Processor Control Registers

Table 2-1. MSR Field Descriptions

Bits Name Description

32–36 — Reserved, should be cleared.

37 UCLE User cache lock enable
0 Execution of the cache locking instructions in user mode (MSR[PR] = 1) disabled; DSI exception

taken instead, and ILK or DLK is set in the ESR.
1 Execution of the cache lock instructions in user mode enabled

38 SPE SPE Available
0 Execution of SPE APU vector instructions is disabled; SPE unavailable exception taken instead,

and ESR[SPE] is set.
1 Execution of SPE APU vector instructions is enabled.

39–44 — Reserved, should be cleared.

45 WE Wait state (power management) enable. Defined as optional by Book E and implemented in the
e200z6.
0 Power management is disabled.
1 Power management is enabled. The processor can enter a power-saving mode when additional

conditions are present. The mode chosen is determined by HID0[DOZE,NAP,SLEEP], described in
Section 2.11.1, “Hardware Implementation-Dependent Register 0 (HID0).”

46 CE Critical interrupt enable
0 Critical input and watchdog timer interrupts are disabled.
1 Critical input and watchdog timer interrupts are enabled.

47 — Preserved

48 EE External interrupt enable
0 External input, decrementer, and fixed-interval timer interrupts are disabled.
1 External input, decrementer, and fixed-interval timer interrupts are enabled.

49 PR Problem state
0 The processor is in supervisor mode, can execute any instruction, and can access any resource (for

example, GPRs, SPRs, MSR, etc.).
1 The processor is in user mode, cannot execute any privileged instruction, and cannot access any

privileged resource.

50 FP Floating-point available
0 Floating-point unit is unavailable. The processor cannot execute floating-point instructions,

including floating-point loads, stores, and moves. (An FP unavailable interrupt is generated on
attempted execution of floating-point instructions).

1 Floating-point unit is available. The processor can execute floating-point instructions. (Note that for
the e200z6, the floating-point unit is not supported; an unimplemented operation exception is
generated for attempted execution of floating-point instructions when FP is set).

51 ME Machine check enable
0 Machine check interrupts are disabled. Checkstop mode is entered when the p_mcp_b input is

recognized asserted or an ISI or ITLB exception occurs on a fetch of the first instruction of an
exception handler.

1 Machine check interrupts are enabled.

52 FE0 Floating-point exception mode 0 (not used by the e200z6)

53 — Reserved, should be cleared.

Chapter 2. Register Model 2-9
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Processor Control Registers

2.3.2 Processor ID Register (PIR)

The processor ID for the CPU core is contained in the processor ID register (PIR), shown
in Figure 2-3. The contents of PIR reflect the hardware input signals to the e200z6 core.

PIR fields are described in Table 2-2.

2.3.3 Processor Version Register (PVR)

The processor version register (PVR), shown in Figure 2-4, contains the processor version
number for the CPU core.

54 DE Debug interrupt enable
0 Debug interrupt APU is disabled and the Book E defined critical-type debug interrupt is invoked if a

debug interrupt occurs.
1 Debug interrupt APU is enabled and the e200z6-defined debug APU interrupt is invoked if a debug

interrupt occurs.

55 FE1 Floating-point exception mode 1 (not used by the e200z6)

56–57 — Reserved, should be cleared.

58 IS Instruction address space
0 The processor directs all instruction fetches to address space 0 (TS = 0 in the relevant TLB entry).
1 The processor directs all instruction fetches to address space 1 (TS = 1 in the relevant TLB entry).

59 DS Data address space
0 The core directs all data storage accesses to address space 0 (TS = 0 in the relevant TLB entry).
1 The core directs all data storage accesses to address space 1 (TS = 1 in the relevant TLB entry).

60–63 — Reserved, should be cleared.

32 55 56 63

Field — PID

Reset 0000_0000_0000_0000_0000_0000 p_cpuid[0:7]

R/W Read only

SPR SPR 286

Figure 2-3. Processor ID Register (PIR)

Table 2-2. PIR Field Descriptions

Bits Name Description

32–55 — These bits always read 0.

56–63 PID These bit are a reflection of the values provided on the p_cpuid[0:7] input signals.

Table 2-1. MSR Field Descriptions (continued)

Bits Name Description

2-10 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Processor Control Registers

The PVR contains fields to specify a particular implementation of an e200z6 family
member. Interface signals p_pvrin[16:31] provide the contents of bits 48–63 of this
register.

2.3.4 System Version Register (SVR)

The system version register (SVR) contains system version information for an
e200z6-based SoC.

SVR is used to specify a particular implementation of an e200z6-based system.

32 35 36 37 38 43 44 47 48 55 56 59 60 63

Field Manufacturer ID — Type Version MBG Use Major Rev MBG ID

Reset 1000 00 01_0001 0010 p_pvrin[16:31]

R/W Read only

SPR SPR 287

Figure 2-4. Processor Version Register (PVR)

Table 2-3. PVR Field Descriptions

Bits Name Description

32–35 Manufacturer ID Manufacturer ID. Motorola is 0b1000.

36–37 — Reserved, should be cleared.

38–43 Type Identifies the processor type. For the e200z6, this field is 0b01_0001.

44–47 Version Identifies the version of the processor and inclusion of optional elements. For e200z6, this
field is b0010.

48–55 MBG Use Allocated to distinguish different system variants; provided by the p_pvrin[16:23] inputs

56–59 Major Rev Distinguish between implementations of the version; provided by the p_pvrin[24:27] inputs

60–63 MBG ID These bits are provided by the p_pvrin[28:31] input signals.

32 63

Field Version

Reset SoC-dependent value (determined by p_sysvers[0:31] on the e500 core)

R/W Read only

SPR SPR 1023

Figure 2-5. System Version Register (SVR)

Chapter 2. Register Model 2-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Registers for Integer Operations

2.4 Registers for Integer Operations
This section describes the registers used for integer operations.

2.4.1 General-Purpose Registers (GPRs)

Book E implementations provide 32 GPRs (GPR0–GPR31) for integer operations. The
instruction formats provide 5-bit fields for specifying the GPRs to be used in the execution
of the instruction. Each GPR is a 64-bit register and can be used to contain address and
integer data, although all instructions except SPE APU vector instructions use and return
32-bit values in GPR bits 32–63.

2.4.2 Integer Exception Register (XER)

The XER, shown in Figure 2-6, tracks exception conditions for integer operations.

XER fields are described in Table 2-5.

Table 2-4. SVR Field Description

Bits Name Description

32–63 Version This field distinguishes different system variants, and is provided by the p_sysvers[0:31] input
signals

32 33 34 35 56 57 63

Field SO OV CA — Number of bytes

Reset All zeros

R/W R/W

SPR SPR 1

Figure 2-6. Integer Exception Register (XER)

Table 2-5. XER Field Descriptions

Bits Name Description

32 SO Summary overflow. Set when an instruction (except mtspr) sets the overflow bit (OV). Once set, SO
remains set until it is cleared by mtspr[XER] or mcrxr. SO is not altered by compare instructions or
by other instructions (except mtspr[XER] and mcrxr) that cannot overflow. Executing mtspr[XER],
supplying the values 0 for SO and 1 for OV, causes SO to be cleared and OV to be set.

33 OV Overflow. X-form add, subtract from, and negate instructions having OE=1 set OV if the carry out of
bit 32 is not equal to the carry out of bit 33, and clear OV otherwise to indicate a signed overflow.
X-form multiply low word and divide word instructions having OE=1 set OV if the result cannot be
represented in 32 bits (mullwo, divwo, and divwuo) and clear OV otherwise. OV is not altered by
compare instructions or by other instructions (except mtspr[XER] and mcrxr) that cannot overflow.

2-12 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Registers for Branch Operations

2.5 Registers for Branch Operations
This section describes registers used by Book E branch and CR operations.

2.5.1 Condition Register (CR)

The 32-bit condition register (CR) reflects the result of certain operations and provides a
mechanism for testing and branching.

CR bits are grouped into eight 4-bit fields, CR0–CR7, which are set as follows:

• Specified CR fields can be set by a move to the CR from a GPR (mtcrf).

• A specified CR field can be set by a move to the CR from another CR field (mcrf),
or from the XER (mcrxr).

• CR0 can be set as the implicit result of an integer instruction.

• A specified CR field can be set as the result of either an integer or a floating-point
compare instruction (including SPE and SPFP compare instructions).

Instructions are provided to perform logical operations on individual CR bits and to test
individual CR bits.

Note that Book E instructions that access CR bits, such as Branch Conditional (bc), CR
logicals, and Move to Condition Register Field (mtcrf), determine the bit position by
adding 32 to the value of the operand. For example, the BI operand in conditional branch
instructions accesses the bit BI + 32, as shown in Table 2-6.

34 CA Carry. Add carrying, subtract from carrying, add extended, and subtract from extended instructions set
CA if there is a carry out of bit 32 and clear it otherwise. CA can be used to indicate unsigned overflow
for add and subtract operations that set CA. Shift right algebraic word instructions set CA if any 1 bits
are shifted out of a negative operand and clear CA otherwise. Compare instructions and instructions
that cannot carry (except Shift Right Algebraic Word, mtspr[XER], and mcrxr) do not affect CA.

35–56 — Reserved, should be cleared.

57–63 Number
of bytes

Supports emulation of load and store string instructions. Specifies the number of bytes to be
transferred by a load string indexed or store string indexed instruction.

32 35 36 39 40 43 44 47 48 51 52 55 56 59 60 63

Field CR0 CR1 CR2 CR3 CR4 CR5 CR6 CR7

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

Figure 2-7. Condition Register (CR)

Table 2-5. XER Field Descriptions (continued)

Bits Name Description

Chapter 2. Register Model 2-13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Registers for Branch Operations

Table 2-6. BI Operand Settings for CR Fields

CRn
Bits

CR Bits BI Description

CR0[0] 32 00000 Negative (LT)—Set when the result is negative.
For SPE compare and test instructions:
Set if the high-order element of rA is equal to the high-order element of rB; cleared
otherwise.

CR0[1] 33 00001 Positive (GT)—Set when the result is positive (and not zero).
For SPE compare and test instructions:
Set if the low-order element of rA is equal to the low-order element of rB; cleared
otherwise.

CR0[2] 34 00010 Zero (EQ)—Set when the result is zero. For SPE compare and test instructions:
Set to the OR of the result of the compare of the high and low elements.

CR0[3] 35 00011 Summary overflow (SO). Copy of XER[SO] at the instruction’s completion.
For SPE compare and test instructions:
Set to the AND of the result of the compare of the high and low elements.

CR1[0] 36 00100 Negative (LT)
For SPE and SPFP compare and test instructions:
Set if the high-order element of rA is equal to the high-order element of rB; cleared
otherwise.

CR1[1] 37 00101 Positive (GT)
For SPE and SPFP compare and test instructions:
Set if the low-order element of rA is equal to the low-order element of rB; cleared
otherwise.

CR1[2] 38 00110 Zero (EQ)
For SPE and SPFP compare and test instructions:
Set to the OR of the result of the compare of the high and low elements.

CR1[3] 39 00111 Summary overflow (SO)
For SPE and SPFP compare and test instructions:
Set to the AND of the result of the compare of the high and low elements.

CRn[0] 40
44
48
52
56
60

01000
01100
10000
10100
11000
11100

Less than (LT).
For integer compare instructions:
rA < SIMM or rB (signed comparison) or rA < UIMM or rB (unsigned comparison).
For SPE and SPFP compare and test instructions:
Set if the high-order element of rA is equal to the high-order element of rB; cleared
otherwise.

CRn[1] 41
45
49
53
57
61

01001
01101
10001
10101
11001
11101

Greater than (GT).
For integer compare instructions:
rA > SIMM or rB (signed comparison) or rA > UIMM or rB (unsigned comparison).
For SPE and SPFP compare and test instructions:
Set if the low-order element of rA is equal to the low-order element of rB; cleared
otherwise.

CRn[2] 42
46
50
54
58
62

01010
01110
10010
10110
11010
11110

Equal (EQ).
For integer compare instructions: rA = SIMM, UIMM, or rB.
For SPE and SPFP compare and test instructions:
Set to the OR of the result of the compare of the high and low elements.

CRn[3] 43
47
51
55
59
63

01011
01111
10011
10111
11011
11111

Summary overflow (SO).
For integer compare instructions, this is a copy of XER[SO] at the completion of the
instruction.
For SPE and SPFP vector compare and test instructions:
Set to the AND of the result of the compare of the high and low elements.

2-14 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Registers for Branch Operations

2.5.1.1 CR Setting for Integer Instructions

For all integer word instructions in which the Rc bit is defined and set, and for addic., andi.,
and andis., CR0[32–34] are set by signed comparison of bits 32–63 of the result to zero;
CR[35] is copied from the final state of XER[SO]. The Rc bit is not defined for
double-word integer operations.

if (target_register)32–63 < 0 then c ← 0b100
else if (target_register)32–63 > 0 then c ← 0b010
else c ← 0b001
CR0 ← c || XERSO

The value of any undefined portion of the result is undefined, and the value placed into the
first three bits of CR0 is undefined. CR0 bits are interpreted as described in Table 2-7.

Note that CR0 may not reflect the true (infinitely precise) result if overflow occurs.

2.5.1.2 CR Setting for Store Conditional Instructions

CR0 is also set by the integer store conditional instruction, stwcx.. See instruction
descriptions in Chapter 3, “Instruction Model,” for detailed descriptions of how CR0 is set.

2.5.1.3 CR Setting for Compare Instructions

For compare instructions, a CR field specified by the BI field in the instruction is set to
reflect the result of the comparison, as shown in Table 2-8.

Table 2-7. CR0 Field Descriptions

CR Bit Name Description

32 Negative (LT) Bit 32 of the result is equal to 1.

33 Positive (GT) Bit 32 of the result is equal to 0 and at least one of bits 33–63 of the result is non-zero.

34 Zero (EQ) Bits 32–63 of the result are equal to 0.

35 Summary overflow (SO) This is a copy of the final state of XER[SO] at the completion of the instruction.

Table 2-8. CR Setting for Compare Instructions

 CRn
Bit

Bit Expression

CR Bits BI

DescriptionAIM (BI
Operand)

Book E 0–2 3–4

CRn[0] 4 * cr0 + lt (or lt)
4 * cr1 + lt
4 * cr2 + lt
4 * cr3 + lt
4 * cr4 + lt
4 * cr5 + lt
4 * cr6 + lt
4 * cr7 + lt

0
4
8

12
16
20
24
28

32
36
40
44
48
52
56
60

000
001
010
011
100
101
110
111

00 Less than (LT).
For integer compare instructions:
rA < SIMM or rB (signed comparison) or rA <
UIMM or rB (unsigned comparison).

Chapter 2. Register Model 2-15
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Registers for Branch Operations

2.5.2 Link Register (LR)

The link register can be used to provide the branch target address for the branch conditional
to LR instructions, and it holds the return address after branch and link instructions.

LR contents are read into a GPR using mfspr. The contents of a GPR can be written to LR
using mtspr. LR[62–63] are ignored by bclr instructions.

CRn[1] 4 * cr0 + gt (or gt)
4 * cr1 + gt
4 * cr2 + gt
4 * cr3 + gt
4 * cr4 + gt
4 * cr5 + gt
4 * cr6 + gt
4 * cr7 + gt

1
5
9

13
17
21
25
29

33
37
41
45
49
53
57
61

000
001
010
011
100
101
110
111

01 Greater than (GT).
For integer compare instructions:
rA > SIMM or rB (signed comparison) or rA >
UIMM or rB (unsigned comparison).

CRn[2] 4 * cr0 + eq (or eq)
4 * cr1 + eq
4 * cr2 + eq
4 * cr3 + eq
4 * cr4 + eq
4 * cr5 + eq
4 * cr6 + eq
4 * cr7 + eq

2
6

10
14
18
22
26
30

34
38
42
46
50
54
58
62

000
001
010
011
100
101
110
111

10 Equal (EQ).
For integer compare instructions: rA = SIMM,
UIMM, or rB.

CRn[3] 4 * cr0 + so (or so)
4 * cr1 + so
4 * cr2 + so
4 * cr3 + so
4 * cr4 + so
4 * cr5 + so
4 * cr6 + so
4 * cr7 + so

3
7
11
15
19
23
27
31

35
39
43
47
51
55
59
63

000
001
010
011
100
101
110
111

11 Summary overflow (SO).
For integer compare instructions, this is a copy of
XER[SO] at instruction completion.

32 63

Field Link address

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 8

Figure 2-8. Link Register (LR)

Table 2-8. CR Setting for Compare Instructions (continued)

 CRn
Bit

Bit Expression

CR Bits BI

DescriptionAIM (BI
Operand)

Book E 0–2 3–4

2-16 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

SPE and SPFP APU Registers

2.5.3 Count Register (CTR)

CTR can be used to hold a loop count that can be decremented and tested during execution
of branch instructions that contain an appropriately encoded BO field. If the CTR value is
0 before being decremented, it is –1 afterward. The entire CTR can be used to hold the
branch target address for a Branch Conditional to CTR (bcctrx) instruction.

2.6 SPE and SPFP APU Registers
The SPE and SPFP include the signal processing and embedded floating-point status and
control register (SPEFSCR), described in Section 2.6.1, “Signal Processing/Embedded
Floating-Point Status and Control Register (SPEFSCR).” The SPE implements a 64-bit
accumulator, described in Section 2.6.2, “Accumulator (ACC).”

2.6.1 Signal Processing/Embedded Floating-Point Status
and Control Register (SPEFSCR)

The SPEFSCR, shown in Figure 2-10, is used for status and control of SPE and SPFP
instructions.

32 63

Field Count value

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 9

Figure 2-9. Count Register (CTR)

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Field SOVH OVH FGH FXH FINVH FDBZH FUNFH FOVFH — FINXS FINVS FDBZS FUNFS FOVFS MODE

Reset 0000_0000_0000_0000

R/W R/W

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Field SOV OV FG FX FINV FDBZ FUNF FOVF — FINXE FINVE FDBZE FUNFE FOVFE FRMC

Reset 0000_0000_0000_0000

R/W R/W

SPR SPR 512

Figure 2-10. Signal Processing and Embedded Floating-Point Status and Control
Register (SPEFSCR)

High-Word Error Bits Status Bits

Enable Bits
n

Chapter 2. Register Model 2-17
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

SPE and SPFP APU Registers

Table 2-9 describes SPEFSCR fields.

Table 2-9. SPEFSCR Field Descriptions

Bits Name Description

32 SOVH Summary integer overflow high. Set whenever an instruction sets OVH and remains set until it is
cleared by an mtspr specifying the SPEFSCR.

33 OVH Integer overflow high. Set whenever an integer or fractional SPE instruction signals an overflow in
the upper half of the result.

34 FGH Embedded floating-point guard bit high. Supplied for use by the floating-point round exception
handler. Zeroed if a floating-point data exception occurred for the high elements. FGH corresponds
to the high element result. FGH is cleared by a scalar floating point instruction.

35 FXH Embedded floating-point sticky bit high. Supplied for use by the floating-point round exception
handler. Zeroed if a floating-point data exception occurred for the high elements. FXH corresponds
to the high element result. FXH is cleared by a scalar floating point instruction.

36 FINVH Embedded floating-point invalid operation/input error high.
In mode 0, set if the A or B high element operand of a floating-point instruction is Infinity, NaN, or
Denorm, or if the operation is a divide and the high element dividend and divisor are both 0.
In mode 1, FINVH is set on an IEEE754 invalid operation (IEEE754-1985 sec7.1) in the high
element. Cleared by a scalar floating point instruction.

37 FDBZH Embedded floating-point divide by zero high. Set to 1 when a floating-point divide instruction
executed with a high element divisor of 0, and the high element dividend is a finite non-zero
number. Cleared by a scalar floating point instruction.

38 FUNFH Embedded floating-point underflow high. Set when the execution of a floating-point instruction
results in an underflow in the high element. FUNFH is cleared by a scalar floating point instruction.

39 FOVFH Embedded floating-point overflow high. Set when the execution of a floating-point instruction
results in an overflow in the high element. Cleared by a scalar floating point instruction.

40–41 — Reserved, should be cleared.

42 FINXS Embedded floating-point inexact sticky flag. Set whenever the execution of a floating-point
instruction delivers an inexact result for either the low or high element and no floating-point data
exception is taken for either element, or if the result of a floating-point instruction results in overflow
(FOVF=1 or FOVFH=1), but floating-point overflow exceptions are disabled (FOVFE=0), or if the
result of a Floating-point instruction results in underflow (FUNF=1 or FUNFH=1), but Floating-point
Underflow exceptions are disabled (FUNFE=0), and no Floating-point Data exception occurs.
FINXS remains set until it is cleared by an mtspr specifying SPEFSCR.

43 FINVS Embedded floating-point invalid operation sticky flag. Set when a floating-point instruction sets
FINVH or FINV. FINVS remains set until it is cleared by an mtspr instruction specifying SPEFSCR.

44 FDBZS Embedded floating-point divide by zero sticky flag. Set when a floating-point divide instruction sets
FDBZH or FDBZ. FDBZS remains set until it is cleared by an mtspr specifying SPEFSCR.

45 FUNFS Embedded floating-point underflow sticky flag. Set when a floating-point instruction sets FUNFH or
FUNF. FUNFS remains set until it is cleared by an mtspr specifying SPEFSCR.

46 FOVFS Embedded floating-point overflow sticky flag. Set when a floating-point instruction sets FOVFH or
FOVF. FOVFS remains set until it is cleared by an mtspr specifying SPEFSCR.

2-18 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

SPE and SPFP APU Registers

47 MODE Embedded floating-point operating mode.
0 Default hardware results operating mode. The e200z6 supports only mode 0.
1 IEEE754 hardware results operating mode (not supported by the e200z6)
Controls the operating mode of the embedded floating-point APU. Software should read the value
of this bit after writing it to determine if the implementation supports the selected mode.
Implementations return the value written if the selected mode is a supported mode, otherwise the
value read indicates the hardware supported mode.

48 SOV Summary integer overflow. Set whenever an instruction sets OV. SOV remains set until it is cleared
by an mtspr specifying SPEFSCR.

49 OV Integer overflow. Set whenever an integer or fractional SPE instruction signals an overflow in the
low element result.

50 FG Embedded floating-point guard bit. Used by the floating-point round exception handler. Zeroed if a
floating-point data exception occurs for the low elements. Corresponds to the low element result.

51 FX Embedded floating-point sticky bit. Supplied for use by the floating-point round exception
handler.FX is zeroed if a floating-point data exception occurs for the low elements. FX corresponds
to the low element result.

52 FINV Embedded floating-point invalid operation/input error. In mode 0, FINV is set if the A or B low
element operand of a floating-point instruction is Infinity, NaN, or Denorm, or if the operation is a
divide and the low element dividend and divisor are both 0. In mode 1, FINV is set on an IEEE754
invalid operation (IEEE754-1985 sec7.1) in the low element.

53 FDBZ Embedded floating-point divide by zero. Set when a floating-point divide instruction executed with
a low element divisor of 0, and the low element dividend is a finite non-zero number.

54 FUNF Embedded floating-point underflow. Set when the execution of a floating-point instruction results in
an underflow in the low element.

55 FOVF Embedded floating-point overflow. Set to 1 when the execution of a floating-point instruction results
in an overflow in the low element.

56 — Reserved, should be cleared.

57 FINXE Embedded floating-point inexact exception enable. If the exception is enabled, a floating-point
round exception is taken if for both elements, the result of a floating-point instruction does not result
in overflow or underflow, and the result for either element is inexact (FG | FX = 1, or FGH | FXH =1),
or if the result of a floating-point instruction does result in overflow (FOVF=1 or FOVFH=1) for either
element, but floating-point overflow exceptions are disabled (FOVFE=0), or if the result of a
floating-point instruction results in underflow (FUNF=1 or FUNFH=1), but floating-point underflow
exceptions are disabled (FUNFE=0), and no floating-point data exception occurs.
0 Exception disabled
1 Exception enabled

58 FINVE Embedded floating-point invalid operation/input error exception enable
0 Exception disabled
1 Exception enabled. If the exception is enabled, a floating-point data exception is taken if FINV

or FINVH is set by a floating-point instruction.

59 FDBZE Embedded floating-point divide by zero exception enable
0 Exception disabled
1 Exception enabled. If the exception is enabled, a floating-point data exception is taken if FDBZ

or FDBZH is set by a floating-point instruction.

Table 2-9. SPEFSCR Field Descriptions (continued)

Bits Name Description

Chapter 2. Register Model 2-19
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Registers

2.6.2 Accumulator (ACC)

The 64-bit architectural accumulator register holds the results of the multiply accumulate
(MAC) forms of SPE integer instructions. The accumulator allows back-to-back execution
of dependent MAC instructions, something that is found in the inner loops of DSP code
such as finite impulse response (FIR) filters. The accumulator is partially visible to the
programmer in that its results do not have to be explicitly read to use them. Instead, they
are always copied into a 64-bit destination GPR specified as part of the instruction. The
accumulator, however, has to be explicitly initialized when starting a new MAC loop.
Based upon the type of instruction, an accumulator can hold either a single 64-bit value or
a vector of two 32-bit elements.

The Initialize Accumulator instruction (evmra) is provided to initialize the accumulator.
This instruction is described in the EREF.

2.7 Interrupt Registers
Section 2.7.1, “Interrupt Registers Defined by Book E,” and Section 2.7.2,
“e200z6-Specific Interrupt Registers,” describe registers used for interrupt handling.

2.7.1 Interrupt Registers Defined by Book E

This section describes the following registers and their fields:

• Section 2.7.1.1, “Save/Restore Register 0 (SRR0)”

• Section 2.7.1.2, “Save/Restore Register 1 (SRR1)”

• Section 2.7.1.3, “Critical Save/Restore Register 0 (CSRR0)”

• Section 2.7.1.4, “Critical Save/Restore Register 1 (CSRR1)”

• Section 2.7.1.5, “Data Exception Address Register (DEAR)”

60 FUNFE Embedded floating-point underflow exception enable
0 Exception disabled
1 Exception enabled. If the exception is enabled, a floating-point data exception is taken if FUNF

or FUNFH is set by a floating-point instruction.

61 FOVFE Embedded floating-point overflow exception enable
0 Exception disabled
1 Exception enabled. If the exception is enabled, a floating-point data exception is taken if FOVF

or FOVFH is set by a floating-point instruction.

62–63 FRMC Embedded floating-point rounding mode control
00 Round to nearest
01 Round toward zero
10 Round toward +infinity
11 Round toward -infinity

Table 2-9. SPEFSCR Field Descriptions (continued)

Bits Name Description

2-20 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Registers

• Section 2.7.1.6, “Interrupt Vector Prefix Register (IVPR)

• Section 2.7.1.7, “Interrupt Vector Offset Registers (IVORs)

• Section 2.7.1.8, “Exception Syndrome Register (ESR)

2.7.1.1 Save/Restore Register 0 (SRR0)

On a non-critical interrupt, SRR0, shown in Figure 2-11, holds the address of the
instruction where the interrupted process should resume. The instruction is interrupt
specific, although for instruction-caused exceptions, it is typically the address of the
instruction that caused the interrupt. When rfi executes, instruction execution continues at
the address in SRR0. SRR0 and SRR1 are not affected by rfci or rfdi.

2.7.1.2 Save/Restore Register 1 (SRR1)

SRR1, shown in Figure 2-12, is provided to save and restore machine state on non-critical
interrupts. When a non-critical interrupt is taken, MSR contents are placed into SRR1.
When rfi executes, the contents of SRR1 are restored into MSR. SRR1 bits that correspond
to reserved MSR bits are also reserved. (See Section 2.3.1, “Machine State Register
(MSR),” for more information.) SRR0 and SRR1 are not affected by rfci or rfdi. Reserved
MSR bits may be altered by rfi, rfci, or rfdi.

2.7.1.3 Critical Save/Restore Register 0 (CSRR0)

CSRR0 is provided to save and restore machine state on critical interrupts. It is used by
critical interrupts in the same way SRR0 is used for non-critical interrupts: to hold the
address of the instruction to which control is passed at the end of the interrupt handler.

32 63

Field Next instruction address

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 26

Figure 2-11. Save/Restore Register 0 (SRR0)

32 63

Field MSR state information

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 27

Figure 2-12. Save/Restore Register 1 (SRR1)

Chapter 2. Register Model 2-21
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Registers

On a critical interrupt, CSRR0, shown in Figure 2-13, holds the address of the instruction
where the interrupted process should resume. The instruction is interrupt specific; consult
Chapter 5, “Interrupts and Exceptions,” for more information. When rfci executes,
instruction execution continues at the address in CSRR0. CSRR0 and CSRR1 are not
affected by rfi or rfdi.

2.7.1.4 Critical Save/Restore Register 1 (CSRR1)

CSRR1 (Figure 2-14) is provided to save and restore machine state on critical interrupts.
When a critical interrupt is taken, MSR contents are placed into CSRR1. When rfci
executes, the contents of CSRR1 are restored into MSR. CSRR1 bits that correspond to
reserved MSR bits are also reserved. (See Section 2.3.1, “Machine State Register (MSR),”
for more information.) CSRR0 and CSRR1 are not affected by rfi or rfdi. Reserved MSR
bits may be altered by rfi, rfci, or rfdi.

2.7.1.5 Data Exception Address Register (DEAR)

DEAR, shown in Figure 2-15, is loaded with the effective address of a data access (caused
by a load, store, or cache management instruction) that results in an alignment, data TLB
miss, or DSI exception. The DEAR register can be read or written using the mfspr and
mtspr instructions.

32 63

Field Next instruction address

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 58

Figure 2-13. Critical Save/Restore Register 0 (CSRR0)

32 63

Field MSR state information

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 59

Figure 2-14. Critical Save/Restore Register 1 (CSRR1)

2-22 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Registers

.

2.7.1.6 Interrupt Vector Prefix Register (IVPR)

The IVPR, shown in Figure 2-16, is used during interrupt processing for determining the
starting address for the software interrupt handler. The value contained in the vector offset
field of the IVOR selected for a particular interrupt type is concatenated with the value in
the IVPR to form an instruction address from which execution is to begin.

IVPR fields are defined in Table 2-10.

2.7.1.7 Interrupt Vector Offset Registers (IVORs)

IVORs, shown in Figure 2-17, hold the quad-word index from the base address provided
by the IVPR for each interrupt type.

32 63

Field Exception address

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 61

Figure 2-15. Data Exception Address Register (DEAR)

32 47 48 63

Field Vector Base —

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 63

Figure 2-16. Interrupt Vector Prefix Register (IVPR)

Table 2-10. IVPR Field Descriptions

Bits Name Description

32–47 Vector
Base

Used to define the base location of the vector table, aligned to a 64-Kbyte boundary. This field
provides the high-order 16 bits of the location of all interrupt handlers. The contents of the IVORn
appropriate for the type of exception being processed are concatenated with the IVPR vector base to
form the address of the handler in memory.

48–63 — Reserved, should be cleared.

Chapter 2. Register Model 2-23
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Registers

The IVOR fields are defined in Table 2-11.

SPR numbers corresponding to IVOR16–IVOR31 are reserved. IVOR32–IVOR47 and
IVOR60–IVOR63 are reserved. SPR numbers for IVOR32–IVOR63 are allocated for
implementation-dependent use (IVOR32–IVOR34 (SPR 528–530) are defined by the EIS).
IVOR assignments are shown in Table 2-12.

32 47 48 59 60 61 63

Field — Vector offset — CS

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR (See Table 2-12.)

Figure 2-17. Interrupt Vector Offset Registers (IVOR)

Table 2-11. IVOR Field Descriptions

Bits Name Setting Description

32–47 — Reserved, should be cleared.

48–59 Vector offset Provides a quad-word index from the base address provided by the IVPR to locate an
interrupt handler.

60 — Reserved, should be cleared.

61–63 CS Context selector (e200z6-specific). When multiple hardware contexts are supported, this
field is used to select an operating context for the interrupt handler. This value is loaded
into the CURCTX field of the context control register (CTXCR) as part of the interrupt
vectoring process. When multiple hardware contexts are not supported, CS is not
implemented and is read as zero.

Table 2-12. IVOR Assignments

IVOR Number SPR Interrupt Type

IVOR0 400 Critical input

IVOR1 401 Machine check

IVOR2 402 Data storage

IVOR3 403 Instruction storage

IVOR4 404 External input

IVOR5 405 Alignment

IVOR6 406 Program

IVOR7 407 Floating-point unavailable

IVOR8 408 System call

IVOR9 409 Auxiliary processor unavailable. This interrupt is defined by the
EIS but not supported in the e200z6.

IVOR10 410 Decrementer

2-24 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Registers

2.7.1.8 Exception Syndrome Register (ESR)

The exception syndrome register (ESR) provides a syndrome to distinguish exceptions that
can generate the same interrupt type. The e200z6 adds some implementation-specific bits
to this register, as shown in Figure 2-18.

NOTE
ESR information is incomplete, so system software may need
to identify the type of instruction that caused the interrupt,
examine the TLB entry, and examine the ESR to fully identify
the exception or exceptions. For example, a data storage
interrupt may be caused by both a protection violation
exception and a byte-ordering exception. System software
would have to look beyond ESR[BO], such as the state of
MSR[PR] in SRR1 and the TLB entry page protection bits to
determine if a protection violation also occurred.

The ESR fields are described in Table 2-13.

IVOR11 411 Fixed-interval timer interrupt

IVOR12 412 Watchdog timer interrupt

IVOR13 413 Data TLB error

IVOR14 414 Instruction TLB error

IVOR15 415 Debug

IVOR16–IVOR31 — Reserved for future architectural use

IVOR32 528 SPE APU unavailable (EIS–defined)

IVOR33 529 SPE floating-point data exception (EIS–defined)

IVOR34 530 SPE floating-point round exception (EIS–defined)

IVOR35–IVOR63 — Allocated for implementation-dependent use

32 35 36 37 38 39 40 41 42 43 44 45 46 47 48 55 56 57 62 63

Field — PIL PPR PTR FP ST — DLK ILK AP PUO BO PIE — SPE — XTE

Reset All zeros

R/W R/W

SPR SPR 62

Figure 2-18. Exception Syndrome Register (ESR)

Table 2-12. IVOR Assignments (continued)

IVOR Number SPR Interrupt Type

Chapter 2. Register Model 2-25
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Registers

2.7.2 e200z6-Specific Interrupt Registers

In addition to the Book E–defined interrupt registers, the e200z6 implements additional
registers. DSRR0 and DSRR1 (see Section 2.7.2.1, “Debug Save/Restore Register 0
(DSRR0)” and Section 2.7.2.2, “Debug Save/Restore Register 1 (DSRR1)”) are provided
to facilitate handling debug interrupts, and the EIS-defined MCSR (see Section 2.7.2.3,
“Machine Check Syndrome Register (MCSR)”) is provided to aid in handling machine
check interrupts.

2.7.2.1 Debug Save/Restore Register 0 (DSRR0)

On a debug interrupt, DSRR0, shown in Figure 2-19, holds the address of the instruction
where the interrupted process should resume. The instruction is interrupt specific; see
Section 5.6.16, “Debug Interrupt (IVOR15),” and particularly Table 5-23, for more

Table 2-13. ESR Field Descriptions

Bit(s) Name Description Associated Interrupt Type

32–35 — Reserved, should be cleared. —

36 PIL Illegal instruction exception Program

37 PPR Privileged instruction exception Program

38 PTR Trap exception Program

39 FP Floating-point operation Alignment, data storage, data TLB, program

40 ST Store operation Alignment, data storage, data TLB

41 — Reserved, should be cleared. —

42 DLK Data cache locking Data storage

43 ILK Instruction cache locking Data storage`

44 AP Auxiliary processor operation. (unused in the
e200z6)

Alignment, data storage, data TLB, program

45 PUO Unimplemented operation exception Program

46 BO Byte ordering exception Data storage

47 PIE Program imprecise exception—Unused in the
e200z6 (Reserved, should be cleared.)

—

48–55 — Reserved, should be cleared. —

56 SPE SPE APU operation SPE unavailable, SPE floating-point data
exception, SPE floating-point round exception,
alignment, data storage, data TLB

57–62 — Reserved, should be cleared. —

63 XTE External termination error (precise) Data storage, instruction storage

2-26 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Registers

information. When rfdi executes, instruction execution continues at the address in DSRR0.
DSRR0 and DSRR1 are not affected by rfi or rfci.

2.7.2.2 Debug Save/Restore Register 1 (DSRR1)

DSRR1 (Figure 2-20) is provided to save and restore machine state on debug interrupts.
When a debug interrupt is taken, MSR contents are placed into DSRR1. When rfdi
executes, the contents of DSRR1 are restored into MSR. DSRR1 bits that correspond to
reserved MSR bits are also reserved. (See Section 2.3.1, “Machine State Register (MSR),”
for more information.) DSRR0 and DSRR1 are not affected by rfi or rfci. Reserved MSR
bits may be altered by rfi, rfci, or rfdi.

2.7.2.3 Machine Check Syndrome Register (MCSR)

When the core complex takes a machine check interrupt, it updates the machine check
syndrome register (MCSR) to differentiate between machine check conditions. The MCSR
is shown in Figure 2-21.

Table 2-14 describes MCSR fields. The MCSR indicates the source of a machine check
condition is recoverable. When a syndrome bit in the MCSR is set, the core complex asserts
p_mcp_out for system information.

32 63

Field Next instruction address

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 574

Figure 2-19. Debug Save/Restore Register 0 (DSRR0)

32 63

Field MSR state information

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 575

Figure 2-20. Debug Save/Restore Register 1 (DSRR1)

32 33 34 35 36 37 60 61 62 63

Field MCP — CP_PERR CPERR EXCP_ERR — BUS_WRERR —

Reset All zeros

R/W R/W

SPR SPR 572

Figure 2-21. Machine Check Syndrome Register (MCSR)

Chapter 2. Register Model 2-27
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Software-Use SPRs (SPRG0–SPRG7 and USPRG0)

2.8 Software-Use SPRs (SPRG0–SPRG7 and USPRG0)
Software-use SPRs (SPRG0–SPRG7 and USPRG0, shown in Figure 2-22) have no defined
functionality. These are as follows:

• SPRG0–SPRG2—These registers can be accessed only in supervisor mode.

• SPRG3—This register can be written only in supervisor mode. It is readable in
supervisor mode, but it is implementation dependent whether it can be read in user
mode. It is not readable in user mode on the e200z6.

• SPRG4–SPRG7—These registers can be written only in supervisor mode. They are
readable in supervisor or user mode.

• USPRG0—This register can be accessed in supervisor or user mode.

Table 2-14. MCSR Field Descriptions

Bits Name Description Recoverable

32 MCP Machine check input signal Maybe

33 — Reserved, should be cleared. —

34 CP_PERR Cache push parity error Unlikely

35 CPERR Cache parity error Precise

36 EXCP_ERR ISI, ITLB, or bus error on first instruction fetch for an exception handler Precise

37–60 — Reserved, should be cleared. —

61 BUS_WRERR Write bus error on buffered store or cache line push Unlikely

62–63 — Reserved, should be cleared. —

32 63

Field Software-determined information

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

SPR
R/W

SPRG0 272 Read/Write Supervisor
SPRG1 273 Read/Write Supervisor
SPRG2 274 Read/Write Supervisor
SPRG3 259 Read only User 1/Supervisor

1 User-mode access to SPRG3 is defined by Book E as implementation dependent. It is not supported in the e200z6.

275 Read/Write Supervisor
SPRG4 260 Read only User/Supervisor

276 Read/Write Supervisor
SPRG5 261 Read only User/Supervisor

277 Read/Write Supervisor
SPRG6 262 Read only User/Supervisor

278 Read/Write Supervisor
SPRG7 263 Read only User/Supervisor

279 Read/Write Supervisor
USPRG0 256 Read/Write User/Supervisor

Figure 2-22. Software-Use SPRs (SPRG0–SPRG7 and USPRG0)

2-28 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timer Registers

Software-use SPRs are read into a GPR by using mfspr and are written by using mtspr.

2.9 Timer Registers
The time base (TB), decrementer (DEC), fixed-interval timer (FIT), and watchdog timer
provide timing functions for the system. The relationship of these timer facilities to each
other is shown in Figure 2-23 and are described as follows:

Figure 2-23. Relationship of Timer Facilities to the Time Base

• The TB is a long-period counter driven at an implementation-dependent frequency.

• The decrementer, updated at the same rate as the TB, provides a way to signal an
exception after a specified period unless one of the following occurs:

— DEC is altered by software in the interim

— The TB update frequency changes

The DEC is typically used as a general-purpose software timer.

• The time base for the TB and DEC is selected by the time base enable (TBEN) and
select time base clock (SEL_TBCLK) bits in HID0, as follows:

— If HID0[TBEN] = 1 and HID0[SEL_TBCLK] = 0, the time base and
decrementer are based on processor clock.

— If HID0[TBEN] = 1 and HID0[SEL_TBCLK] = 1, the time base and
decrementer are based on the p_tbclk input.

• Software can select one from of four TB bits to signal a fixed-interval interrupt
whenever the bit transitions from 0 to 1. It is typically used to trigger periodic system
maintenance functions. Bits that may be selected are implementation-dependent.

• The watchdog timer. also a selected TB bit, provides a way to signal a critical
exception when the selected bit transitions from 0 to 1. It is typically used for system

Timer Clock

Time Base (incrementer)

Decrementer event = 0/1 detect
63

DECAR

32

Auto-reload

6332

TBL

6332

TBU

Watchdog timer events based on one of the TB bits
selected by the Book E–defined TCR[WP] concatenated
with the EIS-defined TCR[WPEXT] (WPEXT||WP).

Fixed-interval timer events based on one of TB bits
selected by the Book E–defined TCR[FP] concatenated
with the EIS-defined TCR[FPEXT] (FPEXT||FP).

DEC

•
•
•

•
•
•

(Time Base Clock)
core_tbclk

Chapter 2. Register Model 2-29
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timer Registers

error recovery. If software does not respond in time to the initial interrupt by clearing
the associated status bits in the TSR before the next expiration of the watchdog timer
interval, a watchdog timer-generated processor reset may result, if so enabled.

All timer facilities must be initialized during start-up.

2.9.1 Timer Control Register (TCR)

The TCR, shown in Figure 2-24, provides control information for the CPU timer facilities.
The EREF provides a detailed description of the TCR. TCR[WRC] functions are
implementation dependent. In addition, the e200z6 core implements two
implementation-specific fields, TCR[WPEXT] and TCR[FPEXT].

The TCR fields are described in Table 2-15.

32 33 34 35 36 37 38 39 40 41 42 43 46 47 50 51 63

Field WP WRC WIE DIE FP FIE ARE — WPEXT FPEXT —

Reset All zeros

R/W R/W

SPR SPR 340

Figure 2-24. Timer Control Register (TCR)

Table 2-15. TCR Field Descriptions

Bits Name Description

32–33 WP Watchdog timer period, When concatenated with WPEXT, specifies one of 64 bit locations of the time
base used to signal a watchdog timer exception on a transition from 0 to 1. See Table 2-16.
TCR[WPEXT]||TCR[WP] == 000000 selects TBU[32] (msb of TBU).
TCR[WPEXT]||TCR[WP] == 111111 selects TBL[63] (lsb of TBL).

34–35 WRC Watchdog timer reset control. WRC may be set by software, but cannot be cleared by software
(except by a software-induced reset). Once written to a non-zero value, WRC may no longer be
altered by software.
00 No watchdog timer reset can occur
01 Force processor checkstop on second time-out of the watchdog timer
10 Assert processor reset output (p_resetout_b) on second time-out of watchdog timer
11 Reserved

36 WIE Watchdog timer interrupt enable
0 Watchdog timer interrupts disabled
1 Watchdog timer interrupts enabled

37 DIE Decrementer interrupt enable
0 Decrementer interrupts disabled
1 Decrementer interrupts enabled

38–39 FP Fixed-interval timer period. When concatenated with FPEXT, specifies one of 64 bit locations of the
time base used to signal a fixed-interval timer exception on a transition from 0 to 1. See Table 2-16.
TCR[FPEXT]||TCR[FP] == 000000 selects TBU[32] (msb of TBU).
TCRFP[EXT]||TCR[FP] == 111111 selects TBL[63] (lsb of TBL).

2-30 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timer Registers

Table 2-16 shows how the concatenations of FPEXT | FP and WPEXT | WP can select any
of the 64 bits in the time base register and the resulting timeout periods at 80 MHz.

40 FIE Fixed-interval interrupt enable
0 Fixed-interval interrupts disabled
1 Fixed-interval interrupts enabled

41 ARE Auto-reload enable. Controls whether the value in DECAR is reloaded into DEC when the DEC value
reaches 0000_0001.
0 Auto-reload disabled
1 Auto-reload enabled

42 — Reserved, should be cleared.

43–46 WPEXT Watchdog timer period extension (see above description for WP). WPEXT | WP select one of the 64
TB bits used to signal a watchdog timer exception.

47–50 FPEXT Fixed-interval timer period extension (see description for FP). FPEXT | FP select one of the 64 TB
bits used to signal a fixed-interval timer exception.

51–63 — Reserved, should be cleared.

Table 2-16. Timeout Period Selection (at 80 MHz)

FPEXT
WPEXT

FP
WP

TB Bit
Number of

Clocks/Timeout
Timeout at

80 MHz (Secs)
FPEXT
WPEXT

FP
WP

TB Bit
Number of

Clocks/Timeout
Timeout at

80 MHz (Secs)

0000 00 0 1.84467E+19 2.30584E+11 1000 00 32 4294967296 53.6870912

0000 01 1 9.22337E+18 1.15292E+11 1000 01 33 2147483648 26.8435456

0000 10 2 4.61169E+18 57646075230 1000 10 34 1073741824 13.4217728

0000 11 3 2.30584E+18 28823037615 1000 11 35 536870912 6.7108864

0001 00 4 1.15292E+18 14411518808 1001 00 36 268435456 3.3554432

0001 01 5 5.76461E+17 7205759404 1001 01 37 134217728 1.6777216

0001 10 6 2.8823E+17 3602879702 1001 10 38 67108864 0.8388608

0001 11 7 1.44115E+17 1801439851 1001 11 39 33554432 0.4194304

0010 00 8 7.20576E+16 900719925.5 1010 00 40 16777216 0.2097152

0010 01 9 3.60288E+16 450359962.7 1010 01 41 8388608 0.1048576

0010 10 10 1.80144E+16 225179981.4 1010 10 42 4194304 0.0524288

0010 11 11 9.0072E+15 112589990.7 1010 11 43 2097152 0.0262144

0011 00 12 4.5036E+15 56294995.34 1011 00 44 1048576 0.0131072

0011 01 13 2.2518E+15 28147497.67 1011 01 45 524288 0.0065536

0011 10 14 1.1259E+15 14073748.84 1011 10 46 262144 0.0032768

0011 11 15 5.6295E+14 7036874.418 1011 11 47 131072 0.0016384

0100 00 16 2.81475E+14 3518437.209 1100 00 48 65536 0.0008192

Table 2-15. TCR Field Descriptions (continued)

Bits Name Description

Chapter 2. Register Model 2-31
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timer Registers

2.9.2 Timer Status Register (TSR)

The timer status register (TSR) provides status information for the CPU timer facilities. For
more information about TSR, refer to the EREF. The TSR[WRS] field is defined to be
implementation-dependent and is described below. The TSR is shown in Figure 2-25.

NOTE
Register fields designated as write-1-to-clear are cleared only
by writing ones to them. Writing zeros to them has no effect.

The TSR fields are described in Table 2-17.

0100 01 17 1.40737E+14 1759218.604 1100 01 49 32768 0.0004096

0100 10 18 7.03687E+13 879609.3022 1100 10 50 16384 0.0002048

0100 11 19 3.51844E+13 439804.6511 1100 11 51 8192 0.0001024

0101 00 20 1.75922E+13 219902.3256 1101 00 52 4096 0.0000512

0101 01 21 8.79609E+12 109951.1628 1101 01 53 2048 0.0000256

0101 10 22 4.39805E+12 54975.58139 1101 10 54 1024 0.0000128

0101 11 23 2.19902E+12 27487.79069 1101 11 55 512 0.0000064

0110 00 24 1.09951E+12 13743.89535 1110 00 56 256 0.0000032

0110 01 25 5.49756E+11 6871.947674 1110 01 57 128 0.0000016

0110 10 26 2.74878E+11 3435.973837 1110 10 58 64 0.0000008

0110 11 27 1.37439E+11 1717.986918 1110 11 59 32 0.0000004

0111 00 28 68719476736 858.9934592 1111 00 60 16 0.0000002

0111 01 29 34359738368 429.4967296 1111 01 61 8 0.0000001

0111 10 30 17179869184 214.7483648 1111 10 62 4 0.00000005

0111 11 31 8589934592 107.3741824 1111 11 63 2 0.000000025

32 33 34 35 36 37 38 63

Field ENW WIS WRS DIS FIS —

Reset 0b(00||WRS)_0000_0000_0000_0000_0000_0000_0000

R/W Read/Clear

SPR SPR 336

Figure 2-25. Timer Status Register (TSR)

Table 2-16. Timeout Period Selection (at 80 MHz) (continued)

FPEXT
WPEXT

FP
WP

TB Bit
Number of

Clocks/Timeout
Timeout at

80 MHz (Secs)
FPEXT
WPEXT

FP
WP

TB Bit
Number of

Clocks/Timeout
Timeout at

80 MHz (Secs)

2-32 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timer Registers

NOTE
The TSR can be read using mfspr rD,TSR. The TSR cannot be
directly written to. Instead, TSR bits corresponding to 1 bits in
GPR(rS) can be cleared using mtspr TSR,rS.

2.9.3 Time Base (TBU and TBL)

The time base (TB), seen in Figure 2-26, is composed of two 32-bit registers, the time base
upper (TBU) concatenated on the right with the time base lower (TBL). The time base
registers provide timing functions for the system and are enabled by setting HID0[TBEN].
The decrementer (DEC) updates at the same frequency, which is selected in
HID0[SEL_TBCLK]. TB is a volatile resource and must be initialized during start-up.

For more information, see Section 2.9, “Timer Registers.”

Table 2-17. Timer Status Register Field Descriptions

Bits Name Description

32 ENW Enable next watchdog time. When a watchdog timer time-out occurs while WIS = 0 and the next
watchdog time-out is enabled (ENW = 1), a watchdog timer exception is generated and logged by
setting WIS. This is referred to as a watchdog timer first time out. A watchdog timer interrupt occurs if
enabled by TCR[WIE] and MSR[CE]. To avoid another watchdog timer interrupt once MSR[CE] is
reenabled (assuming TCR[WIE] is not cleared instead), the interrupt handler must reset TSR[WIS] by
executing an mtspr, setting WIS and any other bits to be cleared and a 0 in all other bits. The data
written to the TSR is not direct data, but is a mask. A 1 causes the bit to be cleared; a 0 has no effect.
0 Action on next watchdog timer time-out is to set TSR[ENW].
1 Action on next watchdog timer time-out is governed by TSR[WIS].

33 WIS Watchdog timer interrupt status. See the ENW description for more information about how WIS is
used.
0 A watchdog timer event has not occurred.
1 A watchdog timer event occurred. When MSR[CE] = 1 and TCR[WIE] = 1, a watchdog timer

interrupt is taken.

34–35 WRS Watchdog timer reset status
00 No second timeout of watchdog timer has occurred
01 Force processor checkstop on second timeout of watchdog timer has occurred
10 Assert processor reset output (p_resetout_b) on second timeout of watchdog timer has occurred
11 Reserved

36 DIS Decrementer interrupt status.
0 A decrementer event has not occurred.
1 A decrementer event occurred. When MSR[EE] = TCR[DIE] = 1, a decrementer interrupt is taken.

37 FIS Fixed-interval timer interrupt status.
0 A fixed-interval timer event has not occurred.
1 A fixed-interval timer event occurred. When MSR[EE] = 1 and TCR[FIE] = 1, a fixed-interval timer

interrupt is taken.

38–63 — Reserved, should be cleared.

Chapter 2. Register Model 2-33
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timer Registers

The TB is interpreted as a 64-bit unsigned integer that is incremented periodically. Each
increment adds 1 to the least-significant bit. The frequency at which the integer is updated
is implementation-dependent.

TBL increments until its value becomes 0xFFFF_FFFF (232 – 1). At the next increment, its
value becomes 0x0000_0000 and TBU is incremented. This process continues until the
TBU value becomes 0xFFFF_FFFF and the TBL value becomes 0xFFFF_FFFF (TB is
interpreted as 0xFFFF_FFFF_FFFF_FFFF (264 – 1)). At the next increment, the TBU
value becomes 0x0000_0000 and the TBL value becomes 0x0000_0000. There is no
interrupt (or any other indication) when this occurs.

The period depends on the driving frequency. For example, if TB is driven by 100 MHz
divided by 32, the TB period is as follows:

The TB is implemented such that the following requirements are satisfied.

• Loading a GPR from the TB has no effect on the accuracy of the TB.

• Storing a GPR to the TB replaces the value in the TB with the value in the GPR.

Book E does not specify a relationship between the frequency at which the TB is updated
and other frequencies, such as the CPU clock or bus clock in a Book E system. The TB
update frequency is not required to be constant. One of the following is required to ensure
that system software can keep time of day and operate interval timers:

• The system provides an (implementation-dependent) interrupt to software whenever
the update frequency of the TB changes and a way to determine the current update
frequency.

• The update frequency of the TB is under the control of system software.

NOTE
Disabling the TB or making reading the time base privileged
prevents the TB from being used to implement a covert channel
in a secure system.

32 63 32 63

Field TBU TBL

Reset Undefined on m_por assertion, unchanged on
p_reset_b assertion

Undefined on m_por assertion, unchanged on
p_reset_b assertion

R/W User read/Supervisor write User read/Supervisor write

SPR 269 Read/285 Write 268 Read/284 Write

Figure 2-26. Time Base Upper/Lower Registers (TBU/TBL)

TTB 2
64 32

100 MHz
-----------------------× 5.90 10

12× ondssec= = (approximately 187,000 years)

2-34 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timer Registers

NOTE
If the operating system initializes the TB on power-on to some
reasonable value and the update frequency of the TB is
constant, the TB can be used as a source of values that increase
at a constant rate, such as for time stamps in trace entries.

Even if the update frequency is not constant, values read from
the TB are monotonically increasing (except when the TB
wraps from 264 – 1 to 0). If a trace entry is recorded each time
the update frequency changes, the sequence of TB values can
be post-processed to become actual time values.

Successive readings of the TB may return identical values.

It is intended that the TB be useful for timing reasonably short sequences of code (a few
hundred instructions) and for low-overhead time stamps for tracing.

2.9.4 Decrementer Register

The 32-bit decrementer (DEC), shown in Figure 2-27, is a decrementing counter that is
enabled by setting HID0[TBEN]. The decrementer and time base update at the same
frequency, which is selected in HID0[SEL_TBCLK]. It provides way to signal a
decrementer interrupt after a specified period unless one of the following occurs:

• DEC is altered by software in the interim

• The TB update frequency changes

For more information, see Section 2.9, “Timer Registers.”

DEC is typically used as a general-purpose software timer. The decrementer auto-reload
register, is used to automatically reload a programmed value into DEC, as described in
Section 2.9.5, “Decrementer Auto-Reload Register (DECAR).”

2.9.5 Decrementer Auto-Reload Register (DECAR)

The decrementer auto-reload register is shown in Figure 2-28. If the auto-reload function is
enabled (TCR[ARE] = 1), the auto-reload value in DECAR is written to DEC when DEC

32 63

Field Decrementer value

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 22

Figure 2-27. Decrementer Register (DEC)

Chapter 2. Register Model 2-35
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Debug Registers

decrements from 0x0000_0001 to 0x0000_0000. Note that writing DEC with zeros by
using an mtspr[DEC] does not automatically generate a decrementer exception.

2.10 Debug Registers
This section describes debug-related registers that are software accessible. These registers
are intended for use by special debug tools and debug software, not by general application
code.

Access to these registers by software is conditioned by the external debug mode control bit
(DBCR0[EDM]) which can be set by the hardware debug port. If DBCR0[EDM] is set,
software is prevented from modifying debug register values. Execution of an mtspr
instruction targeting a debug register will not cause modifications to occur. In addition,
since the external debugger hardware may be manipulating debug register values, the state
of these registers is not guaranteed to be consistent if read by software with an mfspr
instruction, other than DBCR0[EDM] itself.

2.10.1 Debug Address and Value Registers

Instruction address compare registers IAC1–IAC4 are used to hold instruction addresses
for comparison purposes. In addition, IAC2 and IAC4 hold mask information for IAC1 and
IAC3 respectively when address bit match compare modes are selected.

NOTE
When performing instruction address compares, the low order
two address bits of the instruction address and the
corresponding IAC register are ignored.

Data address compare registers DAC1 and DAC2 are used to hold data access addresses for
comparison purposes. In addition, DAC2 holds mask information for DAC1 when address
bit match compare mode is selected.

2.10.1.1 Instruction Address Compare Registers (IAC1–IAC4)

The instruction address compare registers (IAC1–IAC4) are each 32 bits, with bits 62–63
being reserved, as shown in Figure 2-29.

32 63

Field Decrementer auto-reload value

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 54

Figure 2-28. Decrementer Auto-Reload Register (DECAR)

2-36 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Debug Registers

A debug event may be enabled to occur upon an attempt to execute an instruction from an
address specified in an IAC, inside or outside a range specified by IAC1 and IAC2 or, inside
or outside a range specified by IAC3 and IAC4, or to blocks of addresses specified by the
combination of the IAC1 and IAC2, or to blocks of addresses specified by the combination
of the IAC3 and IAC4. Because all instruction addresses are required to be word-aligned,
the two low-order bits of the IACs are reserved and do not participate in the comparison to
the instruction address.

2.10.1.2 Data Address Compare Registers (DAC1–DAC2)

The data address compare 1 register (DAC1) and data address compare 2 register (DAC2),
shown in Figure 2-30, are each 32 bits. A debug event may be enabled to occur upon loads,
stores, or cache operations to an address specified in either DAC1 or DAC2, inside or
outside a range specified by the DAC1 and DAC2, or to blocks of addresses specified by
the combination of the DAC1 and DAC2.

The contents of DAC1 or DAC2 are compared to the address generated by a data access
instruction.

2.10.2 Debug Counter Register (DBCNT)

The debug counter register (DBCNT) contains two 16-bit counters (CNT1 and CNT2)
which can be configured to operate independently or can be concatenated into a single
32-bit counter. Each counter can be configured to count down (decrement) when one or
more count-enabled events occur. The counters operate regardless of whether counters are
enabled to generate debug exceptions. When a count value reaches zero, a debug count
event is signaled and a debug event can be generated (if enabled). Upon reaching zero the
counter is frozen. A debug counter signals an event on the transition from a value of one to

32 61 62 63

Field Instruction address —

Reset All zeros

R/W R/W

SPR SPR 312 (IAC1); SPR 313 (IAC2); SPR 314 (IAC3); SPR 315 (IAC4)

Figure 2-29. Instruction Address Compare Registers (IAC1–IAC4)

32 63

Field Data address

Reset All zeros

R/W R/W

SPR SPR 316 (DAC1); SPR 317 (DAC2)

Figure 2-30. Data Address Compare Registers (DAC1–DAC2)

Chapter 2. Register Model 2-37
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Debug Registers

a final value of zero. Loading a value of zero into the counter prevents the counter from
counting. The debug counter is configured by the contents of DBCR3. DBCNT is shown in
Figure 2-31.

Refer to Section 2.10.3.4, “Debug Control Register 3 (DBCR3),” for more information
about updates to the DBCNT register. Certain caveats exist on how the DBCNT and
DBCR3 register are modified when one or more counters are enabled.

2.10.3 Debug Control and Status Registers (DBCR0–DBCR3)

DBCR0–DBCR3 are used to enable debug events, reset the processor, control timer
operation during debug events and set the debug mode of the processor. The debug status
register (DBSR) records debug exceptions while internal or external debug mode is
enabled.

The e200z6 requires that a context synchronizing instruction follow an mtspr that updates
a DBCR or DBSR to ensure that any alterations enabling/disabling debug events are
effective. The context synchronizing instruction may or may not be affected by the
alteration. Typically, an isync is used to create a synchronization boundary beyond which
it can be guaranteed that the newly written control values are in effect.

For watchpoint generation and counter operation, configuration settings contained in
DBCR1–DBCR3 are used, even though the corresponding events may be disabled (via
DBCR0) from setting DBSR flags.

2.10.3.1 Debug Control Register 0 (DBCR0)

DBCR0 is used to enable debug modes and controls which debug events are allowed to set
DBSR flags. The e200z6 adds bits to this register, as shown in Figure 2-32.

32 47 48 63

Field CNT1 CNT2

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 562

Figure 2-31. DBCNT Register

2-38 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Debug Registers

Table 2-18 provides field definitions for DBCR0.

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Field EDM IDM RST ICMP BRT IRPT TRAP IAC1 IAC2 IAC3 IAC4 DAC1 DAC2

Reset All zeros 1

1 DBCR0[EDM] is affected by j_trst_b or m_por assertion, and while in the test_logic_reset state, but not by p_reset_b.
All other bits are reset by processor reset p_reset_b as well as by m_por.

R/W R/W

48 49 52 53 54 55 56 57 58 59 62 63

RET — DEVT1 DEVT2 DCNT1 DCNT2 CIRPT CRET — FT

Reset All zeros 1

R/W R/W

SPR SPR 308

Figure 2-32. DBCR0 Register

Table 2-18. DBCR0 Field Descriptions

Bits Name Description

32 EDM External debug mode. This bit is read-only by software. Software may use EDM to determine if
external debug has control over debug registers. The hardware debugger must set EDM before other
DBCR0 bits (and other debug registers) can be altered. On the initial setting of EDM, all other bits are
unchanged. EDM is writable only through the OnCE port.
0 External debug mode disabled. Internal debug events not mapped into external debug events.
1 External debug mode enabled. Events do not cause the CPU to vector to interrupt code. Software

is not permitted to write to debug registers (DBCR0–DBCR3, DBSR, DBCNT, IAC1–IAC4,
DAC1–DAC2).

Programming notes:
It is recommended that DBSR status bits be cleared before disabling external debug mode to avoid
internal imprecise debug interrupts.

33 IDM Internal debug mode
0 Debug exceptions are disabled. Debug events do not affect DBSR.
1 Debug exceptions are enabled. Enabled debug events update the DBSR. If MSR[DE] = 1, the

occurrence of a debug event, or the recording of an earlier debug event in the DBSR when
MSR[DE] was cleared, cause a debug interrupt.

34–35 RST Reset control
00 No function
01 Reserved
10 p_resetout_b set by debug reset control. Allows external device to initiate processor reset.
11 Reserved

36 ICMP Instruction complete debug event enable
0 ICMP debug events are disabled.
1 ICMP debug events are enabled.

37 BRT Branch taken debug event enable
0 BRT debug events are disabled.
1 BRT debug events are enabled.

Chapter 2. Register Model 2-39
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Debug Registers

38 IRPT Interrupt taken debug event enable
0 IRPT debug events are disabled.
1 IRPT debug events are enabled.

39 TRAP Trap taken debug event enable
0 TRAP debug events are disabled.
1 TRAP debug events are enabled.

40 IAC1 Instruction address compare 1 debug event enable
0 IAC1 debug events are disabled.
1 IAC1 debug events are enabled.

41 IAC2 Instruction address compare 2 debug event enable
0 IAC2 debug events are disabled.
1 IAC2 debug events are enabled.

42 IAC3 Instruction address compare 3 debug event enable
0 IAC3 debug events are disabled.
1 IAC3 debug events are enabled.

43 IAC4 Instruction address compare 4 debug event enable
0 IAC4 debug events are disabled.
1 IAC4 debug events are enabled.

44–45 DAC1 Data address compare 1 debug event enable
00 DAC1 debug events are disabled
01 DAC1 debug events are enabled only for store-type data storage accesses.
10 DAC1 debug events are enabled only for load-type data storage accesses.
11 DAC1 debug events are enabled for load-type or store-type data storage accesses.

46–47 DAC2 Data address compare 2 debug event enable
00 DAC2 debug events are disabled
01 DAC2 debug events are enabled only for store-type data storage accesses
10 DAC2 debug events are enabled only for load-type data storage accesses
11 DAC2 debug events are enabled for load-type or store-type data storage accesses

48 RET Return debug event enable
0 RET debug events are disabled.
1 RET debug events are enabled.

49–52 — Reserved

53 DEVT1 External debug event 1 enable
0 DEVT1 debug events are disabled.
1 DEVT1 debug events are enabled.

54 DEVT2 External debug event 2 enable
0 DEVT2 debug events are disabled.
1 DEVT2 debug events are enabled.

55 DCNT1 Debug counter 1 debug event enable
0 counter 1 debug events are disabled.
1 counter 1 debug events are enabled.

56 DCNT2 Debug counter 2 debug event enable
0 counter 2 debug events are disabled.
1 counter 2 debug events are enabled.

Table 2-18. DBCR0 Field Descriptions (continued)

Bits Name Description

2-40 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Debug Registers

2.10.3.2 Debug Control Register 1 (DBCR1)

DBCR1, shown in Figure 2-33, is used to configure instruction address compare operation.

Table 2-19 describes debug control register 1 fields.

57 CIRPT Critical interrupt taken debug event enable
0 CIRPT debug events are disabled.
1 CIRPT debug events are enabled.

58 CRET Critical return debug event enable
0 CRET debug events are disabled.
1 CRET debug events are enabled.

59–62 — Reserved

63 FT Freeze timers on debug event
0 Timebase timers are unaffected by set DBSR bits.
1 Disable clocking of timebase timers if any DBSR bit is set (except MRR or CNT1TRG).

32 33 34 35 36 37 38 39 40 41 42 47 48 49 50 51 52 53 54 55 56 57 58 63

Field IAC1US IAC1ER IAC2US IAC2ER IAC12M — IAC3US IAC3ER IAC4US IAC4ER IAC34M —

Reset All zeros

R/W R/W

SPR SPR 309

Figure 2-33. Debug Control Register 1 (DBCR1)

Table 2-19. DBCR1 Field Descriptions

Bits Name Description

32–33 IAC1US Instruction address compare 1 user/supervisor mode
00 IAC1 debug events are not affected by MSR[PR].
01 Reserved
10 IAC1 debug events can only occur if MSR[PR] = 0 (supervisor mode).
11 IAC1 debug events can only occur if MSR[PR] = 1 (user mode).

34–35 IAC1ER Instruction address compare 1 effective/real mode
00 IAC1 debug events are based on effective address.
01 Unimplemented in the e200z6 (Book E real address compare), no match can occur.
10 IAC1 debug events are based on effective address and can only occur if MSR[IS] = 0
11 IAC1 debug events are based on effective address and can only occur if MSR[IS] = 1

36–37 IAC2US Instruction address compare 2 user/supervisor mode
00 IAC2 debug events are not affected by MSR[PR].
01 Reserved
10 IAC2 debug events can only occur if MSR[PR] = 0 (supervisor mode).
11 IAC2 debug events can only occur if MSR[PR] = 1 (user mode).

Table 2-18. DBCR0 Field Descriptions (continued)

Bits Name Description

Chapter 2. Register Model 2-41
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Debug Registers

38–39 IAC2ER Instruction address compare 2 effective/real mode
00 IAC2 debug events are based on effective address.
01 Unimplemented in the e200z6 (Book E real address compare), no match can occur.
10 IAC2 debug events are based on effective address and can only occur if MSR[IS] = 0.
11 IAC2 debug events are based on effective address and can only occur if MSR[IS] = 1.

40–41 IAC12M Instruction address compare 1/2 mode
00 Exact address compare. IAC1 debug events can only occur if the address of the instruction fetch

is equal to the value specified in IAC1. IAC2 debug events can only occur if the address of the
instruction fetch is equal to the value specified in IAC2.

01 Address bit match. IAC1 debug events can occur only if the address of the instruction fetch
ANDed with the contents of IAC2 is equal to the contents of IAC1, also ANDed with the contents
of IAC2. IAC2 debug events do not occur. IAC1US and IAC1ER settings are used.

10 Inclusive address range compare. IAC1 debug events can occur only if the address of the
instruction fetch is greater than or equal to the value specified in IAC1 and less than the value
specified in IAC2. IAC2 debug events do not occur. IAC1US and IAC1ER settings are used.

11 Exclusive address range compare. IAC1 debug events can occur only if the address of the
instruction fetch is less than the value specified in IAC1 or is greater than or equal to the value
specified in IAC2. IAC2 debug events do not occur. IAC1US and IAC1ER settings are used.

42–47 — Reserved

48–49 IAC3US Instruction address compare 3 user/supervisor mode
00 IAC3 debug events are not affected by MSR[PR].
01 Reserved
10 IAC3 debug events can only occur if MSR[PR] = 0 (supervisor mode).
11 IAC3 debug events can only occur if MSR[PR] = 1 (user mode).

50–51 IAC3ER Instruction address compare 3 effective/real mode
00 IAC3 debug events are based on effective address.
01 Unimplemented in the e200z6 (Book E real address compare), no match can occur.
10 IAC3 debug events are based on effective address and can only occur if MSR[IS] = 0.
11 IAC3 debug events are based on effective address and can only occur if MSR[IS] = 1.

52–53 IAC4US Instruction address compare 4 user/supervisor mode
00 IAC4 debug events are not affected by MSR[PR].
01 Reserved
10 IAC4 debug events can only occur if MSR[PR] = 0 (supervisor mode).
11 IAC4 debug events can only occur if MSR[PR] = 1 (user mode).

54–55 IAC4ER Instruction address compare 4effective/real mode
00 IAC4 debug events are based on effective address.
01 Unimplemented in the e200z6 (Book E real address compare), no match can occur.
10 IAC4 debug events are based on effective address and can only occur if MSR[IS] = 0
11 IAC4 debug events are based on effective address and can only occur if MSR[IS] = 1

Table 2-19. DBCR1 Field Descriptions (continued)

Bits Name Description

2-42 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Debug Registers

2.10.3.3 Debug Control Register 2 (DBCR2)

DBCR2 is used to configure data address compare and data value compare operation.
DBCR2 is shown in Figure 2-34.

Table 2-20 describes debug control register 2 fields.

56–57 IAC34M Instruction address compare 3/4 mode
00 Exact address compare. IAC3 debug events can only occur if the address of the instruction fetch

is equal to the value specified in IAC3. IAC4 debug events can only occur if the address of the
instruction fetch is equal to the value specified in IAC4.

01 Address bit match. IAC3 debug events can occur only if the address of the instruction fetch
ANDed with the contents of IAC4 is equal to the contents of IAC3, also ANDed with the contents
of IAC4. IAC4 debug events do not occur. IAC3US and IAC3ER settings are used.

10 Inclusive address range compare. IAC3 debug events can occur only if the address of the
instruction fetch is greater than or equal to the value specified in IAC3 and less than the value
specified in IAC4. IAC4 debug events do not occur. IAC3US and IAC3ER settings are used.

11 Exclusive address range compare. IAC3 debug events can occur only if the address of the
instruction fetch is less than the value specified in IAC3 or is greater than or equal to the value
specified in IAC4. IAC4 debug events do not occur. IAC3US and IAC3ER settings are used.

58–63 — Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 63

Field DAC1US DAC1ER DAC2US DAC2ER DAC12M DAC1LNK DAC2LNK —

Reset All zeros

R/W R/W

SPR SPR 310

Figure 2-34. DBCR2 Register

Table 2-20. DBCR2 Field Descriptions

Bits Name Description

32–33 DAC1US Data address compare 1 user/supervisor mode
00 DAC1 debug events are not affected by MSR[PR].
01 Reserved
10 DAC1 debug events can only occur if MSR[PR] = 0 (supervisor mode).
11 DAC1 debug events can only occur if MSR[PR] = 1 (User mode).

34–35 DAC1ER Data address compare 1 effective/real mode
00 DAC1 debug events are based on effective address.
01 Unimplemented in the e200z6 (Book E real address compare), no match can occur.
10 DAC1 debug events are based on effective address and can only occur if MSR[DS] = 0.
11 DAC1 debug events are based on effective address and can only occur if MSR[DS] = 1.

Table 2-19. DBCR1 Field Descriptions (continued)

Bits Name Description

Chapter 2. Register Model 2-43
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Debug Registers

2.10.3.4 Debug Control Register 3 (DBCR3)

DBCR3 is used to enable and configure the debug counter and debug counter events. For
counter operation, the specific debug events that cause counters to decrement are specified
in DBCR3.

NOTE
The corresponding events do not need to be (and probably
should not be) enabled in DBCR0.

The IAC1–IAC4 and DAC1–DAC2 control fields in DBCR0 are ignored for counter
operations and the control fields in DBCR3 determine when counting is enabled. DBCR1

36–37 DAC2US Data Address compare 2 user/supervisor mode.
00 DAC2 debug events are not affected by MSR[PR].
01 Reserved
10 DAC2 debug events can only occur if MSR[PR] = 0 (supervisor mode).
11 DAC2 debug events can only occur if MSR[PR] = 1 (user mode).

38–39 DAC2ER Data address compare 2 effective/real mode
00 DAC2 debug events are based on effective address.
01 Unimplemented in the e200z6 (Book E real address compare), no match can occur.
10 DAC2 debug events are based on effective address and can only occur if MSR[DS] = 0.
11 DAC2 debug events are based on effective address and can only occur if MSR[DS] = 1.

40–41 DAC12M Data address compare 1/2 mode
00 Exact address compare. DAC1 debug events can only occur if the address of the data access

is equal to the value specified in DAC1. DAC2 debug events can only occur if the address of
the data access is equal to the value specified in DAC2.

01 Address bit match. DAC1 debug events can occur only if the address of the data access ANDed
with the contents of DAC2 is equal to the contents of DAC1, also ANDed with the contents of
DAC2. DAC2 debug events do not occur. DAC1US and DAC1ER settings are used.

10 Inclusive address range compare. DAC1 debug events can occur only if the address of the data
access is greater than or equal to the value specified in DAC1 and less than the value specified
in DAC2. DAC2 debug events do not occur. DAC1US and DAC1ER settings are used.

11 Exclusive address range compare. DAC1 debug events can occur only if the address of the
data access is less than the value specified in DAC1 or is greater than or equal to the value
specified in DAC2. DAC2 debug events do not occur. DAC1US and DAC1ER settings are used.

42 DAC1LNK Data address compare 1 linked
0 No effect
1 DAC1 debug events are linked to IAC1 debug events. IAC1 debug events do not affect DBSR.

When linked to IAC1, DAC1 debug events are conditioned based on whether the instruction
also generated an IAC1 debug event.

43 DAC2LNK Data address compare 2 linked
0 No affect
1 DAC 2 debug events are linked to IAC3 debug events. IAC3 debug events do not affect DBSR.

When linked to IAC3, DAC2 debug events are conditioned based on whether the instruction
also generated an IAC3 debug event. DAC2 can only be linked if DAC12M specifies exact
address compare because DAC2 debug events are not generated in the other compare modes.

44–63 — Reserved for data value compare control (not supported by the e200z6)

Table 2-20. DBCR2 Field Descriptions (continued)

Bits Name Description

2-44 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Debug Registers

and DBCR2 control fields are also used to determine the configuration of IAC1–IAC4 and
DAC1–DAC2 operations for counting, even though the setting of bits in DBSR by
corresponding events may be disabled via DBCR0. Multiple count-enabled events which
occur during execution of an instruction typically cause only one decrement of a counter.
As an example, if more than one IAC or DAC register hits and is enabled for counting, only
one count can occur per counter. During execution of lmw and stmw instructions, multiple
DACn hits could occur. If the instruction is not interrupted before completion, a single
decrement of a counter occurs.

NOTE
If the counters are operating independently, both may count for
the same instruction.

The debug counter register (DBCNT) is configured by DBCR3[CONFIG] to operate either
as separate 16-bit counter 1 and counter 2, or as a combined 32-bit counter (using control
bits in DBCR3 for counter 1). Counters are enabled whenever any of their respective count
enable event control bits are set and either DBCR0 or DBCR0[EDM] is set. Counter 1 may
be configured to count down on a number of different debug events. Counter 2 is also
configurable to count down on instruction complete, instruction or data address compare
events, and external events.

Special capability is provided for counter 1 to be triggered to begin counting down by a
subset of events (IAC1, IAC3, DAC1R, DAC1W, DEVT1, DEVT2, and counter 2). When
one or more of the counter 1 trigger bits is set (IAC1T1, IAC3T1, DAC1RT1, DAC1WT1,
DEVT1T1, DEVT2T1, CNT2T1), counter 1 is frozen until at least one of the triggering
events occurs and is then enabled to begin operation. Triggering status for counter 1 is
provided in the debug status register. Triggering mode is enabled by an mtspr DBCR3
which sets one or more of the trigger enable bits and also enables counter 1. The trigger can
be re-armed by clearing the DBSR[CNT1TRG] status bit.

Most combinations of enables do not make sense and should be avoided. As an example, if
DBCR3[ICMP] is set for counter 1, no other count enable should be set for counter 1.
Conversely, multiple instruction address compare count enables are allowed to be set and
may be useful.

Due to instruction pipelining issues and other constraints, most combinations of events are
not supported for event counting. Only the following combinations are intended to be used;
other combinations are not supported:

• Any combination of IAC[1–4]

• Any combination of DAC[1–2] including linking

• Any combination of DEVT[1–2]

• Any combination of IRPT and RET

Limited support is provided for the following combinations:

Chapter 2. Register Model 2-45
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Debug Registers

• Any combination of IAC[1–4] with DAC[1–2] (linked or unlinked)

Due to pipelining and detection of IAC events early in the pipeline and DAC events late in
the pipeline, no guarantee is made on the exact instruction boundary that a debug exception
is generated when IAC and DAC events are combined for counting. This also applies to the
case where counter 1 is being triggered by counter 2, and a combination of IAC and DAC
events is enabled for the counters, even if only one of these types is enabled for a particular
counter. In general, when an IAC event logically follows a DAC event within several
instructions, it cannot be recognized immediately because the DAC event has not
necessarily been generated in the pipeline at the time the IAC is seen, and thus the counter
may not decrement to zero for the IAC event until after the instruction with the IAC (and
perhaps several additional instructions) has proceeded down the execution pipeline. The
instruction boundary where the debug exception is actually generated in this case typically
follows the IAC by up to several instructions.

Note that the counters operate regardless of whether counters are enabled to generate debug
exceptions.

If counter 2 is used to trigger counter 1, counter 2 events should not normally be enabled in
DBCR0 and are not blocked.

NOTE
Multiple IAC or DAC events are not counted during an lmw or
stmw instruction, and no count occurs if either is interrupted by
a critical input or external input interrupt before completion.

DBCR3 is an e200z6 implementation-specific register and is shown in Figure 2-35.

2-46 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Debug Registers

Table 2-21 provides field definitions for debug control register 3

32 33 34 35 36 37 38 39

Field DEVT1C1 DEVT2C1 ICMPC1 IAC1C1 IAC2C1 IAC3C1 IAC4C1 DAC1RC1

Reset All zeros

R/W R/W

40 41 42 43 44 45 46 47

Field DAC1WC1 DAC2RC1 DAC2WC1 IRPTC1 RETC1 DEVT1C2 DEVT2C2 ICMPC2

Reset All zeros

R/W R/W

48 49 50 51 52 53 54 55

IAC1C2 IAC2C2 IAC3C2 IAC4C2 DAC1RC2 DAC1WC2 DAC2RC2 DAC2WC2

Reset All zeros

R/W R/W

56 57 58 59 60 61 62 63

DEVT1T1 DEVT2T1 IAC1T1 IAC3T1 DAC1RT1 DAC1WT1 CNT2T1 CONFIG

Reset All zeros

R/W R/W

SPR SPR 561

Figure 2-35. DBCR3 Register

Table 2-21. DBCR3 Field Descriptions

Bits Name Description

32 DEVT1C1 External debug event 1 count 1 enable
0 Counting DEVT1 debug events by counter 1 is disabled.
1 Counting DEVT1 debug events by counter 1 is enabled.

33 DEVT2C1 External debug event 2 count 1 enable
0 Counting DEVT2 debug events by counter 1 is disabled.
1 Counting DEVT2 debug events by counter 1 is enabled.

34 ICMPC1 Instruction complete debug event count 1 enable
0 Counting ICMP debug events by counter 1 is disabled.
1 Counting ICMP debug events by counter 1 is enabled.
Note:
ICMP events are masked by MSR[DE] = 0 when operating in internal debug mode.

35 IAC1C1 Instruction address compare 1 debug event count 1 enable
0 Counting IAC1 debug events by counter 1 is disabled.
1 Counting IAC1 debug events by counter 1 is enabled.

36 IAC2C1 Instruction address compare2 debug event count 1 enable
0 Counting IAC2 debug events by counter 1 is disabled.
1 Counting IAC2 debug events by counter 1 is enabled.

Chapter 2. Register Model 2-47
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Debug Registers

37 IAC3C1 Instruction address compare 3 debug event count 1 enable
0 Counting IAC3 debug events by counter 1 is disabled.
1 Counting IAC3 debug events by counter 1 is enabled.

38 IAC4C1 Instruction address compare 4 debug event count 1 enable
0 Counting IAC4 debug events by counter 1 is disabled.
1 Counting IAC4 debug events by counter 1 is enabled.

39 DAC1RC1 Data address compare 1 read debug event count 1 enable 1

0 Counting DAC1R debug events by counter 1 is disabled.
1 Counting DAC1R debug events by counter 1 is enabled.

40 DAC1WC1 Data address compare 1 write debug event count 1 enable 1

0 Counting DAC1W debug events by counter 1 is disabled.
1 Counting DAC1W debug events by counter 1 is enabled.

41 DAC2RC1 Data address compare 2 read debug event count 1 enable 1

0 Counting DAC2R debug events by counter 1 is disabled.
1 Counting DAC2R debug events by counter 1 is enabled.

42 DAC2WC1 Data address compare 2 write debug event count 1 enable 1

0 Counting DAC2W debug events by counter 1 is disabled.
1 Counting DAC2W debug events by counter 1 is enabled.

43 IRPTC1 Interrupt taken debug event count 1 enable
0 Counting IRPT debug events by counter 1 is disabled.
1 Counting IRPT debug events by counter 1 is enabled.

44 RETC1 Return debug event count 1 enable
0 Counting RET debug events by counter 1 is disabled.
1 Counting RET debug events by counter 1 is enabled.

45 DEVT1C2 External debug event 1 count 2 enable
0 Counting DEVT1 debug events by counter 2 is disabled.
1 Counting DEVT1 debug events by counter 2 is enabled.

46 DEVT2C2 External debug event 2 count 2 enable
0 Counting DEVT2 debug events by counter 2 is disabled.
1 Counting DEVT2 debug events by counter 2 is enabled.

47 ICMPC2 Instruction complete debug event count 2 enable
0 Counting ICMP debug events by counter 2 is disabled.
1 Counting ICMP debug events by counter 2 is enabled.
Note:
ICMP events are masked by MSR[DE] = 0 when operating in internal debug mode.

48 IAC1C2 Instruction address compare 1 debug event count 2 enable
0 Counting IAC1 debug events by counter 2 is disabled.
1 Counting IAC1 debug events by counter 2 is enabled.

49 IAC2C2 Instruction address compare2 debug event count 2 enable
0 Counting IAC2 debug events by counter 2 is disabled.
1 Counting IAC2 debug events by counter 2 is enabled.

50 IAC3C2 Instruction address compare 3 debug event count 2 enable
0 Counting IAC3 debug events by counter 2 is disabled.
1 Counting IAC3 debug events by counter 2 is enabled.

Table 2-21. DBCR3 Field Descriptions (continued)

Bits Name Description

2-48 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Debug Registers

51 IAC4C2 Instruction address compare 4 debug event count 2 enable
0 Counting IAC4 debug events by counter 2 is disabled.
1 Counting IAC4 debug events by counter 2 is enabled.

52 DAC1RC2 Data address compare 1 read debug event count 2 enable 1

0 Counting DAC1R debug events by counter 2 is disabled.
1 Counting DAC1R debug events by counter 2 is enabled.

53 DAC1WC2 Data address compare 1 write debug event count 2 enable 1

0 Counting DAC1W debug events by counter 2 is disabled.
1 Counting DAC1W debug events by counter 2 is enabled.

54 DAC2RC2 Data address compare 2 read debug event count 2 enable 1

0 Counting DAC2R debug events by counter 2 is disabled.
1 Counting DAC2R debug events by counter 2 is enabled.

55 DAC2WC2 Data address compare 2 write debug event count 2 enable 1

0 Counting DAC2W debug events by counter 2 is disabled.
1 Counting DAC2W debug events by counter 2 is enabled.

56 DEVT1T1 External debug event 1 trigger counter 1 enable
0 No effect
1 A DEVT1 debug event triggers counter 1 operation.

57 DEVT2T1 External debug event 2 trigger counter 1 enable
0 No effect
1 A DEVT2 debug event triggers counter 1 operation.

58 IAC1T1 Instruction address compare 1 trigger counter 1 enable
0 No effect
1 An IAC1 debug event triggers counter 1 operation.

59 IAC3T1 Instruction address compare 3 trigger counter 1 enable
0 No effect
1 An IAC3 debug event triggers counter 1 operation.

60 DAC1RT1 Data address compare 1 read trigger counter 1 enable
0 No effect
1 A DAC1R debug event triggers counter 1 operation.

61 DAC1WT1 Data address compare 1 write trigger counter 1 enable
0 No effect
1 A DAC1W debug event triggers counter 1 operation.

62 CNT2T1 Debug counter 2 trigger counter 1 enable
0 No effect
1 Counter 2 decrementing to 0 triggers counter 1 operation.

63 CONFIG Debug counter configuration
0 Counter 1 and counter 2 are independent counters
1 Counter 1 and counter 2 are concatenated into a single 32-bit counter. The event count

control bits for counter 1 are used and the event count control bits for counter 2 are ignored.

1 If the DACx field in DBCR0 is set to restrict events to only reads or only writes, only those events are counted if
enabled in DBCR3. In general, DAC events should be disabled in DBCR0.

Table 2-21. DBCR3 Field Descriptions (continued)

Bits Name Description

Chapter 2. Register Model 2-49
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Debug Registers

NOTE
Updates to DBCR0, DBSR, DBCR3, and DBCNT should be
performed carefully if the counters are currently enabled for
counting ICMP events. For these cases, an instruction that
updates the counters or control over the counters may cause
one or more counter events to occur (DCNT1, DCNT2,
CNT1TRG), even if the result of the instruction is to modify the
counter value or control value to a state where counter events
would not be expected. This is due to the pipelined nature of the
counter and control operation. As an example, if a counter was
enabled to count ICMP events, MSR[DE] = 1, and the value of
the counter is 1 before execution of an mtspr that is loading the
counter with a different value, a counter event is generated
following completion of the mtspr, even though the counter
ends up being loaded with a new value. When the mtspr
finishes executing, a debug event is posted, but the counter
value holds the newly written count value. It is important to
note that the new counter value is performed at the completion
of an mtspr that modifies a counter, regardless of whether a
debug event is generated based on the old counter value. To
avoid this, it is recommended that DBCNT and DBCR3 values
be modified only when there is no possibility of a
counter-related debug event on the mtspr instruction.
Modifying DBCR0 to affect counter event enabling/disabling
may have similar issues, as may modifying
DBSR[CNT1TRG].

Updates to DBCR0, DBSR, DBCR3 and DBCNT should be
performed carefully if the counters are enabled for counting
events. For these cases, an instruction that updates the counters
or control over the counters can cause one or more counter
events (DCNT1, DCNT2, CNT1TRG), even if the result of the
instruction is to modify the counter value or control value to a
state where counter events would not be expected. This is due
to the pipelined nature of the counter and control operation. As
an example, if a counter was enabled to count ICMP events,
MSR[DE] = 1, and the value of the counter is 1 before
execution of an mtspr that is loading DBCR3 with a different
value, a counter event may be generated following completion
of the mtspr, even though DBCR3 ends up being loaded with
a new value that prevents the particular event from being
counted. When the mtspr finishes executing, a debug event is
posted, but the DBCR3 value reflects the newly established

2-50 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Debug Registers

control, which may indicate that the particular event is not to
cause a counter update. Modifying DBCR0 to affect counter
event enabling/disabling may have similar issues, as may
modifying DBSR[CNT1TRG].

2.10.4 Debug Status Register (DBSR)

DBSR contains status on debug events and the most recent processor reset. DBSR is set
using hardware, and read and cleared using software. Clearing is done by writing to the
DBSR with a 1 in any bit position that is to be cleared and 0 in all other bit positions. The
write data to the debug status register is not direct data, but a mask. A 1 causes the bit to be
cleared, and a 0 has no effect. Debug status bits are set by debug events only while internal
debug mode is enabled or external debug mode is enabled. When debug interrupts are
enabled (MSR[DE] = 1, DBCR0[IDM] = 1, and DBCR0[EDM] = 0), a set bit in DBSR
causes a debug interrupt to be generated. The debug interrupt handler is responsible for
clearing DBSR bits before returning to normal execution. The DBSR register is shown in
Figure 2-36.

Table 2-22 provides field definitions for the debug status register.

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Field IDE UDE MRR ICMP BRT IRPT TRAP IAC1 IAC2 IAC3 IAC4 DAC1R DAC1W DAC2R DAC2W

Reset 0001_0000_0000_0000

R/W Read/Clear

48 49 52 53 54 55 56 57 58 59 62 63

Field RET — DEVT1 DEVT2 DCNT1 DCNT2 CIRPT CRET — CNT1TRG

Reset 0000_0000_0000_0000

R/W Read/Clear

SPR SPR 304

Figure 2-36. DBSR Register

Table 2-22. DBSR Field Descriptions

Bits Name Description

32 IDE Imprecise debug event
Set if MSR[DE] = 0 and DBCR0[EDM] = 0 and a debug event causes its respective debug status
register bit to be set. It may also be set if DBCR0[EDM] = 1 and an imprecise debug event occurs
due to a DAC event on a load or store that is terminated with error, or if an ICMP event occurs in
conjunction with a SPE FP round exception.

33 UDE Unconditional debug event
Set if an unconditional debug event occurred.

Chapter 2. Register Model 2-51
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Hardware Implementation-Dependent Registers

2.11 Hardware Implementation-Dependent Registers
Hardware implementation-dependent registers 0 and 1 (HID0 and HID1) are configuration
registers provided to control various processor and system functions.

34–35 MRR Most recent reset
00 No reset occurred since these bits were last cleared by software.
01 A hard reset occurred since these bits were last cleared by software.
1x Reserved

36 ICMP Instruction complete debug event. Set if an instruction complete debug event occurred.

37 BRT Branch taken debug event. Set if an branch taken debug event occurred.

38 IRPT Interrupt taken debug event. Set if an interrupt taken debug event occurred.

39 TRAP Trap taken debug event. Set if a trap taken debug event occurred.

40 IAC1 Instruction address compare 1 debug event. Set if an IAC1 debug event occurred.

41 IAC2 Instruction address compare 2 debug event. Set if an IAC2 debug event occurred.

42 IAC3 Instruction address compare 3 debug event. Set if an IAC3 debug event occurred.

43 IAC4 Instruction address compare 4 debug event. Set if an IAC4 debug event occurred.

44 DAC1R Data address compare 1 read debug event. Set if a read-type DAC1 debug event occurred while
DBCR0[DAC1] = 0b10 or DBCR0[DAC1] = 0b11.

45 DAC1W Data address compare 1 write debug event. Set if a write-type DAC1 debug event occurred while
DBCR0[DAC1] = 0b01 or DBCR0[DAC1] = 0b11.

46 DAC2R Data address compare 2 read debug event. Set if a read-type DAC2 debug event occurred while
DBCR0[DAC2] = 0b10 or DBCR0[DAC2] = 0b11.

47 DAC2W Data address compare 2 write debug event. Set if a write-type DAC2 debug event occurred while
DBCR0[DAC2] = 0b01 or DBCR0[DAC2] = 0b11.

48 RET Return debug event. Set if a Return debug event occurred.

49–52 — Reserved, should be cleared.

53 DEVT1 External debug event 1 debug event. Set if a DEVT1 debug event occurred.

54 DEVT2 External debug event 2 debug event. Set if a DEVT2 debug event occurred.

55 DCNT1 Debug counter 1 debug event. Set if a DCNT1 debug event occurred.

56 DCNT2 Debug counter 2 debug event. Set if a DCNT2 debug event occurred.

57 CIRPT Critical interrupt taken debug event. Set if a critical interrupt taken debug event occurred.

58 CRET Critical return debug event. Set if a critical return debug event occurred.

59–62 — Reserved, should be cleared.

63 CNT1TRG Counter 1 triggered
Set if debug counter 1 is triggered by a trigger event.

Table 2-22. DBSR Field Descriptions (continued)

Bits Name Description

2-52 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Hardware Implementation-Dependent Registers

2.11.1 Hardware Implementation-Dependent Register 0 (HID0)

The HID0 register is used for various configuration and control functions. HID0 is shown
in Figure 2-37.

HID0 fields are described in Table 2-23.

32 33 37 38 39 40 41 42 43 45 46 47

Field EMCP — BPRED DOZE NAP SLEEP — ICR NHR

Reset All zeros

R/W R/W

48 49 50 51 52 53 54 55 56 63

— TBEN SEL_TBCLK DCLREE DCLRCE CICLRDE MCCLRDE DAPUEN —

Reset All zeros

R/W R/W

SPR SPR 1008

Figure 2-37. Hardware Implementation-Dependent Register 0 (HID0)

Table 2-23. HID0 Field Descriptions

Bits Name Description

32 EMCP Enable machine check signal (p_mcp_b). Used to mask out further machine check
exceptions caused by assertion of p_mcp_b.
0 p_mcp_b is disabled.
1 p_mcp_b is enabled. If MSR[ME] = 0, asserting p_mcp_b causes checkstop. If

MSR[ME] = 1, asserting p_mcp_b causes a machine check interrupt.

33–37 — Reserved, should be cleared.

38–39 BPRED Branch prediction (acceleration) control. Controls BTB lookahead for branch acceleration.
Note that for branches with AA = 1, the MSB of the displacement field is still used to indicate
forward/backward, even though the branch is absolute. Used in conjunction with BUCSR.
00 Branch acceleration is enabled.
01 Branch acceleration is disabled for backward branches.
10 Branch acceleration is disabled for forward branches.
11 Branch acceleration is disabled for both branch directions.

40 DOZE Configure for doze power management mode. Doze mode is invoked by setting MSR[WE]
while this bit is set.
0 Doze mode is disabled.
1 Doze mode is enabled.

41 NAP Configure for nap power management mode. Nap mode is invoked by setting MSR[WE] while
this bit is set.
0 Nap mode is disabled.
1 Nap mode is enabled.

42 SLEEP Configure for sleep power management mode. Sleep mode is invoked by setting MSR[WE]
while this bit is set. Only one of DOZE, NAP, or SLEEP should be set for proper operation.
0 Sleep mode is disabled.
1 Sleep mode is enabled.

Chapter 2. Register Model 2-53
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Hardware Implementation-Dependent Registers

43–45 — Reserved, should be cleared.

46 ICR Interrupt inputs clear reservation
0 External and critical input interrupts do not affect reservation status.
1 External and critical input interrupts clear an outstanding reservation.

47 NHR Not hardware reset. Provided for software use. Set anytime by software, cleared by reset.
0 Indicates to a reset exception handler that a reset occurred if software had previously set

this bit.
1 Indicates to a reset exception handler that no reset occurred if software had previously set

this bit.

48 — Reserved, should be cleared.

49 TBEN Time base enable. Used to enable the time base and decrementer.
0 Time base is disabled.
1 Time base is enabled.

50 SEL_TBCLK Select time base clock. Selects the time base clock source. Altering this bit must be done
while the time base is disabled to preclude glitching of the counter. Timer interrupts should be
disabled prior to alteration, and TBL and TBU are reinitialized following a change of time base
clock source.
0 Time base is based on processor clock.
1 Time base is based on the p_tbclk input.

51 DCLREE Debug interrupt clears MSR[EE]. Controls whether debug interrupts force external input
interrupts to be disabled, or whether they remain unaffected.
0 MSR[EE] unaffected by debug interrupt
1 MSR[EE] cleared by debug interrupt

52 DCLRCE Debug interrupt clears MSR[CE]. Controls whether debug interrupts force critical interrupts to
be disabled, or whether they remain unaffected.
0 MSR[CE] unaffected by debug interrupt
1 MSR[CE] cleared by debug Interrupt

53 CICLRDE Critical interrupt clears MSR[DE]. Controls whether certain critical interrupts (critical input,
watchdog timer) force debug interrupts to be disabled, or whether they remain unaffected.
Machine check interrupts have a separate control bit.
0 MSR[DE] unaffected by critical class interrupt
1 MSR[DE] cleared by critical class interrupt
Note that if critical interrupt debug events are enabled (DBCR0[CIRPT] set, which should only
be done when the debug APU is enabled), and MSR[DE] is set at the time of a (critical input,
watchdog timer) critical interrupt, a debug event will be generated after the critical Interrupt
Handler has been fetched, and the debug handler is executed first. In this case, DSRR0[DE]
will have been cleared, such that after returning from the debug handler, the critical interrupt
handler will not be run with MSR[DE] enabled.

54 MCCLRDE Machine check interrupt clears MSR[DE]. Controls whether machine check interrupts force
debug interrupts to be disabled or are unaffected. Note that if critical interrupt debug events
are enabled (DBCR0[CIRPT] set, which should only be done when the debug APU is
enabled), and MSR[DE] is set at the time of a machine check interrupt, a debug event is
generated after the machine check interrupt handler has been fetched, and the debug handler
is executed first. In this case, DSRR0[DE] will have been cleared, such that after returning
from the debug handler, the machine check handler cannot be run if MSR[DE] = 1.
0 MSR[DE] unaffected by machine check interrupt
1 MSR[DE] cleared by machine check interrupt

Table 2-23. HID0 Field Descriptions (continued)

Bits Name Description

2-54 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Branch Target Buffer (BTB) Registers

2.11.2 Hardware Implementation-Dependent Register 1 (HID1)

The HID1 register is used for bus configuration and system control. HID1 is shown in
Figure 2-38.

HID1 fields are described in Table 2-24.

2.12 Branch Target Buffer (BTB) Registers
This section describes the only register that controls the branch target buffer.

2.12.1 Branch Unit Control and Status Register (BUCSR)

The branch unit control and status register (BUCSR) is used for general control and status
of the branch target buffer (BTB). BUCSR is shown in Figure 2-39.

55 DAPUEN Debug APU enable. Controls whether the Debug APU is enabled. When enabled, Debug
interrupts use the DSRR0/DSRR1 registers for saving state, and the rfdi instruction is
available for returning from a debug interrupt.
0 Debug APU disabled. Debug interrupts use the critical interrupt resources CSRR0/CSRR1

for saving state, rfci is used for returning from a debug interrupt, and rfdi is treated as an
illegal instruction. DCLREE, DCLRCE, CICLRDE, and MCCLRDE settings are ignored and
are assumed to be 1s

1 Debug APU enabled
Read and write access to DSRR0/DSRR1 via mfspr and mtspr is not affected by this bit.

56–63 — Reserved, should be cleared.

32 55 56 57 63

Field — ATS –

Reset All zeros

R/W R/W

SPR SPR 1009

Figure 2-38. Hardware Implementation-Dependent Register 1 (HID1)

Table 2-24. HID1 Field Descriptions

Bits Name Description

32–55 — Reserved, should be cleared.

56 ATS Atomic status (read-only). Indicates state of the reservation bit in the load/store unit. See
Section 3.3, “Memory Synchronization and Reservation Instructions,” for more detail.

57–63 — Reserved, should be cleared.

Table 2-23. HID0 Field Descriptions (continued)

Bits Name Description

Chapter 2. Register Model 2-55
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

L1 Cache Configuration Registers

BUCSR fields are described in Table 2-25.

2.13 L1 Cache Configuration Registers
This section describes the registers that control and configure the L1 caches.

2.13.1 L1 Cache Control and Status Register 0 (L1CSR0)

The L1 cache control and status register 0 (L1CSR0) is a 32-bit register defined by the EIS.
It is used for general control and status of the L1 data cache. L1CSR0 is accessed using an
mfspr or mtspr. The SPR number for L1CSR0 is 1010 in decimal. L1CSR0 is shown in
Figure 2-40.

The correct sequence necessary to change the value of L1CSR0 is as follows:

1. msync

2. isync

3. mtspr L1CSR0

32 53 54 55 62 63

Field — BBFI — BPEN

Reset All zeros

R/W R/W

SPR SPR 1013

Figure 2-39. Branch Unit Control and Status Register (BUCSR)

Table 2-25. Branch Unit Control and Status Register

Bits Name Description

32–53 — Reserved, should be cleared.

54 BBFI Branch target buffer flash invalidate. When set, BBFI flash clears the valid bit of all BTB entries; clearing
occurs regardless of the value of the enable bit (BPEN).
Note: BBFI is always read as 0.

55–62 — Reserved, should be cleared.

63 BPEN Branch target buffer (BTB) enable.
0 BTB prediction disabled. No hits are generated from the BTB and no new entries are allocated. Entries

are not automatically invalidated when BPEN is cleared; BBFI controls entry invalidation.
1 BTB prediction enabled (enables BTB to predict branches)

2-56 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

L1 Cache Configuration Registers

L1CSR0 fields are described in Table 2-26.

Way Partitioning APU Bits

32 35 36 39 40 41 42 43 44 45 46 47

Field WID WDD AWID AWDD — CWM DPB DSB DSTRM CPE

Reset All zeros

R/W R/W

Line Locking APU Bits

48 52 53 54 55 56 60 61 62 63

Field — CUL CLO CLFR — CABT CFI CE

Reset All zeros

R/W R/W

SPR SPR 1010

Figure 2-40. L1 Cache Control and Status Register 0 (L1CSR0)

Table 2-26. L1CSR0 Field Descriptions

Bits Name Description

32–35 WID Way instruction disable. WID and WDD are used for locking ways of the cache and determining the
cache replacement policy.
0 The corresponding way is available for replacement by instruction miss line fills.
1 The corresponding way is not available for replacement by instruction miss line fills.
Bit 0 corresponds to way 0, bit 1 corresponds to way 1, bit 2 corresponds to way 2, and
bit 3 corresponds to way 3.

36–39 WDD Way data disable. WID and WDD are used for locking ways of the cache and determining the cache
replacement policy.
0 The corresponding way is available for replacement by data miss line fills.
1 The corresponding way is not available for replacement by data miss line fills.
Bit 4 corresponds to way 0, bit 5 corresponds to way 1, bit 6 corresponds to way 2, bit 7 corresponds
to way 3.

40 AWID Additional ways instruction disable
0 Additional ways beyond 0–3 are available for replacement by instruction miss line fills.
1 Additional ways beyond 0–3 are not available for replacement by instruction miss line fills.
For the 32-Kbyte 8-way cache, ways 4–7 are considered additional ways.

41 AWDD Additional ways data disable
0 Additional ways beyond 0–3 are available for replacement by data miss line fills.
1 Additional ways beyond 0–3 are not available for replacement by data miss line fills.
For the 32-Kbyte 8-way cache, ways 4–7 are considered additional ways.

42 — Reserved, should be cleared.

43 CWM Cache write mode. When set to write-through mode, the W page attribute from an optional MMU is
ignored and all writes are treated as write through required. When set, write accesses are performed
in copy-back mode unless the W page attribute from an optional MMU is set.
0 Cache operates in write-through mode.
1 Cache operates in copy-back mode.

Chapter 2. Register Model 2-57
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

L1 Cache Configuration Registers

2.13.2 L1 Cache Configuration Register 0 (L1CFG0)

The L1 cache configuration register 0 (L1CFG0), shown in Figure 2-41, provides
information about the configuration of the e200z6 L1 cache design.

44 DPB Disable push buffer
0 Push buffer enabled
1 Push buffer disabled

45 DSB Disable store buffer
0 Store buffer enabled
1 Store buffer disabled

46 DSTRM Disable streaming
0 Streaming is enabled.
1 Streaming is disabled.

47 CPE Cache parity enable
0 Parity checking is disabled.
1 Parity checking is enabled.

48–52 — Reserved, should be cleared.

53 CUL Cache unable to lock. Indicates a lock set instruction was not effective in locking a cache line. This
bit is set by hardware on an “unable to lock” condition (other than lock overflows), and remain set
until cleared by software writing 0 to this bit location.

54 CLO Cache lock overflow. Indicates a lock overflow (overlocking) condition occurred. Set by hardware on
an overlocking condition, and remains set until cleared by software writing 0 to this bit location.

55 CLFC Cache lock bits flash clear. When written to a 1, a cache lock bits flash clear operation is initiated
by hardware. Once complete, this bit is reset to 0. Writing a 1 while a flash clear operation is in
progress results in an undefined operation. Writing a 0 to this bit while a flash clear operation is in
progress has no effect. Cache lock bits flash clear operations require approximately 134 cycles to
complete. Clearing occurs regardless of the enable (CE) value.

56–60 — Reserved, should be cleared.

61 CABT Cache operation aborted. Indicates a cache invalidate or a cache lock bits flash clear operation was
aborted prior to completion. Set by hardware on an aborted condition, and remains set until cleared
by software writing 0 to this bit location.

62 CINV Cache invalidate
0 No cache invalidate
1 Cache invalidation operation
When written to a 1, a cache invalidation operation is initiated by hardware. Then invalidation is
complete, CINV is reset to 0. Writing a 1 while invalidation is in progress causes an undefined
operation. Writing a 0 to this bit while an invalidation operation is in progress is ignored. Cache
invalidation operations require approximately 134 cycles to complete. Invalidation occurs
regardless of the enable (CE) value.

63 CE Cache enable. When disabled, cache lookups are not performed for normal load or store accesses.
Other L1CSR0 cache control operations are still available. Also, store buffer operation is not
affected by CE.
0 Cache is disabled
1 Cache is enabled

Table 2-26. L1CSR0 Field Descriptions (continued)

Bits Name Description

2-58 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

L1 Cache Configuration Registers

The L1CFG0 fields are described in Table 2-27.

32 33 34 35 36 37 38 39 40 41 42 43 44 45 47

Field CARCH CWPA CFAHA CFISWA — CBSIZE CREPL CLA CPA CNWAY

Reset 01 1 0 1 00 00 10 1 1 000_0011_1 (8 way)/
000_0001_1 (4 way)

R/W Read only

48 52 53 63

Field CNWAY CSIZE

Reset 000_0011_1 (8 way)/
000_0001_1 (4 way)

000_0010_0000 (32 Kbyte)
000_0001_0000 (16 Kbyte)

R/W Read only

SPR SPR 515

Figure 2-41. L1 Cache Configuration Register 0 (L1CFG0)

Table 2-27. L1CFG0 Field Descriptions

Bits Name Description

32–33 CARCH Cache architecture
01 The cache architecture is unified.

34 CWPA Cache way partitioning available
1 The cache supports partitioning of way availability for I/D accesses.

35 CFAHA Cache flush all by hardware available
0 The cache does not support flush all in hardware.

36 CFISWA Cache flush/invalidate by set and way available
1 The cache supports flushing/invalidation by set and way via L1FINV0.

37–38 — Reserved, should be cleared.

39–40 CBSIZE Cache block size
00 The cache implements a block size of 32 bytes.

41–42 CREPL Cache replacement policy
10 The cache implements a pseudo-round-robin replacement policy.

43 CLA Cache locking APU available
1 The cache implements the line locking APU.

44 CPA Cache parity available
1 The cache implements parity.

45–52 CNWAY Number of ways in the data cache
0x03 The cache is 4-way set associative.
0x07 The cache is 8-way set associative.

53–63 CSIZE Cache size
0x010 The size of the cache is 16 Kbytes.
0x020 The size of the cache is 32 Kbytes.

Chapter 2. Register Model 2-59
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

MMU Registers

2.13.3 L1 Cache Flush and Invalidate Register (L1FINV0)

The L1FINV0 register provides software-based flush and invalidation control for the L1
cache supplied with this version of the e200z6 CPU core. A description of the L1FINV0
register can be found in Chapter 4, “L1 Cache.

The L1FINV0 fields are described in Table 2-28.

2.14 MMU Registers
This section describes the registers used by the e200z6 for setting up and maintaining the
TLBs in the MMU.

2.14.1 MMU Control and Status Register 0 (MMUCSR0)

The MMU control and status register 0 (MMUCSR0) is a 32-bit register. The SPR number
for MMUCSR0 is 1012 in decimal. MMUCSR0 controls the state of the MMU. The
MMUCSR0 register is shown in Figure 2-43.

32 36 37 39 40 51 52 58 59 61 62 63

Field — CWAY CSET CCMD

Reset All zeros

R/W R/W

Addr SPR 1016

Figure 2-42. L1 Flush/Invalidate Register (L1FINV0)

Table 2-28. L1FINV0 Field Descriptions

Bits Name Description

32-36 — Reserved, should be cleared.

37-39 CWAY Cache way
Specifies the cache way to be selected

40-51 — Reserved for set extension

52-58 CSET Cache set
Specifies the cache set to be selected

59-61 — Reserved for set/command extension

62-63 CCMD Cache command
00 The data contained in this entry is invalidated without flushing.
01 The data contained in this entry is flushed if dirty and valid without invalidation.
10 The data contained in this entry is flushed if dirty and valid and then is invalidated.
11 Reserved

2-60 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

MMU Registers

The MMUCSR0 fields are described in Table 2-29.

2.14.2 MMU Configuration Register (MMUCFG)

The MMU configuration register (MMUCFG) is a 32-bit read-only register. The SPR
number for MMUCFG is 1015 in decimal. MMUCFG provides information about the
configuration of the e200z6 MMU design. The MMUCFG register is shown in Figure 2-44.

32 61 62 63

Field — TLB1_FI —

Reset All zeros

R/W R/W

SPR SPR 1012

Figure 2-43. MMU Control and Status Register 0 (MMUCSR0)

Table 2-29. MMUCSR0 Field Descriptions

Bits Name Description

32–61 — Reserved, should be cleared.

62 TLB1_FI TLB1 flash invalidate
0 No flash invalidate
1 TLB1 invalidation operation
When written to a 1, a TLB1 invalidation operation is initiated by hardware. Once complete, this bit
is cleared to 0. Writing a 1 while an invalidation operation is in progress will result in an undefined
operation. Writing a 0 to this bit while an invalidation operation is in progress will be ignored. TLB1
invalidation operations require 3 cycles to complete.

63 — Reserved, should be cleared.

32 48 49 52 53 57 58 59 60 61 62 63

Field — NPIDS PIDSIZE — NTLBS MAVN

Reset 0000_0000_0000_0000_0 000_1 001_11 00 01 00

R/W Read only

SPR SPR 1015

Figure 2-44. MMU Configuration Register 1 (MMUCFG)

Chapter 2. Register Model 2-61
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

MMU Registers

The MMUCFG fields are described in Table 2-30.

2.14.3 TLB Configuration Registers (TLBnCFG)

The TLBnCFG read-only registers provide information about each specific TLB that is
visible to the programming model.

2.14.3.1 TLB Configuration Register 0 (TLB0CFG)

The TLB0 configuration register (TLB0CFG) is a 32-bit read-only register that provides
information about the configuration of TLB0. The SPR number for TLB0CFG is 688 in
decimal. Because the e200z6 MMU design does not implement TLB0, this register reads
as all zeros. It is supplied to allow software to query it in a fashion compatible with other
Motorola Book E designs. The TLB0CFG register is shown in Figure 2-45.

The TLB0CFG fields are described in Table 2-31.

Table 2-30. MMUCFG Field Descriptions

Bits Name Description

32–48 — Reserved, should be cleared.

49–52 NPIDS Number of PID registers
0001 This version of the MMU implements one PID register (PID0).

53–57 PIDSIZE PID register size
00111 PID registers contain 8 bits in this version of the MMU.

58–59 — Reserved, should be cleared.

60–61 NTLBS Number of TLBs
01 This version of the MMU implements two TLB structures: a null TLB0 and a populated TLB1.

62–63 MAVN MMU architecture version number
00 This version of the MMU implements version 1.0 of the Motorola Book E MMU architecture.

32 39 40 43 44 47 48 49 50 51 52 63

Field ASSOC MINSIZE MAXSIZE IPROT AVAIL — NENTRY

Reset All zeros

R/W Read only

SPR SPR 688

Figure 2-45. TLB Configuration Register 0 (TLB0CFG)

Table 2-31. TLB0CFG Field Descriptions

Bits Name Description

32–39 ASSOC Associativity

40–43 MINSIZE Minimum page size

44–47 MAXSIZE Maximum page size

2-62 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

MMU Registers

2.14.3.2 TLB Configuration Register 1 (TLB1CFG)

The TLB1 Configuration Register (TLB1CFG) is a 32-bit read-only register. The SPR
number for TLB1CFG is 689 decimal. TLB1CFG provides information about the
configuration of TLB1 in the e200z6 MMU. The TLB1CFG register is shown in
Figure 2-46.

The TLB1CFG fields are described in Table 2-32.

48 IPROT Invalidate protect capability

49 AVAIL Page size availability

50–51 — Reserved, should be cleared

52–63 NENTRY Number of entries

32 39 40 43 44 47 48 49 50 51 52 63

Field ASSOC MINSIZE MAXSIZE IPROT AVAIL — NENTRY

Reset 0010_0000 0001 1001 1 1 00 0000_0010_0000

R/W Read only

SPR SPR 689

Figure 2-46. TLB Configuration Register 1 (TLB1CFG)

Table 2-32. TLB1CFG Field Descriptions

Bits Name Description

32–39 ASSOC Associativity
0x20 Indicates that TLB1 associativity is 32

40–43 MINSIZE Minimum page size
0x1 Smallest page size is 4 Kbytes.

44–47 MAXSIZE Maximum page size
0x9 Largest page size is 256 Mbytes.

48 IPROT Invalidate protect capability
1 Invalidate protect capability is supported in TLB1.

49 AVAIL Page size availability
1 All page sizes between MINSIZE and MAXSIZE are supported.

50–51 — Reserved, should be cleared.

52–63 NENTRY Number of entries
0x020 TLB1 contains 32 entries.

Table 2-31. TLB0CFG Field Descriptions (continued)

Bits Name Description

Chapter 2. Register Model 2-63
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

MMU Registers

2.14.4 MMU Assist Registers (MAS0–MAS4, MAS6)

The e200z6 uses six special purpose registers (MAS0, MAS1, MAS2, MAS3, MAS4 and
MAS6) to facilitate reading, writing, and searching the TLBs. The MAS registers can be
read or written using the mfspr and mtspr instructions. The e200z6 does not implement
the MAS5 register, present in other Motorola Book E designs, because the tlbsx instruction
only searches based on a single SPID value.

Additional information on the MASn registers is available in Section 6.6.5, “MMU Assist
Registers (MAS).” The MAS0 register is shown in Figure 2-47.

MAS0 fields are defined in Table 2-33.

The MAS1 register is shown in Figure 2-48.

MAS1 fields are defined in Table 2-34.

32 33 34 35 36 42 43 47 48 58 59 63

Field — TLBSEL — ESEL — NV

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 624

Figure 2-47. MAS Register 0 (MAS0) Format

Table 2-33. MAS0—MMU Read/Write and Replacement Control

Bits Name Description

32–33 — Reserved, should be cleared.

34–35 TLBSEL Selects TLB for access
01 TLB1 (ignored by the e200z6, should be written to 01 for future compatibility)

36–42 — Reserved, should be cleared.

43–47 ESEL Entry select for TLB1

48–58 — Reserved, should be cleared.

59–63 NV Next replacement victim for TLB1 (software managed). Software updates this field; it is copied
to the ESEL field on a TLB error (See Table 6-6).

32 33 34 39 40 47 48 50 51 52 55 56 63

Field VALID IPROT — TID — TS TSIZE —

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 625

Figure 2-48. MMU Assist Register 1 (MAS1)

2-64 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

MMU Registers

The MAS2 register is shown in Figure 2-49.

MAS2 fields are defined in Table 2-35.

Table 2-34. MAS1 —Descriptor Context and Configuration Control

Bits Name Description

32 VALID TLB entry valid
0 This TLB entry is invalid.
1 This TLB entry is valid.

33 IPRO
T

Invalidation protect
0 Entry is not protected from invalidation.
1 Entry is protected from invalidation as described in Section 6.3.1, “IPROT Invalidation Protection

in TLB1.”
Protects TLB entry from invalidation by tlbivax (TLB1 only), or flash invalidates through
MMUCSR0[TLB1_FI].

34–39 — Reserved, should be cleared.

40–47 TID Translation ID bits
This field is compared with the current process IDs of the effective address to be translated. A TID
value of 0 defines an entry as global and matches with all process IDs.

48–50 — Reserved, should be cleared.

51 TS Translation address space
This bit is compared with the IS or DS fields of the MSR (depending on the type of access) to
determine if this TLB entry may be used for translation.

52–55 TSIZE Entry page size
Supported page sizes are:
0b0001 4 Kbytes 0b0110 4 Mbytes
0b0010 16 Kbytes 0b0111 16 Mbytes
0b0011 64 Kbytes 0b1000 64 Mbytes
0b0100 256 Kbytes 0b1001 256 Mbytes
0b0101 1 Mbyte
All other values are undefined.

56–63 — Reserved, should be cleared.

32 51 52 58 59 60 61 62 63

Field EPN — W I M G E

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 626

Figure 2-49. MMU Assist Register 2 (MAS2)

Chapter 2. Register Model 2-65
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

MMU Registers

The MAS3 register is shown in Figure 2-50.

MAS3 fields are defined in Table 2-36

Table 2-35. MAS2—EPN and Page Attributes

Bits Name Description

32–51 EPN Effective page number

52–58 — Reserved, should be cleared.

59 W Write-through required
0 This page is considered write-back with respect to the caches in the system.
1 All stores performed to this page are written through to main memory.

60 I Cache inhibited
0 This page is considered cacheable.
1 This page is considered cache-inhibited.

61 M Memory coherence required.The e200z6 does not support the memory coherence required attribute,
and thus it is ignored.
0 Memory coherence is not required.
1 Memory coherence is required.

62 G Guarded. The e200z6ignores the guarded attribute (other than for generation of the p_hprot[4:2]
attributes on an external access), since no speculative or out-of-order processing is performed. Refer
to Section 4.16, “Page Table Control Bits,” for more information.
0 Access to this page are not guarded, and can be performed before it is known if they are required

by the sequential execution model.
1 All loads and stores to this page are performed without speculation (that is, they are known to be

required).

63 E Endianness. Determines endianness for the corresponding page. Refer to Section 3.2.4, “Byte Lane
Specification,” for more information.
0 The page is accessed in big-endian byte order.
1 The page is accessed in true little-endian byte order.

Permission bits

32 51 52 53 54 55 56 57 58 59 60 61 62 63

Field RPN — U0 U1 U2 U3 UX SX UW SW UR SR

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 627

Figure 2-50. MMU Assist Register 3 (MAS3)

2-66 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

MMU Registers

The MAS4 register is shown in Figure 2-51.

MAS4 fields are defined in Table 2-37.

The MAS6 register is shown in Figure 2-52.

Table 2-36. MAS3—RPN and Access Control

Bits Name Description

32–51 RPN Real page number
Only bits that correspond to a page number are valid. Bits that represent offsets within a page are
ignored and should be zero.

52–53 — Reserved, should be cleared.

54–57 U0–U3 User bits

58–63 PERMIS Permission bits (UX, SX, UW, SW, UR, SR)

Default WIMGE values

32 33 34 35 36 45 46 47 48 51 52 55 56 58 59 60 61 62 63

Field — TLBSELD — TIDSELD — TSIZED — WD ID MD GD ED

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 628

Figure 2-51. MMU Assist Register 4 (MAS4)

Table 2-37. MAS4—Hardware Replacement Assist Configuration Register

Bits Name Description

32–33 — Reserved, should be cleared.

34–35 TLBSELD Default TLB selected
01 TLB1 (ignored by the e200z6, should be written to 01 for future compatibility)

36–45 — Reserved, should be cleared.

46–47 TIDSELD Default PID# to load TID from
00 PID0
01 Reserved, do not use
10 Reserved, do not use
11 TIDZ (8’h00)) (Use all zeros, the globally shared value)

48–51 — Reserved, should be cleared.

52–55 TSIZED Default TSIZE value

56–58 — Reserved, should be cleared.

59–63 DWIMGE Default WIMGE values

Chapter 2. Register Model 2-67
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Support for Fast Context Switching

MAS6 fields are defined in Table 2-38.

2.14.5 Process ID Register (PID0)

The process ID register, PID0, is shown in Figure 2-53.

The Book E architecture defines that a process ID (PID) value be associated with each
effective address (instruction or data) generated by the processor. Book E defines one PID
register that maintains the value of the PID for the current process. The number of PIDs
implemented is indicated by the value of MMUCFG[NPIDS]. (The e200z6 defines no
additional PID registers.) PID values are used to construct virtual addresses for accessing
memory.

2.15 Support for Fast Context Switching
In order to provide real-time capabilities for embedded systems, future versions of the
e200z6 core will include optional hardware support for fast context switching. The initial
version of the e200z6 does not implement additional register contexts.

32 39 40 47 48 62 63

Field — SPID — SAS

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 630

Figure 2-52. MMU Assist Register 6 (MAS6))

Table 2-38. MAS6—TLB Search Context Register 0

Bits Name Description

32–39 — Reserved, should be cleared.

40–47 SPID PID value for searches

48–62 — Reserved, should be cleared.

63 SAS AS value for searches

32 55 56 63

Field — Process ID

Reset All zeros

R/W R/W

SPR SPR 48

Figure 2-53. Process ID Register (PID0)

2-68 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Support for Fast Context Switching

2.15.1 Context Control Register (CTXCR)

A new privileged 32-bit special purpose register (SPR) is defined in the e200z6 CPU core
called the context control register (CTXCR). The CTXCR controls which context registers
are mapped to the current context and holds current, alternate, and saved context
information. CTXCR is readable by supervisor software to determine whether multiple
contexts are supported in hardware, and if so, the number implemented. When multiple
register contexts are present (CTXCR[NUMCTX] is non-zero), CTXCR is also writable;
otherwise writes are ignored, and the register reads as all zeros. CTXCR is shown in
Figure 2-54.

32 33 34 35 37 38 40 41 43 44 46 47 55 56 57 59 60 61 62 63

Field CTXEN — NUMCTX CURCTX SAVCTX ALTCTX — R1CE R1CSEL XCE LRCE CTRCE CRCE

Reset 000 || NUMCTX || 00_0000_0000_0000_0000_0000_0000

R/W Read/Write 1

1 Writes ignored if NUMCTX is 000 (register reads as all zeros).

SPR SPR 560

Figure 2-54. Context Control Register (CTXCR)

Table 2-39. CTXCR Field Descriptions

Bits Name Description

32 CTXEN Contexts enable—Enables the use of multiple contexts.
0 Only a single context is enabled, all other control fields in this register are ignored, and the

current context is forced to 000.
1 Multiple context support is enabled. Current context is selected by the CURCTX field.
This field is cleared to 0 on reset.
Note that there is only a single implemented copy of the CTXEN bit shared among all n CTXCRs.

33–34 — Reserved, should be cleared.

35–37 NUMCTX Number of contexts
This read-only field indicates the highest context number supported by the hardware.
A value of 000 indicates one context is supported; a value of 111 indicates eight contexts are
supported by the hardware. Writes to this field are ignored.

38–40 CURCTX Current context number
Defines the currently enabled context. This field is cleared to 0 on reset.
When CTXEN = 0, CURCTX is forced to 000. Otherwise:
 • This field is set to the value obtained from the IVORn register when an interrupt occurs.
 • This field is set to the value of the SAVCTX field on an rfi, rfci, or rfdi instruction.
Note that there is only a single implemented copy of the CURCTX field shared among all n
CTXCRs.
Writing to this field changes the current context when multiple contexts are enabled. Care must
be taken when modifying this value using an mtspr 560.

41–43 SAVCTX Saved context number
Defines the previously enabled context. This field is cleared to 0 on reset.
This field is set to the CURCTX value on certain exceptions. This field is used to restore the
CURCTX field on an rfi, rfci, or rfdi instruction.

Chapter 2. Register Model 2-69
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Support for Fast Context Switching

Software access to registers outside the current context is performed by setting of control
bits in CTXCR which force selection of register groups from the context defined by the
ALTCTX field. When multiple contexts are implemented (CTXCR[NUMCTX] is
non-zero), alternate context control registers (CTXCR0–CTXCR7) are mapped indirectly
to SPR 568 (ALTCTXCR) using the ALTCTX field of the current CTXCR. The current
CTXCR is mapped to SPR 560. Supervisor mode accesses to ALTCTXCR when no
alternate contexts are implemented will result in an illegal type program interrupt. Software
should query the CTXCR first to determine the number of hardware supported contexts.

44–46 ALTCTX Alternate context number
Defines an alternately enabled context. This field is used to define a context mapping for register
groups.

47–55 — Reserved, should be cleared.

56 R1CE GPR R1 context enable
Enables multiple GPR R1 contexts
0 GPR R1 is from context selected by field R1CSEL; CURCTX is ignored for GPR R1.
1 GPR R1 is from current context defined by CURCTX.

57–59 R1CSEL GPR R1 context select
Selects a context for GPR R1:
000 GPR R1 is from context 0.
001 GPR R1 is from context 1.
...
111 GPR R1 is from context 7.
Results are undefined if this field is set to a value greater than the number of implemented
contexts.

60 XCE XER context enable
Enables multiple XER contexts.
0 XER is always from context 0.
1 XER is from current context.

61 LRCE Link register context enable
Enables multiple LR contexts
0 LR is always from context 0.
1 LR is from current context.

62 CTRCE Count register context enable
Enables multiple CTR contexts
0 CTR is always from context 0.
1 CTR is from current context.

63 CRCE Condition register context enable
Enables multiple CR contexts
0 CR is always from context 0.
1 CR is from current context.

Table 2-39. CTXCR Field Descriptions (continued)

Bits Name Description

2-70 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

SPR Register Access

2.16 SPR Register Access
SPRs are accessed with the mfspr and mtspr instructions. The following sections outline
additional access requirements.

2.16.1 Invalid SPR References

System behavior when an invalid SPR is referenced depends on the apparent privilege level
of the register. The register privilege level is determined by bit 5 in the SPR address. If the
invalid SPR is accessible in user mode, then an illegal exception is generated. If the invalid
SPR is accessible only in supervisor mode and the CPU core is in supervisor mode
(MSR[PR] = 0), then an illegal exception is generated. If the invalid SPR address is
accessible only in supervisor mode and the CPU is not in supervisor mode (MSR[PR] = 1),
then a privilege exception is generated.

2.16.2 Synchronization Requirements for SPRs

With the exception of the following registers, there are no synchronization requirements for
accessing SPRs beyond those stated in PowerPC Book E. A complete description of
synchronization requirements is contained in the EREF. Software requirements for
synchronization before/after accessing these registers are shown in Table 2-41. The
notation CSI in the table refers to context synchronizing instructions; these include sc,
isync, rfi, rfci, and rfdi.

Table 2-40. System Response to Invalid SPR Reference

SPR Address Bit 5 Mode MSR[PR] Response

0 — — Illegal exception

1 Supervisor 0 Illegal exception

1 User 1 Privilege exception

Table 2-41. Additional Synchronization Requirements for SPRs

Context Altering Event or Instruction
Required

Before
Required

After
Notes

mtmsr[UCLE] None CSI

mfspr

DBCNT Debug counter register msync None 1

DBSR Debug status register msync None

HID0 Hardware implementation dependent register 0 None None

HID1 Hardware implementation dependent register 1 msync None

L1CSR0 L1 cache control and status register 0 msync None

L1FINV0 L1 cache flush and invalidate control register 0 msync None

Chapter 2. Register Model 2-71
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

SPR Register Access

2.16.3 Special Purpose Register Summary

PowerPC Book E and implementation-specific SPRs for the e200z6 core are listed in the
following table. All registers are 32 bits in size. Register bits are numbered from bit 32 to
bit 63 (most significant to least significant). Shaded entries represent optional registers. An
SPR may be read or written with the mfspr and mtspr instructions. In the instruction
syntax, compilers should recognize the mnemonic name given in the table below.

MMUCSR MMU control and status register 0 CSI None

mtspr

BUCSR Branch unit control and status register None CSI

CTXCR Context control register CSI CSI

DBCNT Debug counter register None CSI 1

DBCR0 Debug control register 0 None CSI

DBCR1 Debug control register 1 None CSI

DBCR2 Debug control register 2 None CSI

DBCR3 Debug control register 3 None CSI

DBSR Debug status register msync None

HID0 Hardware implementation dependent reg 0 CSI CSI

L1CSR0 L1 cache control and status register 0 msync CSI

L1FINV0 L1 cache flush and invalidate control register 0 msync CSI

MMUCSR MMU control and status register 0 CSI CSI

Notes:
1. Not required if counter is not currently enabled

Table 2-42. Special Purpose Registers

Mnemonic Name
SPR

Number
Access Privileged

e200z6
Specific

ALTCTXCR Alternate context control register 568 R/W 1 Yes Yes

BUCSR Branch unit control and status register 1013 R/W Yes Yes

CSRR0 Critical save/restore register 0 58 R/W Yes No

CSRR1 Critical save/restore register 1 59 R/W Yes No

CTR Count register 9 R/W No No

CTXCR Context control register 560 R/W 2 Yes Yes

DAC1 Data address compare 1 316 R/W Yes No

Table 2-41. Additional Synchronization Requirements for SPRs (continued)

Context Altering Event or Instruction
Required

Before
Required

After
Notes

2-72 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

SPR Register Access

DAC2 Data address compare 2 317 R/W Yes No

DBCNT Debug counter register 562 R/W Yes Yes

DBCR0 Debug control register 0 308 R/W Yes No

DBCR1 Debug control register 1 309 R/W Yes No

DBCR2 Debug control register 2 310 R/W Yes No

DBCR3 Debug control register 3 561 R/W Yes Yes

DBSR Debug status register 304 Read/Clear 3 Yes No

DEAR Data exception address register 61 R/W Yes No

DEC Decrementer 22 R/W Yes No

DECAR Decrementer auto-reload 54 R/W Yes No

DSRR0 Debug save/restore register 0 574 R/W Yes Yes

DSRR1 Debug save/restore register 1 575 R/W Yes Yes

ESR Exception syndrome register 62 R/W Yes No

HID0 Hardware implementation dependent reg 0 1008 R/W Yes Yes

HID1 Hardware implementation dependent reg 1 1009 R/W Yes Yes

IAC1 Instruction address compare 1 312 R/W Yes No

IAC2 Instruction address compare 2 313 R/W Yes No

IAC3 Instruction address compare 3 314 R/W Yes No

IAC4 Instruction address compare 4 315 R/W Yes No

IVOR0 Interrupt vector offset register 0 400 R/W Yes No

IVOR1 Interrupt vector offset register 1 401 R/W Yes No

IVOR2 Interrupt vector offset register 2 402 R/W Yes No

IVOR3 Interrupt vector offset register 3 403 R/W Yes No

IVOR4 Interrupt vector offset register 4 404 R/W Yes No

IVOR5 Interrupt vector offset register 5 405 R/W Yes No

IVOR6 Interrupt vector offset register 6 406 R/W Yes No

IVOR7 Interrupt vector offset register 7 407 R/W Yes No

IVOR8 Interrupt vector offset register 8 408 R/W Yes No

IVOR9 4 Interrupt vector offset register 9 409 R/W Yes No

IVOR10 Interrupt vector offset register 10 410 R/W Yes No

IVOR11 Interrupt vector offset register 11 411 R/W Yes No

IVOR12 Interrupt vector offset register 12 412 R/W Yes No

IVOR13 Interrupt vector offset register 13 413 R/W Yes No

Table 2-42. Special Purpose Registers (continued)

Mnemonic Name
SPR

Number
Access Privileged

e200z6
Specific

Chapter 2. Register Model 2-73
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

SPR Register Access

IVOR14 Interrupt vector offset register 14 414 R/W Yes No

IVOR15 Interrupt vector offset register 15 415 R/W Yes No

IVOR32 Interrupt vector offset register 32 528 R/W Yes Yes

IVOR33 Interrupt vector offset register 33 529 R/W Yes Yes

IVOR34 Interrupt vector offset register 34 530 R/W Yes Yes

IVPR Interrupt vector prefix register 63 R/W Yes No

LR Link register 8 R/W No No

L1CFG0 L1 cache configuration register 0 515 Read only No Yes

L1CSR0 L1 cache control and status register 0 1010 R/W Yes Yes

L1FINV0 L1 cache flush and invalidate control register 0 1016 R/W Yes Yes

MAS0 MMU assist register 0 624 R/W Yes Yes

MAS1 MMU assist register 1 625 R/W Yes Yes

MAS2 MMU assist register 2 626 R/W Yes Yes

MAS3 MMU assist register 3 627 R/W Yes Yes

MAS4 MMU assist register 4 628 R/W Yes Yes

MAS6 MMU assist register 6 630 R/W Yes Yes

MCSR Machine check syndrome register 572 R/W Yes Yes

MMUCFG MMU configuration register 1015 Read only Yes Yes

MMUCSR0 MMU control and status register 0 1012 R/W Yes Yes

PID0 Process ID register 48 R/W Yes No

PIR Processor ID register 286 Read only Yes No

PVR Processor version register 287 Read only Yes No

SPEFSCR SPE APU status and control register 512 R/W No No

SPRG0 SPR general 0 272 R/W Yes No

SPRG1 SPR general 1 273 R/W Yes No

SPRG2 SPR general 2 274 R/W Yes No

SPRG3 SPR general 3 275 R/W Yes No

SPRG4 SPR general 4 260 Read only No No

276 R/W Yes No

SPRG5 SPR general 5 261 Read only No No

277 R/W Yes No

SPRG6 SPR general 6 262 Read only No No

278 R/W Yes No

Table 2-42. Special Purpose Registers (continued)

Mnemonic Name
SPR

Number
Access Privileged

e200z6
Specific

2-74 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

SPR Register Access

2.16.4 Reset Settings

Table 2-43 shows the state of the PowerPC Book E architected registers and other optional
resources immediately following a system reset.

SPRG7 SPR general 7 263 Read only No No

279 R/W Yes No

SRR0 Save/restore register 0 26 R/W Yes No

SRR1 Save/restore register 1 27 R/W Yes No

SVR System version register 1023 Read only Yes Yes

TBL Time base lower 268 Read only No No

284 Write only Yes No

TBU Time base upper 269 Read only No No

285 Write only Yes No

TCR Timer control register 340 R/W Yes No

TLB0CFG TLB0 configuration register 688 Read only Yes Yes

TLB1CFG TLB1 configuration register 689 Read only Yes Yes

TSR Timer status register 336 Read/Clear 5 Yes No

USPRG0 User SPR general 0 256 R/W No No

XER Integer exception register 1 R/W No No

Notes:

1 Only accessible when multiple contexts are implemented, otherwise treated as an illegal SPR.
2 Only writable when multiple contexts are implemented, otherwise writes are ignored
3 The debug status register (DBSR) is read using mfspr. DBSR cannot be directly written to. Instead, DBSR bits

corresponding to 1 bits in the GPR can be cleared using mtspr.
4 IVOR9 is defined to handle the auxiliary processor unavailable. This interrupt is defined by the EIS but not supported

in the e200z6; therefore, use of IVOR9 is not supported in the e200z6.
5 The timer status register (TSR) is read using mfspr. TSR cannot be directly written to. Instead, TSR bits

corresponding to 1 bits in the GPR can be cleared using mtspr.

Table 2-43. Reset Settings for e200z6 Resources

Resource System Reset Setting

Program counter p_rstbase[0:19] || 0xFFC

GPRs Unaffected 1

CR Unaffected 1

BUCSR 0x0000_0000

Table 2-42. Special Purpose Registers (continued)

Mnemonic Name
SPR

Number
Access Privileged

e200z6
Specific

Chapter 2. Register Model 2-75
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

SPR Register Access

CSRR0 Unaffected 1

CSRR1 Unaffected 1

CTR Unaffected 1

CTXCR 0x0000_0000 || NUMCTX 2

ALTCTXCR Unaffected 1

DAC1–DAC2 0x0000_0000

DBCNT Unaffected 1

DBCR0–DBCR3 0x0000_0000

DBSR 0x1000_0000

DEAR Unaffected 1

DEC Unaffected 1

DECAR Unaffected 1

DSRR0 Unaffected 1

DSRR1 Unaffected 1

ESR 0x0000_0000

HID0–HID1 0x0000_0000

IAC1–IAC4 0x0000_0000

IVOR0–IVOR15 Unaffected 1

IVOR32–IVOR34 Unaffected 1

IVPR Unaffected 1

L1CFG0 3 —

L1CSR0 0x0000_0000

L1FINV0 0x0000_0000

LR Unaffected 1

MAS0–MAS4, MAS6 Unaffected 1

MCSR 0x0000_0000

MMUCFG 3 —

MMUCSR0 0x0000_0000

MSR 0x0000_0000

PID0 0x0000_0000

PIR 3 —

PVR 3 —

SPEFSCR 0x0000_0000

Table 2-43. Reset Settings for e200z6 Resources (continued)

Resource System Reset Setting

2-76 e200z6 PowerPC Core Reference Manual MO
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

SPR Register Access

SPRG0–SPRG7 Unaffected 1

SRR0 Unaffected 1

SRR1 Unaffected 1

SVR 3 —

TBL Unaffected 1

TBU Unaffected 1

TCR 0x0000_0000

TLB0CFG– TLB1CFG —

TSR Undefined on power-on reset; otherwise,
0x(0b00||WRS)000_0000

USPRG0 Unaffected 1

XER 0x0000_0000

1 Undefined on m_por assertion, unchanged on p_reset_b assertion
2 For CTXCR 0 only, others unaffected
3 Read-only register

Table 2-43. Reset Settings for e200z6 Resources (continued)

Resource System Reset Setting

Chapter 3. Instruction Model 3-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Chapter 3
Instruction Model
This chapter provides additional information about the Book E architecture as it relates
specifically to the e200z6.

The e200z6 is a 32-bit implementation of the Book E architecture. This architecture
specification includes a recognition that different processor implementations may require
clarifications, extensions or deviations from the architectural descriptions. Book E
instructions are described in the EREF.

3.1 Operand Conventions
This section describes operand conventions as they are represented in the Book E
architecture. These conventions follow the basic descriptions in the classic PowerPC
architecture with some changes in terminology. For example, distinctions between user and
supervisor-level instructions are maintained, but the designations—UISA, VEA, and
OEA—do not apply. Detailed descriptions are provided of conventions used for storing
values in registers and memory, accessing processor registers, and representing data in
these registers.

3.1.1 Data Organization in Memory and Data Transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands can be bytes, half words, words, or double words (consisting of two
32-bit elements) or, for the load/store multiple instruction type, a sequence of bytes or
words. The address of a memory operand is the address of its first byte (that is, of its
lowest-numbered byte). Operand length is implicit for each instruction.

3.1.2 Alignment and Misaligned Accesses

The e200z6 core provides hardware support for misaligned memory accesses; however,
there is performance degradation for accesses that cross a 64-bit (8-byte) boundary. For
loads that hit in the cache, the throughput of the load/store unit is degraded to 1 misaligned
load every 2 cycles. Stores misaligned across a 64-bit (8 byte) boundary can be translated

3-2 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Unsupported Instructions and Instruction Forms

at a rate of 2 cycles per store. Frequent use of misaligned memory accesses is discouraged
because of the impact on performance.

NOTE
Accesses that cross a translation boundary may be restarted. A
misaligned access that crosses a page boundary is restarted
entirely if the second portion of the access causes a TLB miss.
This may result in the first portion being accessed twice.

Accesses that cross a translation boundary where the
endianness changes cause a byte ordering DSI exception.

Note that lmw, stmw, lwarx, and stwcx. instructions that are not word aligned cause an
alignment exception.

3.1.3 e200z6 Floating-Point Implementation

The e200z6 core does not implement the floating-point instructions as they are defined in
Book E. Attempts to execute a Book E–defined floating-point instruction result in an illegal
instruction exception. However, the vector SPFP APU supports single-precision vector
(64-bit, two 32-bit operand) instructions, and the scalar SPFP APU performs
single-precision floating-point operations using the lower 32 bits of the GPRs. These
instructions are described in Section 3.6.4, “Embedded Vector and Scalar Single-Precision
Floating-Point APU Instructions.” Unlike the PowerPC UISA, the SPFP APUs store
floating-point values as single-precision values in true 32-bit, single-precision format
rather than in a 64-bit double-precision format used with FPRs.

3.2 Unsupported Instructions and Instruction Forms
Because the e200z6 is a 32-bit Book E core, all of the instructions defined for 64-bit
implementations of the Book E architecture are illegal on the e200z6 and cause an illegal
instruction exception type program interrupt. Some instructions have the following
optional features indicated by square brackets:

• Condition register (CR) update—The dot (.) suffix on the mnemonic enables the
update of the CR.

• Overflow option—The o suffix indicates that the overflow bit in the XER is enabled.

The e200z6 core does not support the instructions listed in Table 3-1. An unimplemented
instruction or floating-point unavailable exception is generated if the processor attempts to
execute one of these instructions.

Chapter 3. Instruction Model 3-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Unsupported Instructions and Instruction Forms

Table 3-1. Unsupported 32-Bit Book E Instructions

Name Mnemonic

Floating Absolute Value [and record CR] fabs[.]

Floating Add [Single] [and record CR] fadd[s][.]

Floating Convert From Integer Double Word fcfid

Floating Compare Ordered fcmpo

Floating Compare Unordered fcmpu

Floating Convert To Integer Double Word fctid

Floating Convert To Integer Double Word [and round to Zero] fctid[z]

Floating Convert To Integer Word [and round to Zero] [and record CR] fctiw[z][.]

Floating Divide [Single] [and record CR] fdiv[s][.]

Floating Multiply-Add [Single] [and record CR] fmadd[s][.]

Floating Move Register [and record CR] fmr[.]

Floating Multiply-Subtract [Single] [and record CR] fmsub[s][.]

Floating Multiply [Single] [and record CR] fmul[s][.]

Floating Negative Absolute Value [and record CR] fnabs[.]

Floating Negate [and record CR] fneg[.]

Floating Negative Multiply-Add [Single] [and record CR] fnmadd[s][.]

Floating Negative Multiply-Subtract [Single] [and record CR] fnmsub[s][.]

Floating Reciprocal Estimate Single [and record CR] fres[.]

Floating Round to Single-Precision [and record CR] frsp[.]

Floating Reciprocal Square Root Estimate [and record CR] frsqrte[.]

Floating Select [and record CR] fsel[.]

Floating Square Root [Single] [and record CR] fsqrt[s][.]

Floating Subtract [Single] [and record CR] fsub[s][.]

Load Floating-Point Double [with Update] [Indexed] [Extended] lfd[u][x][e]

Load Floating-Point Single [with Update] [Indexed] [Extended] lfs[u][x][e]

Load String Word Immediate lswi

Load String Word Indexed lswx

Move From APID Indirect mfapidi

Move From Device Control Register mfdcr

Move From FPSCR [and record CR] mffs[.]

Move To Device Control Register mtdcr

Move To FPSCR Bit 0 [and record CR] mtfsb0[.]

Move To FPSCR Bit 1 [and record CR] mtfsb1[.]

3-4 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Memory Synchronization and Reservation Instructions

3.3 Memory Synchronization and Reservation
Instructions

Table 3-2 lists the e200z6 implementation details for the memory synchronization and load
and store with reservation instructions.

Move To FPSCR Field [Immediate] [and record CR] mtfsf[i][.]

Store Floating-Point Double [with Update] [Indexed] [Extended] stfd[u][x][e]

Store Floating-Point as Integer Word Indexed [Extended] stfiwx[e]

Store Floating-Point Single [with Update] [Indexed] [Extended] stfs[u][x][e]

Store String Word Immediate stswi

Store String Word Indexed stswx

Table 3-2. Memory Synchronization and Reservation Instructions—e200z6-Specific
Details

Instructions e200z6 Implementation

msync Provides synchronization and memory barrier functions. msync completes only after all preceding
instructions and data memory accesses complete. Subsequent instructions in the stream are not
dispatched until after the msync ensures these functions have been performed.

mbar mbar behaves identically to msync; the mbar MO field is ignored by the e200z6 core.

lwarx/stwcx. Implemented as described in the EREF. If the EA for either instruction is not a multiple of four, an
alignment interrupt is invoked. The e200z6 allows lwarx and stwcx. to access a page marked as
write-through required or cache-inhibited without invoking a data storage interrupt.
As Book E allows, the e200z6 does not require the EAs for a stwcx. and the preceding lwarx to be to the
same reservation granule.
Reservation granularity is implementation dependent. The e200z6 does not define a reservation granule
explicitly; it is defined by external logic. When no external logic is provided, the e200z6 does not compare
addresses; thus, the effective implementation granularity is null.
The e200z6 implements an internal status flag, HID1[ATS], which is set when a lwarx completes without
error. It remains set until it is cleared by one of the following:
 • A stwcx. executes without error
 • The e200z6 core p_rsrv_clr input is asserted. See Chapter 8, “External Core Complex Interfaces.”
 • The reservation is invalidated when an external interrupt is signaled and HID0[ICR] is set.
The e200z6 treats lwarx and stwcx. accesses as though they were cache-inhibited and guarded,
regardless of page attributes. A cache line corresponding to the address of a lwarx or stwcx. access is
flushed to memory if it is modified, and then invalidated, before the access is issued to the bus. This
allows external reservation logic to be built that properly signals a reservation failure.
The e200z6 core input p_xfail_b is sampled at termination of a stwcx. store transfer to allow an external
agent or mechanism to indicate that the stwcx. failed to update memory, even though a reservation
existed for the store when it was issued. This is not considered an error and causes the condition codes
for the stwcx. to be written as if it had no reservation. Also, any outstanding reservation is cleared.

Table 3-1. Unsupported 32-Bit Book E Instructions (continued)

Name Mnemonic

Chapter 3. Instruction Model 3-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Branch Prediction

3.4 Branch Prediction
The e200z6 instruction fetching mechanism uses a branch target buffer (BTB), which holds
branch target addresses combined with a 2-bit saturating up-down counter scheme for
branch prediction. These bits can take four values: strongly taken, weakly taken, weakly
not taken, and strongly not taken.

Branch paths are predicted by a BTB and subsequently checked to see if the prediction was
correct. This enables operation beyond a conditional branch without waiting for the branch
to be decoded and resolved. The instruction fetch unit predicts the direction of the branch
as follows:

• Predict not taken for any branch whose fetch address misses in the BTB or hits in
the BTB and is predicted not taken by the counter.

• Predict taken for any branch that hits in the BTB and is predicted taken by the
counter.

Note that the static branch prediction bit defined by the Book E architecture in the BO
operand is ignored.

3.5 Interruption of Instructions by Interrupt Requests
In general, the e200z6 core samples pending external input and critical input interrupt
requests at instruction boundaries. However, in order to reduce interrupt latency,
long-running instructions may be interrupted prior to completion. Instructions in this class
include divides (divw[uo][.], efsdiv, evfsdiv, evdivw[su]), Load Multiple Word (lmw), and
Store Multiple Word (stmw). When interrupted prior to completion, the value saved in
SRR0/CSRR0 is the address of the interrupted instruction.

3.6 e200z6-Specific Instructions
The e200z6 core implements the following instructions that are not defined by the Book E
architecture:

• The Motorola Book E integer select (isel) APU consists of the isel instruction,
described in Section 3.6.1, “Integer Select APU.”

• The Return from Debug Interrupt instruction (rfdi) is defined by the Motorola
Book E debug APU. This instruction is described in Section 3.6.2, “Debug APU.”

• The signal processing extension (SPE) APU provides a set of 64-bit SIMD
instructions. These are listed in Section 3.6.3, “SPE APU Instructions,” and
described in the EREF.

• The embedded vector and scalar single-precision floating-point APUs are listed
along with supporting instructions in Section 3.6.4, “Embedded Vector and Scalar

3-6 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

e200z6-Specific Instructions

Single-Precision Floating-Point APU Instructions.” These instructions are described
in detail in the EREF.

• The Motorola Book E cache line locking APU is described in Section 4.12, “Cache
Line Locking/Unlocking APU.”

3.6.1 Integer Select APU

The integer select APU defines the Integer Select (isel) instruction, which provides a means
to select one of two registers and place the result in a destination register under the control
of a predicate value supplied by a bit in the condition register. isel can be used to eliminate
branches in software and in many cases improve performance; it can also increase program
execution time determinism by eliminating the need to predict the target and direction of
the branches replaced by the integer select function. The isel instruction is fully described
in the EREF.

3.6.2 Debug APU

The e200z6 implements the Motorola Book E debug APU to support the ability to handle
the debug interrupt as an additional interrupt level. To support this interrupt level, the
Return from Debug Interrupt instruction (rfdi) is defined as part of the debug APU, along
with a new pair of save/restore registers, DSRR0, and DSRR1.

When the debug APU is enabled (HID0[DAPUEN] = 1), rfdi provides a way to return from
a debug interrupt. See Section 2.11.1, “Hardware Implementation-Dependent Register 0
(HID0),” for more information about enabling the debug APU.

The instruction form and definition is as follows:

Chapter 3. Instruction Model 3-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

e200z6-Specific Instructions

rfdi rfdi
Return from Debug Interrupt

rfdi

MSR ←DSRR1
PC ←DSRR00:61 || 0b00

rfdi is used to return from a debug interrupt or as a way of simultaneously establishing a
new context and synchronizing on that new context.

The contents of debug save/restore register 1 (DSRR1) are placed into the MSR. If the new
MSR value does not enable any pending exceptions, the next instruction is fetched, under
control of the new MSR value, from the address DSRR0[0–29] || 0b00. If the new MSR
value enables one or more pending exceptions, the interrupt associated with the
highest-priority pending exception is generated; in this case the value placed into SRR0 or
CSRR0 by the interrupt processing mechanism is the address of the instruction that would
have been executed next had the interrupt not occurred (that is, the address in DSRR0 at the
time of the execution of the rfdi).

Execution of this instruction is privileged and context synchronizing.

Registers altered:

• MSR

When the debug APU is disabled (HID0[DAPUEN] = 0), this instruction is treated as an
illegal instruction.

3.6.3 SPE APU Instructions

SPE APU instructions treat 64-bit GPRs as a vector of two 32-bit elements. (Some
instructions also read or write 16-bit elements.) The SPE APU supports a number of forms
of multiply and multiply-accumulate operations, and of add and subtract to accumulator
operations. The SPE supports signed and unsigned forms, and optional fractional forms.
For these instructions, the fractional form does not apply to unsigned forms because integer
and fractional forms are identical for unsigned operands.

Table 3-3 shows how SPE APU vector multiply instruction mnemonics are structured.

0 5 6 20 21 30 31

0 1 0 0 1 1 /// 0 0 0 0 1 0 0 1 1 1 0

3-8 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

e200z6-Specific Instructions

Table 3-4 defines mnemonic extensions for these instructions.

Table 3-5 lists SPE APU instructions.

Table 3-3. SPE APU Vector Multiply Instruction Mnemonic Structure

Prefix Multiply Element Data Type Element Accumulate Element

evm

ho
he

hog
heg
wh
wl

whg
wlg
w

half odd (16x16→32)
half even (16x16→32)
half odd guarded (16x16→32)
half even guarded (16x16→32)
word high (32x32→32)
word low (32x32→32)
word high guarded (32x32→32)
word low guarded (32x32→32)
word (32x32→64)

usi
umi
ssi

ssf 1

smi
smf1

1 Low word versions of signed saturate and signed modulo fractional instructions are not supported. Attempting to execute
an opcode corresponding to these instructions causes boundedly undefined results.

unsigned saturate integer
unsigned modulo integer
signed saturate integer
signed saturate fractional
signed modulo integer
signed modulo fractional

a
aa
an

aaw
anw

write to ACC
write to ACC & added ACC
write to ACC & negate ACC
write to ACC & ACC in words
write to ACC & negate ACC in words

Table 3-4. Mnemonic Extensions for Multiply-Accumulate Instructions

Extension Meaning Comments

Multiply Form

he Half word even 16×16→32

heg Half word even guarded 16×16→32, 64-bit final accumulator result

ho Half word odd 16×16→32

hog Half word odd guarded 16×16→32, 64-bit final accumulator result

w Word 32×32→64

wh Word high 32×32→32, high-order 32 bits of product

wl Word low 32×32→32, low-order 32 bits of product

Data Type

smf Signed modulo fractional (Wrap, no saturate)

smi Signed modulo integer (Wrap, no saturate)

ssf Signed saturate fractional

ssi Signed saturate integer

umi Unsigned modulo integer (Wrap, no saturate)

usi Unsigned saturate integer

Accumulate Options

a Update accumulator Update accumulator (no add)

aa Add to accumulator Add result to accumulator (64-bit sum)

aaw Add to accumulator (words) Add word results to accumulator words (pair of 32-bit sums)

an Add negated Add negated result to accumulator (64-bit sum)

anw Add negated to accumulator (words) Add negated word results to accumulator words (pair of 32-bit sums)

Chapter 3. Instruction Model 3-9
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

e200z6-Specific Instructions

Table 3-5. SPE APU Vector Instructions

Instruction Mnemonic Syntax

Bit Reversed Increment 1 brinc rD,rA,rB

Initialize Accumulator evmra rD,rA

Multiply Half Words, Even, Guarded, Signed, Modulo, Fractional and Accumulate evmhegsmfaa rD,rA,rB

Multiply Half Words, Even, Guarded, Signed, Modulo, Fractional and Accumulate Negative evmhegsmfan rD,rA,rB

Multiply Half Words, Even, Guarded, Signed, Modulo, Integer and Accumulate evmhegsmiaa rD,rA,rB

Multiply Half Words, Even, Guarded, Signed, Modulo, Integer and Accumulate Negative evmhegsmian rD,rA,rB

Multiply Half Words, Even, Guarded, Unsigned, Modulo, Integer and Accumulate evmhegumiaa rD,rA,rB

Multiply Half Words, Even, Guarded, Unsigned, Modulo, Integer and Accumulate Negative evmhegumian rD,rA,rB

Multiply Half Words, Odd, Guarded, Signed, Modulo, Fractional and Accumulate evmhogsmfaa rD,rA,rB

Multiply Half Words, Odd, Guarded, Signed, Modulo, Fractional and Accumulate Negative evmhogsmfan rD,rA,rB

Multiply Half Words, Odd, Guarded, Signed, Modulo, Integer and Accumulate evmhogsmiaa rD,rA,rB

Multiply Half Words, Odd, Guarded, Signed, Modulo, Integer and Accumulate Negative evmhogsmian rD,rA,rB

Multiply Half Words, Odd, Guarded, Unsigned, Modulo, Integer and Accumulate evmhogumiaa rD,rA,rB

Multiply Half Words, Odd, Guarded, Unsigned, Modulo, Integer and Accumulate Negative evmhogumian rD,rA,rB

Vector Absolute Value evabs rD,rA

Vector Add Immediate Word evaddiw rD,rB,UIMM

Vector Add Signed, Modulo, Integer to Accumulator Word evaddsmiaaw rD,rA,rB

Vector Add Signed, Saturate, Integer to Accumulator Word evaddssiaaw rD,rA

Vector Add Unsigned, Modulo, Integer to Accumulator Word evaddumiaaw rD,rA

Vector Add Unsigned, Saturate, Integer to Accumulator Word evaddusiaaw rD,rA

Vector Add Word evaddw rD,rA,rB

Vector AND evand rD,rA,rB

Vector AND with Complement evandc rD,rA,rB

Vector Compare Equal evcmpeq crD,rA,rB

Vector Compare Greater Than Signed evcmpgts crD,rA,rB

Vector Compare Greater Than Unsigned evcmpgtu crD,rA,rB

Vector Compare Less Than Signed evcmplts crD,rA,rB

Vector Compare Less Than Unsigned evcmpltu crD,rA,rB

Vector Convert Floating-Point from Signed Fraction evfscfsf rD,rB

Vector Convert Floating-Point from Signed Integer evfscfsi rD,rB

Vector Convert Floating-Point from Unsigned Fraction evfscfuf rD,rB

Vector Convert Floating-Point from Unsigned Integer evfscfui rD,rB

Vector Convert Floating-Point to Signed Fraction evfsctsf rD,rB

Vector Convert Floating-Point to Signed Integer evfsctsi rD,rB

Vector Convert Floating-Point to Signed Integer with Round toward Zero evfsctsiz rD,rB

3-10 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

e200z6-Specific Instructions

Vector Convert Floating-Point to Unsigned Fraction evfsctuf rD,rB

Vector Convert Floating-Point to Unsigned Integer evfsctui rD,rB

Vector Convert Floating-Point to Unsigned Integer with Round toward Zero evfsctuiz rD,rB

Vector Count Leading Sign Bits Word evcntlsw rD,rA

Vector Count Leading Zeros Word evcntlzw rD,rA

Vector Divide Word Signed evdivws rD,rA,rB

Vector Divide Word Unsigned evdivwu rD,rA,rB

Vector Equivalent eveqv rD,rA,rB

Vector Extend Sign Byte evextsb rD,rA

Vector Extend Sign Half Word evextsh rD,rA

Vector Floating-Point Absolute Value evfsabs rD,rA

Vector Floating-Point Add evfsadd rD,rA,rB

Vector Floating-Point Compare Equal evfscmpeq crD,rA,rB

Vector Floating-Point Compare Greater Than evfscmpgt crD,rA,rB

Vector Floating-Point Compare Less Than evfscmplt crD,rA,rB

Vector Floating-Point Divide evfsdiv rD,rA,rB

Vector Floating-Point Multiply evfsmul rD,rA,rB

Vector Floating-Point Negate evfsneg rD,rA

Vector Floating-Point Negative Absolute Value evfsnabs rD,rA

Vector Floating-Point Subtract evfssub rD,rA,rB

Vector Floating-Point Test Equal evfststeq crD,rA,rB

Vector Floating-Point Test Greater Than evfststgt crD,rA,rB

Vector Floating-Point Test Less Than evfststlt crD,rA,rB

Vector Load Double into Half Words evldh rD,d(rA)

Vector Load Double into Half Words Indexed evldhx rD,rA,rB

Vector Load Double into Two Words evldw rD,d(rA)

Vector Load Double into Two Words Indexed evldwx rD,rA,rB

Vector Load Double Word into Double Word evldd rD,d(rA)

Vector Load Double Word into Double Word Indexed evlddx rD,rA,rB

Vector Load Half Word into Half Word Odd Signed and Splat evlhhossplat rD,d(rA)

Vector Load Half Word into Half Word Odd Signed and Splat Indexed evlhhossplatx rD,rA,rB

Vector Load Half Word into Half Word Odd Unsigned and Splat evlhhousplat rD,d(rA)

Vector Load Half Word into Half Word Odd Unsigned and Splat Indexed evlhhousplatx rD,rA,rB

Vector Load Half Word into Half Words Even and Splat evlhhesplat rD,d(rA)

Vector Load Half Word into Half Words Even and Splat Indexed evlhhesplatx rD,rA,rB

Table 3-5. SPE APU Vector Instructions (continued)

Instruction Mnemonic Syntax

Chapter 3. Instruction Model 3-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

e200z6-Specific Instructions

Vector Load Word into Half Words and Splat evlwhsplat rD,d(rA)

Vector Load Word into Half Words and Splat Indexed evlwhsplatx rD,rA,rB

Vector Load Word into Half Words Odd Signed (with sign extension) evlwhos rD,d(rA)

Vector Load Word into Half Words Odd Signed Indexed (with sign extension) evlwhosx rD,rA,rB

Vector Load Word into Two Half Words Even evlwhe rD,d(rA)

Vector Load Word into Two Half Words Even Indexed evlwhex rD,rA,rB

Vector Load Word into Two Half Words Odd Unsigned (zero-extended) evlwhou rD,d(rA)

Vector Load Word into Two Half Words Odd Unsigned Indexed (zero-extended) evlwhoux rD,rA,rB

Vector Load Word into Word and Splat evlwwsplat rD,d(rA)

Vector Load Word into Word and Splat Indexed evlwwsplatx rD,rA,rB

Vector Merge High evmergehi rD,rA,rB

Vector Merge High/Low evmergehilo rD,rA,rB

Vector Merge Low evmergelo rD,rA,rB

Vector Merge Low/High evmergelohi rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Fractional evmhesmf rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Fractional and Accumulate into Words evmhesmfaaw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Fractional and Accumulate Negative
into Words

evmhesmfanw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Fractional, Accumulate evmhesmfa rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Integer evmhesmi rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Integer and Accumulate into Words evmhesmiaaw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Integer and Accumulate Negative into
Words

evmhesmianw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Integer, Accumulate evmhesmia rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Fractional evmhessf rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Fractional and Accumulate into Words evmhessfaaw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Fractional and Accumulate Negative
into Words

evmhessfanw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Fractional, Accumulate evmhessfa rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Integer and Accumulate into Words evmhessiaaw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Integer and Accumulate Negative into
Words

evmhessianw rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Modulo, Integer evmheumi rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Modulo, Integer and Accumulate into Words evmheumiaaw rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Modulo, Integer and Accumulate Negative
into Words

evmheumianw rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Modulo, Integer, Accumulate evmheumia rD,rA,rB

Table 3-5. SPE APU Vector Instructions (continued)

Instruction Mnemonic Syntax

3-12 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

e200z6-Specific Instructions

Vector Multiply Half Words, Even, Unsigned, Saturate, Integer and Accumulate into Words evmheusiaaw rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Saturate, Integer and Accumulate Negative
into Words

evmheusianw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Fractional evmhosmf rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Fractional and Accumulate into Words evmhosmfaaw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Fractional and Accumulate Negative into
Words

evmhosmfanw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Fractional, Accumulate evmhosmfa rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Integer evmhosmi rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Integer and Accumulate into Words evmhosmiaaw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Integer and Accumulate Negative into
Words

evmhosmianw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Integer, Accumulate evmhosmia rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Fractional evmhossf rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Fractional and Accumulate into Words evmhossfaaw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Fractional and Accumulate Negative
into Words

evmhossfanw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Fractional, Accumulate evmhossfa rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Integer and Accumulate into Words evmhossiaaw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Integer and Accumulate Negative into
Words

evmhossianw rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer evmhoumi rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer and Accumulate into Words evmhoumiaaw rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer and Accumulate Negative into
Words

evmhoumianw rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer, Accumulate evmhoumia rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Saturate, Integer and Accumulate into Words evmhousiaaw rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Saturate, Integer and Accumulate Negative
into Words

evmhousianw rD,rA,rB

Vector Multiply Word High Signed, Modulo, Fractional evmwhsmf rD,rA,rB

Vector Multiply Word High Signed, Modulo, Fractional and Accumulate evmwhsmfa rD,rA,rB

Vector Multiply Word High Signed, Modulo, Integer evmwhsmi rD,rA,rB

Vector Multiply Word High Signed, Modulo, Integer and Accumulate evmwhsmia rD,rA,rB

Vector Multiply Word High Signed, Saturate, Fractional evmwhssf rD,rA,rB

Vector Multiply Word High Signed, Saturate, Fractional and Accumulate evmwhssfa rD,rA,rB

Vector Multiply Word High Unsigned, Modulo, Integer evmwhumi rD,rA,rB

Vector Multiply Word High Unsigned, Modulo, Integer and Accumulate evmwhumia rD,rA,rB

Vector Multiply Word Low Signed, Modulo, Integer and Accumulate in Words evmwlsmiaaw rD,rA,rB

Table 3-5. SPE APU Vector Instructions (continued)

Instruction Mnemonic Syntax

Chapter 3. Instruction Model 3-13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

e200z6-Specific Instructions

Vector Multiply Word Low Signed, Modulo, Integer and Accumulate Negative in Words evmwlsmianw rD,rA,rB

Vector Multiply Word Low Signed, Saturate, Integer and Accumulate in Words evmwlssiaaw rD,rA,rB

Vector Multiply Word Low Signed, Saturate, Integer and Accumulate Negative in Words evmwlssianw rD,rA,rB

Vector Multiply Word Low Unsigned, Modulo, Integer evmwlsmi rD,rA,rB

Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate evmwlumia rD,rA,rB

Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate in Words evmwlumiaaw rD,rA,rB

Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate Negative in Words evmwlumianw rD,rA,rB

Vector Multiply Word Low Unsigned, Saturate, Integer and Accumulate in Words evmwlusiaaw rD,rA,rB

Vector Multiply Word Low Unsigned, Saturate, Integer and Accumulate Negative in Words evmwlusianw rD,rA,rB

Vector Multiply Word Signed, Modulo, Fractional evmwsmf rD,rA,rB

Vector Multiply Word Signed, Modulo, Fractional and Accumulate evmwsmfa rD,rA,rB

Vector Multiply Word Signed, Modulo, Fractional and Accumulate evmwsmfaa rD,rA,rB

Vector Multiply Word Signed, Modulo, Fractional and Accumulate Negative evmwsmfan rD,rA,rB

Vector Multiply Word Signed, Modulo, Integer evmwsmi rD,rA,rB

Vector Multiply Word Signed, Modulo, Integer and Accumulate evmwsmia rD,rA,rB

Vector Multiply Word Signed, Modulo, Integer and Accumulate evmwsmiaa rD,rA,rB

Vector Multiply Word Signed, Modulo, Integer and Accumulate Negative evmwsmian rD,rA,rB

Vector Multiply Word Signed, Saturate, Fractional evmwssf rD,rA,rB

Vector Multiply Word Signed, Saturate, Fractional and Accumulate evmwssfa rD,rA,rB

Vector Multiply Word Signed, Saturate, Fractional and Accumulate 2 evmwssfaa rD,rA,rB

Vector Multiply Word Signed, Saturate, Fractional and Accumulate Negative 2 evmwssfan rD,rA,rB

Vector Multiply Word Unsigned, Modulo, Integer evmwumi rD,rA,rB

Vector Multiply Word Unsigned, Modulo, Integer and Accumulate evmwumia rD,rA,rB

Vector Multiply Word Unsigned, Modulo, Integer and Accumulate evmwumiaa rD,rA,rB

Vector Multiply Word Unsigned, Modulo, Integer and Accumulate Negative evmwumian rD,rA,rB

Vector NAND evnand rD,rA,rB

Vector Negate evneg rD,rA

Vector NOR evnor rD,rA,rB

Vector OR evor rD,rA,rB

Vector OR with Complement evorc rD,rA,rB

Vector Rotate Left Word evrlw rD,rA,rB

Vector Rotate Left Word Immediate evrlwi rD,rA,UIMM

Vector Round Word evrndw rD,rA

Vector Select evsel rD,rA,rB,crS

Vector Shift Left Word evslw rD,rA,rB

Table 3-5. SPE APU Vector Instructions (continued)

Instruction Mnemonic Syntax

3-14 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

e200z6-Specific Instructions

Vector Shift Left Word Immediate evslwi rD,rA,UIMM

Vector Shift Right Word Immediate Signed evsrwis rD,rA,UIMM

Vector Shift Right Word Immediate Unsigned evsrwiu rD,rA,UIMM

Vector Shift Right Word Signed evsrws rD,rA,rB

Vector Shift Right Word Unsigned evsrwu rD,rA,rB

Vector Splat Fractional Immediate evsplatfi rD,SIMM

Vector Splat Immediate evsplati rD,SIMM

Vector Store Double of Double evstdd rS,d(rA)

Vector Store Double of Double Indexed evstddx rS,rA,rB

Vector Store Double of Four Half Words evstdh rS,d(rA)

Vector Store Double of Four Half Words Indexed evstdhx rS,rA,rB

Vector Store Double of Two Words evstdw rS,d(rA)

Vector Store Double of Two Words Indexed evstdwx rS,rA,rB

Vector Store Word of Two Half Words from Even evstwhe rS,d(rA)

Vector Store Word of Two Half Words from Even Indexed evstwhex rS,rA,rB

Vector Store Word of Two Half Words from Odd evstwho rS,d(rA)

Vector Store Word of Two Half Words from Odd Indexed evstwhox rS,rA,rB

Vector Store Word of Word from Even evstwwex rS,d(rA)

Vector Store Word of Word from Even Indexed evstwwex rS,rA,rB

Vector Store Word of Word from Odd evstwwo rS,d(rA)

Vector Store Word of Word from Odd Indexed evstwwox rS,rA,rB

Vector Subtract from Word evsubfw rD,rA,rB

Vector Subtract Immediate from Word evsubifw rD,UIMM,rB

Vector Subtract Signed, Modulo, Integer to Accumulator Word evsubfsmiaaw rD,rA

Vector Subtract Signed, Saturate, Integer to Accumulator Word evsubfssiaaw rD,rA

Vector Subtract Unsigned, Modulo, Integer to Accumulator Word evsubfumiaaw rD,rA

Vector Subtract Unsigned, Saturate, Integer to Accumulator Word evsubfusiaaw rD,rA

Vector XOR evxor rD,rA,rB

1 An implementation can restrict the number of bits specified in a mask. The e200z6 limits it to 16 bits, which allows the
user to perform bit-reversed address computations for 65536-byte samples.

2 Although the e500 records any overflow resulting from the addition/subtraction portion of these instructions, a saturate
value is not saved to rD or the accumulator.

Table 3-5. SPE APU Vector Instructions (continued)

Instruction Mnemonic Syntax

Chapter 3. Instruction Model 3-15
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

e200z6-Specific Instructions

3.6.4 Embedded Vector and Scalar Single-Precision
Floating-Point APU Instructions

The vector and scalar SPFP APUs perform floating-point operations on single-precision
operands. These operations are IEEE-compliant with software exception handlers and offer
a simpler exception model than the floating-point instructions defined by the PowerPC
ISA. Instead of FPRs, these instructions use GPRs to offer improved performance for
converting between floating-point, integer, and fractional values. Sharing GPRs allows
vector floating-point instructions to use SPE load and store instructions.

The two SPFP APUs are described as follows:

• Vector SPFP instructions operate on a vector of two 32-bit, single-precision
floating-point numbers that reside in the upper and lower halves of the 64-bit GPRs.
These instructions are listed in Table 3-6 alongside their scalar equivalents.

• Scalar SPFP instructions operate on single 32-bit operands that reside in the lower
32 bits of the GPRs. These instructions are listed in Table 3-6.

NOTE

Note that both the vector and scalar versions of the instructions have the same syntax.

Table 3-6. Vector and Scalar SPFP APU Floating-Point Instructions

Instruction
Mnemonic

Syntax
Scalar Vector

Convert Floating-Point from Signed Fraction efscfsf evfscfsf rD,rB

Convert Floating-Point from Signed Integer efscfsi evfscfsi rD,rB

Convert Floating-Point from Unsigned Fraction efscfuf evfscfuf rD,rB

Convert Floating-Point from Unsigned Integer efscfui evfscfui rD,rB

Convert Floating-Point to Signed Fraction efsctsf evfsctsf rD,rB

Convert Floating-Point to Signed Integer efsctsi evfsctsi rD,rB

Convert Floating-Point to Signed Integer with Round toward Zero efsctsiz evfsctsiz rD,rB

Convert Floating-Point to Unsigned Fraction efsctuf evfsctuf rD,rB

Convert Floating-Point to Unsigned Integer efsctui evfsctui rD,rB

Convert Floating-Point to Unsigned Integer with Round toward Zero efsctuiz evfsctuiz rD,rB

Floating-Point Absolute Value efsabs evfsabs rD,rA

Floating-Point Add efsadd evfsadd rD,rA,rB

Floating-Point Compare Equal efscmpeq evfscmpeq crD,rA,rB

Floating-Point Compare Greater Than efscmpgt evfscmpgt crD,rA,rB

Floating-Point Compare Less Than efscmplt evfscmplt crD,rA,rB

Floating-Point Divide efsdiv evfsdiv rD,rA,rB

3-16 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

e200z6-Specific Instructions

3.6.4.1 Options for Embedded Floating-Point APU Implementations

Table 3-7 lists implementation options allowed by the embedded floating-point architecture
and how the e200z6 handles those options.

Floating-Point Multiply efsmul evfsmul rD,rA,rB

Floating-Point Negate efsneg evfsneg rD,rA

Floating-Point Negative Absolute Value efsnabs evfsnabs rD,rA

Floating-Point Subtract efssub evfssub rD,rA,rB

Floating-Point Test Equal efststeq evfststeq crD,rA,rB

Floating-Point Test Greater Than efststgt evfststgt crD,rA,rB

Floating-Point Test Less Than efststlt evfststlt crD,rA,rB

Table 3-7. Embedded Floating–Point APU Options

Option e200z6 Implementation

Overflow and underflow conditions may be signaled by doing exponent evaluation of the
operation. If by examining the exponents, an overflow or underflow could occur, the
implementation may choose to signal an overflow or underflow. It is recommended that
future implementations do not use this estimation and signal overflow or underflow when
they actually occur.

The e200z6 follows the
recommendation and
doesn’t use the estimation.

If an operand for a calculation or conversion is denormalized, the implementation may
choose to use a same-signed zero value in place of the denormalized operand.

The e200z6 uses a
same-signed zero value in
place of the denormalized
operand.

+Infinity and -Infinity rounding modes are not required to be handled by an implementation.
If an implementation does not support ±Infinity rounding modes and the rounding mode is
set to be +Infinity or -Infinity, an embedded floating-point round interrupt occurs after every
floating-point instruction for which rounding may occur, regardless of the value of FINXE,
unless an embedded floating-point data interrupt also occurs and is taken.

The e200z6 supports
rounding to ±Infinity.

For absolute value, negate, negative absolute value operations, an implementation may
choose either to simply perform the sign bit operation ignoring exceptions or to compute
the operation and handle exceptions and saturation where appropriate.

The sign bit operation is
performed; exceptions are
not taken.

SPEFSCR FGH and FXH bits are undefined upon the completion of a scalar floating-point
operation. An implementation may choose to zero them or leave them unchanged.

The e200z6 always clears
these bits for such
operations.

An implementation may choose to only implement sticky bit setting by hardware for FDBZS
and FINXS allowing software to manage the other sticky bits. It is recommended that all
future implementations implement all sticky bit setting in hardware.

The e200z6 implements all
sticky bit settings in
hardware.

Table 3-6. Vector and Scalar SPFP APU Floating-Point Instructions (continued)

Instruction
Mnemonic

Syntax
Scalar Vector

Chapter 3. Instruction Model 3-17
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Unimplemented SPRs and Read-Only SPRs

3.7 Unimplemented SPRs and Read-Only SPRs
The e200z6 fully decodes the SPR field of mfspr and mtspr instructions. If the SPR
specified is undefined and not privileged, an illegal instruction exception is generated. If
the SPR specified is undefined and privileged and the CPU is in user mode (MSR[PR] = 1),
a privileged instruction exception is generated. If the SPR specified is undefined and
privileged and the CPU is in supervisor mode (MSR[PR] = 0), an illegal instruction
exception is generated.

For mtspr, if the SPR specified is read-only and not privileged, an illegal instruction
exception is generated. If the SPR specified is read-only and privileged and the CPU is in
user mode (MSR[PR] = 1, a privileged instruction exception is generated. If the SPR
specified is read-only and privileged and the CPU is in supervisor mode (MSR[PR] = 0),
an illegal instruction exception is generated.

3.8 Invalid Instruction Forms
Table 3-8 describes invalid instruction forms.

Table 3-8. Invalid Instruction Forms

Instructions Descriptions

Load and store
with update
instructions

Book E defines as an invalid form the case when a load with update instruction specifies the same
register in the rD and rA field of the instruction. For this invalid case, the e200z6 core performs the
instruction and updates the register with the load data. In addition, if rA = 0 for any load or store with
update instruction, the e200z6 core updates rA (GPR0).

Load Multiple
Word (lmw)
instruction

Book E defines as invalid any form of the lmw instruction in which rA is in the range of registers to be
loaded, including the case in which rA = 0. On the e200z6, invalid forms of lmw execute as follows:
 • Case 1: rA is in the range of rD, rA ≠ 0. In this case address generation for individual loads to

register targets is done using the architectural value of rA which existed when beginning execution
of this lmw instruction. rA is overwritten with a value fetched from memory as if it had not been the
base register. Note that if the instruction is interrupted and restarted, the base address may be
different if rA has been overwritten.

 • Case 2: rA = 0 and rD = 0. In this case address generation for all loads to register targets rD = 0 to
rD = 31 is done substituting the value of 0 for rA.

Branch
Conditional to
Count Register
[and Link]
instructions

Book E defines as invalid any bcctr or bcctrl instruction that specifies the decrement and test CTR
(BO[2] = 0) option. The e200z6 executes instructions with these invalid forms by decrementing the
CTR and branching to the location specified by the pre-decremented CTR value if all CR and CTR
conditions are met as specified by the other BO field settings.

Instructions
with non-zero
reserved fields

Book E defines certain bit fields in various instructions as reserved and specifies that these fields be
set to zero. Following the Book E recommendation, the e200z6 ignores the value of the reserved field
(bit 31) in X-form integer load and store instructions. The e200z6 ignores the value of the reserved ‘z’
bits in the BO field of branch instructions. For all other instructions, the e200z6 generates an illegal
instruction exception if a reserved field is non-zero.

3-18 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Summary

3.9 Instruction Summary
Table 3-9 and Table 3-10 list all 32-bit Book E instructions, as well as e200z6-specific
instructions, sorted by mnemonic. Instructions not listed here are not supported by the
e200z6 core and signal an illegal, unimplemented, or floating-point unavailable exception.
Implementation-dependent instructions are noted with a footnote.

3.9.1 Instruction Index Sorted by Mnemonic

Table 3-9 lists instructions by mnemonic.

Table 3-9. Instructions Sorted by Mnemonic

Format

Opcode

Mnemonic Instruction
Primary
(Inst0:5)

Extended
(Inst21:31)

X 011111 01000 01010 0 add Add

X 011111 01000 01010 1 add. Add & record CR

X 011111 00000 01010 0 addc Add Carrying

X 011111 00000 01010 1 addc. Add Carrying & record CR

X 011111 10000 01010 0 addco Add Carrying & record OV

X 011111 10000 01010 1 addco. Add Carrying & record OV & CR

X 011111 00100 01010 0 adde Add Extended with CA

X 011111 00100 01010 1 adde. Add Extended with CA & record CR

X 011111 10100 01010 0 addeo Add Extended with CA & record OV

X 011111 10100 01010 1 addeo. Add Extended with CA & record OV & CR

D 001110 ----- ----- - addi Add Immediate

D 001100 ----- ----- - addic Add Immediate Carrying

D 001101 ----- ----- - addic. Add Immediate Carrying & record CR

D 001111 ----- ----- - addis Add Immediate Shifted

X 011111 00111 01010 0 addme Add to Minus One Extended with CA

X 011111 00111 01010 1 addme. Add to Minus One Extended with CA & record CR

X 011111 10111 01010 0 addmeo Add to Minus One Extended with CA & record OV

X 011111 10111 01010 1 addmeo. Add to Minus One Extended with CA & record OV & CR

X 011111 11000 01010 0 addo Add & record OV

X 011111 11000 01010 1 addo. Add & record OV & CR

Legend:
- Don’t care, usually part of an operand field
/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use.

Chapter 3. Instruction Model 3-19
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Summary

X 011111 00110 01010 0 addze Add to Zero Extended with CA

X 011111 00110 01010 1 addze. Add to Zero Extended with CA & record CR

X 011111 10110 01010 0 addzeo Add to Zero Extended with CA & record OV

X 011111 10110 01010 1 addzeo. Add to Zero Extended with CA & record OV & CR

X 011111 00000 11100 0 and AND

X 011111 00000 11100 1 and. AND & record CR

X 011111 00001 11100 0 andc AND with Complement

X 011111 00001 11100 1 andc. AND with Complement & record CR

D 011100 ----- ----- - andi. AND Immediate & record CR

D 011101 ----- ----- - andis. AND Immediate Shifted & record CR

I 010010 ----- ----0 0 b Branch

I 010010 ----- ----1 0 ba Branch Absolute

B 010000 ----- ----0 0 bc Branch Conditional

B 010000 ----- ----1 0 bca Branch Conditional Absolute

XL 010011 10000 10000 0 bcctr Branch Conditional to Count Register

XL 010011 10000 10000 1 bcctrl Branch Conditional to Count Register & Link

B 010000 ----- ----0 1 bcl Branch Conditional & Link

B 010000 ----- ----1 1 bcla Branch Conditional & Link Absolute

XL 010011 00000 10000 0 bclr Branch Conditional to Link Register

XL 010011 00000 10000 1 bclrl Branch Conditional to Link Register & Link

I 010010 ----- ----0 1 bl Branch & Link

I 010010 ----- ----1 1 bla Branch & Link Absolute

X 011111 00000 00000 / cmp Compare

D 001011 ----- ----- - cmpi Compare Immediate

X 011111 00001 00000 / cmpl Compare Logical

D 001010 ----- ----- - cmpli Compare Logical Immediate

X 011111 00000 11010 0 cntlzw Count Leading Zeros Word

X 011111 00000 11010 1 cntlzw. Count Leading Zeros Word & record CR

XL 010011 01000 00001 / crand Condition Register AND

Table 3-9. Instructions Sorted by Mnemonic (continued)

Format

Opcode

Mnemonic Instruction
Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field
/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use.

3-20 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Summary

XL 010011 00100 00001 / crandc Condition Register AND with Complement

XL 010011 01001 00001 / creqv Condition Register Equivalent

XL 010011 00111 00001 / crnand Condition Register NAND

XL 010011 00001 00001 / crnor Condition Register NOR

XL 010011 01110 00001 / cror Condition Register OR

XL 010011 01101 00001 / crorc Condition Register OR with Complement

XL 010011 00110 00001 / crxor Condition Register XOR

X 011111 10111 10110 / dcba Data Cache Block Allocate

X 011111 00010 10110 / dcbf Data Cache Block Flush

X 011111 01110 10110 / dcbi Data Cache Block Invalidate

X 011111 01100 00110 / dcblc 1 Data Cache Block Lock Clear

X 011111 00001 10110 / dcbst Data Cache Block Store

X 011111 01000 10110 / dcbt Data Cache Block Touch

X 011111 00101 00110 / dcbtlst1 Data Cache Block Touch and Lock Set

X 011111 00111 10110 / dcbtst Data Cache Block Touch for Store

X 011111 00100 00110 / dcbtstls1 Data Cache Block Touch for Store and Lock Set

X 011111 11111 10110 / dcbz Data Cache Block set to Zero

X 011111 01111 01011 0 divw Divide Word

X 011111 01111 01011 1 divw. Divide Word & record CR

X 011111 11111 01011 0 divwo Divide Word & record OV

X 011111 11111 01011 1 divwo. Divide Word & record OV & CR

X 011111 01110 01011 0 divwu Divide Word Unsigned

X 011111 01110 01011 1 divwu. Divide Word Unsigned & record CR

X 011111 11110 01011 0 divwuo Divide Word Unsigned & record OV

X 011111 11110 01011 1 divwuo. Divide Word Unsigned & record OV & CR

X 011111 01000 11100 0 eqv Equivalent

X 011111 01000 11100 1 eqv. Equivalent & record CR

X 011111 11101 11010 0 extsb Extend Sign Byte

X 011111 11101 11010 1 extsb. Extend Sign Byte & record CR

Table 3-9. Instructions Sorted by Mnemonic (continued)

Format

Opcode

Mnemonic Instruction
Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field
/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use.

Chapter 3. Instruction Model 3-21
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Summary

X 011111 11100 11010 0 extsh Extend Sign Half Word

X 011111 11100 11010 1 extsh. Extend Sign Half Word & record CR

X 011111 11110 10110 / icbi Instruction Cache Block Invalidate

X 011111 00111 00110 / icblc1 Instruction Cache Block Lock Clear

X 011111 00000 10110 / icbt Instruction Cache Block Touch

X 011111 01111 00110 / icbtls1 Instruction Cache Block Touch and Lock Set

X 011111 ----- 01111 / isel 2 Integer Select

XL 010011 00100 10110 / isync Instruction Synchronize

D 100010 ----- ----- - lbz Load Byte & Zero

D 100011 ----- ----- - lbzu Load Byte & Zero with Update

X 011111 00011 10111 / lbzux Load Byte & Zero with Update Indexed

X 011111 00010 10111 / lbzx Load Byte & Zero Indexed

D 101010 ----- ----- - lha Load Half Word Algebraic

D 101011 ----- ----- - lhau Load Half Word Algebraic with Update

X 011111 01011 10111 / lhaux Load Half Word Algebraic with Update Indexed

X 011111 01010 10111 / lhax Load Half Word Algebraic Indexed

X 011111 11000 10110 / lhbrx Load Half Word Byte-Reverse Indexed

D 101000 ----- ----- - lhz Load Half Word & Zero

D 101001 ----- ----- - lhzu Load Half Word & Zero with Update

X 011111 01001 10111 / lhzux Load Half Word & Zero with Update Indexed

X 011111 01000 10111 / lhzx Load Half Word & Zero Indexed

D 101110 ----- ----- - lmw Load Multiple Word

X 011111 00000 10100 / lwarx 3 Load Word & Reserve Indexed

X 011111 10000 10110 / lwbrx Load Word Byte-Reverse Indexed

D 100000 ----- ----- - lwz Load Word & Zero

D 100001 ----- ----- - lwzu Load Word & Zero with Update

X 011111 00001 10111 / lwzux Load Word & Zero with Update Indexed

X 011111 00000 10111 / lwzx Load Word & Zero Indexed

X 011111 11010 10110 / mbar3 Memory Barrier

Table 3-9. Instructions Sorted by Mnemonic (continued)

Format

Opcode

Mnemonic Instruction
Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field
/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use.

3-22 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Summary

XL 010011 00000 00000 / mcrf Move Condition Register Field

X 011111 10000 00000 / mcrxr Move to Condition Register from XER

X 011111 00000 10011 / mfcr Move From Condition Register

X 011111 00010 10011 / mfmsr Move From Machine State Register

XFX 011111 01010 10011 / mfspr Move From Special Purpose Register

X 011111 10010 10110 / msync3 Memory Synchronize

XFX 011111 00100 10000 / mtcrf Move To Condition Register Fields

X 011111 00100 10010 / mtmsr Move To Machine State Register

XFX 011111 01110 10011 / mtspr Move To Special Purpose Register

X 011111 /0010 01011 0 mulhw Multiply High Word

X 011111 /0010 01011 1 mulhw. Multiply High Word & record CR

X 011111 /0000 01011 0 mulhwu Multiply High Word Unsigned

X 011111 /0000 01011 1 mulhwu. Multiply High Word Unsigned & record CR

D 000111 ----- ----- - mulli Multiply Low Immediate

X 011111 00111 01011 0 mullw Multiply Low Word

X 011111 00111 01011 1 mullw. Multiply Low Word & record CR

X 011111 10111 01011 0 mullwo Multiply Low Word & record OV

X 011111 10111 01011 1 mullwo. Multiply Low Word & record OV & CR

X 011111 01110 11100 0 nand NAND

X 011111 01110 11100 1 nand. NAND & record CR

X 011111 00011 01000 0 neg Negate

X 011111 00011 01000 1 neg. Negate & record CR

X 011111 10011 01000 0 nego Negate & record OV

X 011111 10011 01000 1 nego. Negate & record OV & record CR

X 011111 00011 11100 0 nor NOR

X 011111 00011 11100 1 nor. NOR & record CR

X 011111 01101 11100 0 or OR

X 011111 01101 11100 1 or. OR & record CR

X 011111 01100 11100 0 orc OR with Complement

Table 3-9. Instructions Sorted by Mnemonic (continued)

Format

Opcode

Mnemonic Instruction
Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field
/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use.

Chapter 3. Instruction Model 3-23
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Summary

X 011111 01100 11100 1 orc. OR with Complement & record CR

D 011000 ----- ----- - ori OR Immediate

D 011001 ----- ----- - oris OR Immediate Shifted

XL 010011 00001 10011 / rfci Return From Critical Interrupt

XL 010011 00001 00111 / rfdi 4 Return From Debug Interrupt

XL 010011 00001 10010 / rfi Return From Interrupt

M 010100 ----- ----- 0 rlwimi Rotate Left Word Immed then Mask Insert

M 010100 ----- ----- 1 rlwimi. Rotate Left Word Immed then Mask Insert & record CR

M 010101 ----- ----- 0 rlwinm Rotate Left Word Immed then AND with Mask

M 010101 ----- ----- 1 rlwinm. Rotate Left Word Immed then AND with Mask & record CR

M 010111 ----- ----- 0 rlwnm Rotate Left Word then AND with Mask

M 010111 ----- ----- 1 rlwnm. Rotate Left Word then AND with Mask & record CR

SC 010001 ///// ////1 / sc System Call

X 011111 00000 11000 0 slw Shift Left Word

X 011111 00000 11000 1 slw. Shift Left Word & record CR

X 011111 11000 11000 0 sraw Shift Right Algebraic Word

X 011111 11000 11000 1 sraw. Shift Right Algebraic Word & record CR

X 011111 11001 11000 0 srawi Shift Right Algebraic Word Immediate

X 011111 11001 11000 1 srawi. Shift Right Algebraic Word Immediate & record CR

X 011111 10000 11000 0 srw Shift Right Word

X 011111 10000 11000 1 srw. Shift Right Word & record CR

D 100110 ----- ----- - stb Store Byte

D 100111 ----- ----- - stbu Store Byte with Update

X 011111 00111 10111 / stbux Store Byte with Update Indexed

X 011111 00110 10111 / stbx Store Byte Indexed

D 101100 ----- ----- - sth Store Half Word

X 011111 11100 10110 / sthbrx Store Half Word Byte-Reverse Indexed

D 101101 ----- ----- - sthu Store Half Word with Update

X 011111 01101 10111 / sthux Store Half Word with Update Indexed

Table 3-9. Instructions Sorted by Mnemonic (continued)

Format

Opcode

Mnemonic Instruction
Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field
/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use.

3-24 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Summary

X 011111 01100 10111 / sthx Store Half Word Indexed

D 101111 ----- ----- - stmw Store Multiple Word

D 100100 ----- ----- - stw Store Word

X 011111 10100 10110 / stwbrx Store Word Byte-Reverse Indexed

X 011111 00100 10110 1 stwcx.3 Store Word Conditional Indexed & record CR

D 100101 ----- ----- - stwu Store Word with Update

X 011111 00101 10111 / stwux Store Word with Update Indexed

X 011111 00100 10111 / stwx Store Word Indexed

X 011111 00001 01000 0 subf Subtract From

X 011111 00001 01000 1 subf. Subtract From & record CR

X 011111 00000 01000 0 subfc Subtract From Carrying

X 011111 00000 01000 1 subfc. Subtract From Carrying & record CR

X 011111 10000 01000 0 subfco Subtract From Carrying & record OV

X 011111 10000 01000 1 subfco. Subtract From Carrying & record OV & CR

X 011111 00100 01000 0 subfe Subtract From Extended with CA

X 011111 00100 01000 1 subfe. Subtract From Extended with CA & record CR

X 011111 10100 01000 0 subfeo Subtract From Extended with CA & record OV

X 011111 10100 01000 1 subfeo. Subtract From Extended with CA & record OV & CR

D 001000 ----- ----- - subfic Subtract From Immediate Carrying

X 011111 00111 01000 0 subfme Subtract From Minus One Extended with CA

X 011111 00111 01000 1 subfme. Subtract From Minus One Extended with CA & record CR

X 011111 10111 01000 0 subfmeo Subtract From Minus One Extended with CA & record OV

X 011111 10111 01000 1 subfmeo. Subtract From Minus One Extended with CA & record OV &
CR

X 011111 10001 01000 0 subfo Subtract From & record OV

X 011111 10001 01000 1 subfo. Subtract From & record OV & CR

X 011111 00110 01000 0 subfze Subtract From Zero Extended with CA

X 011111 00110 01000 1 subfze. Subtract From Zero Extended with CA & record CR

X 011111 10110 01000 0 subfzeo Subtract From Zero Extended with CA & record OV

Table 3-9. Instructions Sorted by Mnemonic (continued)

Format

Opcode

Mnemonic Instruction
Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field
/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use.

Chapter 3. Instruction Model 3-25
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Summary

3.9.2 Instruction Index Sorted by Opcode

Table 3-10 lists instructions by opcode.

X 011111 10110 01000 1 subfzeo. Subtract From Zero Extended with CA & record OV & CR

X 011111 11000 10010 / tlbivax TLB Invalidate Virtual Address Indexed

X 011111 11101 10010 / tlbre TLB Read Entry

X 011111 11100 10010 / tlbsx TLB Search Indexed

X 011111 10001 10110 / tlbsync TLB Synchronize

X 011111 11110 10010 / tlbwe TLB Write Entry

X 011111 00000 00100 / tw Trap Word

D 000011 ----- ----- - twi Trap Word Immediate

X 011111 00100 00011 / wrtee Write External Enable

X 011111 00101 00011 / wrteei Write External Enable Immediate

X 011111 01001 11100 0 xor XOR

X 011111 01001 11100 1 xor. XOR & record CR

D 011010 ----- ----- - xori XOR Immediate

D 011011 ----- ----- - xoris XOR Immediate Shifted

1 Motorola Book E cache locking APU, refer to Section 4.12, “Cache Line Locking/Unlocking APU.”
2 Motorola Book E integer select APU, refer to Section 3.6.1, “Integer Select APU
3 See Section 3.3, “Memory Synchronization and Reservation Instructions”
4 See Section 3.6.2, “Debug APU”

Table 3-9. Instructions Sorted by Mnemonic (continued)

Format

Opcode

Mnemonic Instruction
Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field
/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use.

3-26 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Summary

Table 3-10. Instructions Sorted by Opcode

Format

Opcode

Mnemonic Instruction
Primary
(Inst0:5)

Extended
(Inst21:31)

D 000011 ----- ----- - twi Trap Word Immediate

D 000111 ----- ----- - mulli Multiply Low Immediate

D 001000 ----- ----- - subfic Subtract From Immediate Carrying

D 001010 ----- ----- - cmpli Compare Logical Immediate

D 001011 ----- ----- - cmpi Compare Immediate

D 001100 ----- ----- - addic Add Immediate Carrying

D 001101 ----- ----- - addic. Add Immediate Carrying & record CR

D 001110 ----- ----- - addi Add Immediate

D 001111 ----- ----- - addis Add Immediate Shifted

B 010000 ----- ----0 0 bc Branch Conditional

B 010000 ----- ----0 1 bcl Branch Conditional & Link

B 010000 ----- ----1 0 bca Branch Conditional Absolute

B 010000 ----- ----1 1 bcla Branch Conditional & Link Absolute

SC 010001 ///// ////1 / sc System Call

I 010010 ----- ----0 0 b Branch

I 010010 ----- ----0 1 bl Branch & Link

I 010010 ----- ----1 0 ba Branch Absolute

I 010010 ----- ----1 1 bla Branch & Link Absolute

XL 010011 00000 00000 / mcrf Move Condition Register Field

XL 010011 00000 10000 0 bclr Branch Conditional to Link Register

XL 010011 00000 10000 1 bclrl Branch Conditional to Link Register & Link

XL 010011 00001 00001 / crnor Condition Register NOR

XL 010011 00001 00111 / rfdi Return From Debug Interrupt

XL 010011 00001 10010 / rfi Return From Interrupt

XL 010011 00001 10011 / rfci Return From Critical Interrupt

XL 010011 00100 00001 / crandc Condition Register AND with Complement

XL 010011 00100 10110 / isync Instruction Synchronize

XL 010011 00110 00001 / crxor Condition Register XOR

XL 010011 00111 00001 / crnand Condition Register NAND

Legend:
- Don’t care, usually part of an operand field
/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation

Chapter 3. Instruction Model 3-27
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Summary

XL 010011 01000 00001 / crand Condition Register AND

XL 010011 01001 00001 / creqv Condition Register Equivalent

XL 010011 01101 00001 / crorc Condition Register OR with Complement

XL 010011 01110 00001 / cror Condition Register OR

XL 010011 10000 10000 0 bcctr Branch Conditional to Count Register

XL 010011 10000 10000 1 bcctrl Branch Conditional to Count Register & Link

M 010100 ----- ----- 0 rlwimi Rotate Left Word Immed then Mask Insert

M 010100 ----- ----- 1 rlwimi. Rotate Left Word Immed then Mask Insert & record CR

M 010101 ----- ----- 0 rlwinm Rotate Left Word Immed then AND with Mask

M 010101 ----- ----- 1 rlwinm. Rotate Left Word Immed then AND with Mask & record CR

M 010111 ----- ----- 0 rlwnm Rotate Left Word then AND with Mask

M 010111 ----- ----- 1 rlwnm. Rotate Left Word then AND with Mask & record CR

D 011000 ----- ----- - ori OR Immediate

D 011001 ----- ----- - oris OR Immediate Shifted

D 011010 ----- ----- - xori XOR Immediate

D 011011 ----- ----- - xoris XOR Immediate Shifted

D 011100 ----- ----- - andi. AND Immediate & record CR

D 011101 ----- ----- - andis. AND Immediate Shifted & record CR

X 011111 ----- 01111 / isel Integer Select

X 011111 00000 00000 / cmp Compare

X 011111 00000 00100 / tw Trap Word

X 011111 00000 01000 0 subfc Subtract From Carrying

X 011111 00000 01000 1 subfc. Subtract From Carrying & record CR

X 011111 00000 01010 0 addc Add Carrying

X 011111 00000 01010 1 addc. Add Carrying & record CR

X 011111 /0000 01011 0 mulhwu Multiply High Word Unsigned

X 011111 /0000 01011 1 mulhwu. Multiply High Word Unsigned & record CR

X 011111 00000 10011 / mfcr Move From Condition Register

X 011111 00000 10100 / lwarx Load Word & Reserve Indexed

Table 3-10. Instructions Sorted by Opcode (continued)

Format

Opcode

Mnemonic Instruction
Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field
/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation

3-28 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Summary

X 011111 00000 10110 / icbt Instruction Cache Block Touch

X 011111 00000 10111 / lwzx Load Word & Zero Indexed

X 011111 00000 11000 0 slw Shift Left Word

X 011111 00000 11000 1 slw. Shift Left Word & record CR

X 011111 00000 11010 0 cntlzw Count Leading Zeros Word

X 011111 00000 11010 1 cntlzw. Count Leading Zeros Word & record CR

X 011111 00000 11100 0 and AND

X 011111 00000 11100 1 and. AND & record CR

X 011111 00001 00000 / cmpl Compare Logical

X 011111 00001 01000 0 subf Subtract From

X 011111 00001 01000 1 subf. Subtract From & record CR

X 011111 00001 10110 / dcbst Data Cache Block Store

X 011111 00001 10111 / lwzux Load Word & Zero with Update Indexed

X 011111 00001 11100 0 andc AND with Complement

X 011111 00001 11100 1 andc. AND with Complement & record CR

X 011111 /0010 01011 0 mulhw Multiply High Word

X 011111 /0010 01011 1 mulhw. Multiply High Word & record CR

X 011111 00010 10011 / mfmsr Move From Machine State Register

X 011111 00010 10110 / dcbf Data Cache Block Flush

X 011111 00010 10111 / lbzx Load Byte & Zero Indexed

X 011111 00011 01000 0 neg Negate

X 011111 00011 01000 1 neg. Negate & record CR

X 011111 00011 10111 / lbzux Load Byte & Zero with Update Indexed

X 011111 00011 11100 0 nor NOR

X 011111 00011 11100 1 nor. NOR & record CR

X 011111 00100 00011 / wrtee Write External Enable

X 011111 00100 00110 / dcbtstls1 Data Cache Block Touch for Store and Lock Set

X 011111 00100 01000 0 subfe Subtract From Extended with CA

X 011111 00100 01000 1 subfe. Subtract From Extended with CA & record CR

Table 3-10. Instructions Sorted by Opcode (continued)

Format

Opcode

Mnemonic Instruction
Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field
/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation

Chapter 3. Instruction Model 3-29
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Summary

X 011111 00100 01010 0 adde Add Extended with CA

X 011111 00100 01010 1 adde. Add Extended with CA & record CR

XFX 011111 00100 10000 / mtcrf Move To Condition Register Fields

X 011111 00100 10010 / mtmsr Move To Machine State Register

X 011111 00100 10110 1 stwcx. Store Word Conditional Indexed & record CR

X 011111 00100 10111 / stwx Store Word Indexed

X 011111 00101 00011 / wrteei Write External Enable Immediate

X 011111 00101 00110 / dcbtls1 Data Cache Block Touch and Lock Set

X 011111 00101 10111 / stwux Store Word with Update Indexed

X 011111 00110 01000 0 subfze Subtract From Zero Extended with CA

X 011111 00110 01000 1 subfze. Subtract From Zero Extended with CA & record CR

X 011111 00110 01010 0 addze Add to Zero Extended with CA

X 011111 00110 01010 1 addze. Add to Zero Extended with CA & record CR

X 011111 00110 10111 / stbx Store Byte Indexed

X 011111 00111 00110 / icblc1 Instruction Cache Block Lock Clear

X 011111 00111 01000 0 subfme Subtract From Minus One Extended with CA

X 011111 00111 01000 1 subfme. Subtract From Minus One Extended with CA & record CR

X 011111 00111 01010 0 addme Add to Minus One Extended with CA

X 011111 00111 01010 1 addme. Add to Minus One Extended with CA & record CR

X 011111 00111 01011 0 mullw Multiply Low Word

X 011111 00111 01011 1 mullw. Multiply Low Word & record CR

X 011111 00111 10110 / dcbtst Data Cache Block Touch for Store

X 011111 00111 10111 / stbux Store Byte with Update Indexed

X 011111 01000 01010 0 add Add

X 011111 01000 01010 1 add. Add & record CR

X 011111 01000 10110 / dcbt Data Cache Block Touch

X 011111 01000 10111 / lhzx Load Half Word & Zero Indexed

X 011111 01000 11100 0 eqv Equivalent

X 011111 01000 11100 1 eqv. Equivalent & record CR

Table 3-10. Instructions Sorted by Opcode (continued)

Format

Opcode

Mnemonic Instruction
Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field
/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation

3-30 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Summary

X 011111 01001 10111 / lhzux Load Half Word & Zero with Update Indexed

X 011111 01001 11100 0 xor XOR

X 011111 01001 11100 1 xor. XOR & record CR

XFX 011111 01010 10011 / mfspr Move From Special Purpose Register

X 011111 01010 10111 / lhax Load Half Word Algebraic Indexed

X 011111 01011 10111 / lhaux Load Half Word Algebraic with Update Indexed

X 011111 01100 00110 / dcblc 1 Data Cache Block Lock Clear

X 011111 01100 10111 / sthx Store Half Word Indexed

X 011111 01100 11100 0 orc OR with Complement

X 011111 01100 11100 1 orc. OR with Complement & record CR

X 011111 01101 10111 / sthux Store Half Word with Update Indexed

X 011111 01101 11100 0 or OR

X 011111 01101 11100 1 or. OR & record CR

X 011111 01110 01011 0 divwu Divide Word Unsigned

X 011111 01110 01011 1 divwu. Divide Word Unsigned & record CR

XFX 011111 01110 10011 / mtspr Move To Special Purpose Register

X 011111 01110 10110 / dcbi Data Cache Block Invalidate

X 011111 01110 11100 0 nand NAND

X 011111 01110 11100 1 nand. NAND & record CR

X 011111 01111 00110 / icbtls1 Instruction Cache Block Touch and Lock Set

X 011111 01111 01011 0 divw Divide Word

X 011111 01111 01011 1 divw. Divide Word & record CR

X 011111 10000 00000 / mcrxr Move to Condition Register from XER

X 011111 10000 01000 0 subfco Subtract From Carrying & record OV

X 011111 10000 01000 1 subfco. Subtract From Carrying & record OV & CR

X 011111 10000 01010 0 addco Add Carrying & record OV

X 011111 10000 01010 1 addco. Add Carrying & record OV & CR

X 011111 10000 10110 / lwbrx Load Word Byte-Reverse Indexed

X 011111 10000 11000 0 srw Shift Right Word

Table 3-10. Instructions Sorted by Opcode (continued)

Format

Opcode

Mnemonic Instruction
Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field
/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation

Chapter 3. Instruction Model 3-31
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Summary

X 011111 10000 11000 1 srw. Shift Right Word & record CR

X 011111 10001 01000 0 subfo Subtract From & record OV

X 011111 10001 01000 1 subfo. Subtract From & record OV & CR

X 011111 10001 10110 / tlbsync TLB Synchronize

X 011111 10010 10110 / msync Memory Synchronize

X 011111 10011 01000 0 nego Negate & record OV

X 011111 10011 01000 1 nego. Negate & record OV & record CR

X 011111 10100 01000 0 subfeo Subtract From Extended with CA & record OV

X 011111 10100 01000 1 subfeo. Subtract From Extended with CA & record OV & CR

X 011111 10100 01010 0 addeo Add Extended with CA & record OV

X 011111 10100 01010 1 addeo. Add Extended with CA & record OV & CR

X 011111 10100 10110 / stwbrx Store Word Byte-Reverse Indexed

X 011111 10110 01000 0 subfzeo Subtract From Zero Extended with CA & record OV

X 011111 10110 01000 1 subfzeo. Subtract From Zero Extended with CA & record OV & CR

X 011111 10110 01010 0 addzeo Add to Zero Extended with CA & record OV

X 011111 10110 01010 1 addzeo. Add to Zero Extended with CA & record OV & CR

X 011111 10111 01000 0 subfmeo Subtract From Minus One Extended with CA & record OV

X 011111 10111 01000 1 subfmeo. Subtract From Minus One Extended with CA & record OV & CR

X 011111 10111 01010 0 addmeo Add to Minus One Extended with CA & record OV

X 011111 10111 01010 1 addmeo. Add to Minus One Extended with CA & record OV & CR

X 011111 10111 01011 0 mullwo Multiply Low Word & record OV

X 011111 10111 01011 1 mullwo. Multiply Low Word & record OV & CR

X 011111 10111 10110 / dcba Data Cache Block Allocate

X 011111 11000 01010 0 addo Add & record OV

X 011111 11000 01010 1 addo. Add & record OV & CR

X 011111 11000 10010 / tlbivax TLB Invalidate Virtual Address Indexed

X 011111 11000 10110 / lhbrx Load Half Word Byte-Reverse Indexed

X 011111 11000 11000 0 sraw Shift Right Algebraic Word

X 011111 11000 11000 1 sraw. Shift Right Algebraic Word & record CR

Table 3-10. Instructions Sorted by Opcode (continued)

Format

Opcode

Mnemonic Instruction
Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field
/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation

3-32 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Summary

X 011111 11001 11000 0 srawi Shift Right Algebraic Word Immediate

X 011111 11001 11000 1 srawi. Shift Right Algebraic Word Immediate & record CR

X 011111 11010 10110 / mbar Memory Barrier

X 011111 11100 10010 / tlbsx TLB Search Indexed

X 011111 11100 10110 / sthbrx Store Half Word Byte-Reverse Indexed

X 011111 11100 11010 0 extsh Extend Sign Half Word

X 011111 11100 11010 1 extsh. Extend Sign Half Word & record CR

X 011111 11101 10010 / tlbre TLB Read Entry

X 011111 11101 11010 0 extsb Extend Sign Byte

X 011111 11101 11010 1 extsb. Extend Sign Byte & record CR

X 011111 11110 01011 0 divwuo Divide Word Unsigned & record OV

X 011111 11110 01011 1 divwuo. Divide Word Unsigned & record OV & CR

X 011111 11110 10010 / tlbwe TLB Write Entry

X 011111 11110 10110 / icbi Instruction Cache Block Invalidate

X 011111 11111 01011 0 divwo Divide Word & record OV

X 011111 11111 01011 1 divwo. Divide Word & record OV & CR

X 011111 11111 10110 / dcbz Data Cache Block set to Zero

D 100000 ----- ----- - lwz Load Word & Zero

D 100001 ----- ----- - lwzu Load Word & Zero with Update

D 100010 ----- ----- - lbz Load Byte & Zero

D 100011 ----- ----- - lbzu Load Byte & Zero with Update

D 100100 ----- ----- - stw Store Word

D 100101 ----- ----- - stwu Store Word with Update

D 100110 ----- ----- - stb Store Byte

D 100111 ----- ----- - stbu Store Byte with Update

D 101000 ----- ----- - lhz Load Half Word & Zero

D 101001 ----- ----- - lhzu Load Half Word & Zero with Update

D 101010 ----- ----- - lha Load Half Word Algebraic

D 101011 ----- ----- - lhau Load Half Word Algebraic with Update

Table 3-10. Instructions Sorted by Opcode (continued)

Format

Opcode

Mnemonic Instruction
Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field
/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation

Chapter 3. Instruction Model 3-33
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Summary

D 101100 ----- ----- - sth Store Half Word

D 101101 ----- ----- - sthu Store Half Word with Update

D 101110 ----- ----- - lmw Load Multiple Word

D 101111 ----- ----- - stmw Store Multiple Word

1 Motorola Book E cache locking APU, refer to Section 4.12, “Cache Line Locking/Unlocking APU.” Full decriptions of
these instrucitons are provided in the EREF.

Table 3-10. Instructions Sorted by Opcode (continued)

Format

Opcode

Mnemonic Instruction
Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field
/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation

3-34 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Summary

Chapter 4. L1 Cache 4-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Chapter 4
L1 Cache
This chapter describes the organization of the on-chip L1 cache, cache control instructions,
and various cache operations. It describes the interaction between the caches, the load/store
unit (LSU), the instruction unit, and the memory subsystem. This chapter also describes the
replacement algorithm used for the L1 cache.

Signals mentioned in this chapter are described in Chapter 8, “External Core Complex
Interfaces.”

4.1 Overview
The L1 cache incorporates the following features:

• 32-Kbyte unified cache design

• Virtually indexed, physically tagged

• 32-byte (8-word) line size

• 64-bit data, 32-bit address

• Pseudo–round-robin replacement algorithm

• Eight-entry store buffer

• One-entry push (copy back) buffer

• One-entry line-fill buffer that provides critical double-word forwarding for both data
accesses and instruction fetching

• Hit under fill/copy back

• Parity protection

The e200z6 processor supports a 32-Kbyte, 8-way set-associative, unified (instruction and
data) cache with a 32-byte line size. The cache improves system performance by providing
low-latency data to the e200z6 instruction and data pipelines; this decouples processor
performance from system memory performance. The cache is virtually indexed and
physically tagged. The e200z6 does not provide hardware support for cache coherency in a
multiple-master environment. Software must be used to maintain coherency with other
possible bus masters.

4-2 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

32-Kbyte Cache Organization

Both instruction and data accesses are performed using a single bus connected to the cache.
Addresses from the processor to the cache are virtual addresses used to index the cache
array. The memory management unit (MMU) provides the virtual-to-physical translation
used for cache tag comparison. If the physical address matches a valid tag entry, the access
hits in the cache. For a read operation, the cache supplies the data to the processor; for a
write operation, the data from the processor updates the cache. If the access does not match
a valid cache tag entry (misses in the cache) or a write access must be written through to
memory, the cache generates a bus cycle on the system bus.

Figure 4-1. e200z6 Unified Cache

4.2 32-Kbyte Cache Organization
The e200z6 cache is organized as eight ways of 128 sets with each line containing 32 bytes
(4 double words) of storage. Figure 4-2 shows the cache organization and the terminology
used, along with the cache line format. Virtual address bits A[20–26] provide an index to
select a set. Ways are selected according to the rules of set association.

Bus

Address/

Control

L1 Cache

Tag Array

Data Array

Data Path

Processor

Control

Data

Address

System
Bus

Data

Control

Data

Memory Management Unit

Address

Core Interface
Module

8-Entry
Store Buffer

Address Path

Push Buffer

Control Logic

Chapter 4. L1 Cache 4-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

32-Kbyte Cache Organization

Figure 4-2. Cache Organization and Line Format

Each line consists of a physical address tag, status bits, and 4 double words of data with
byte parity. Address bits A[27–29] select the word within the line.

4.2.1 32-Kbyte Cache Line Tag Format

Each cache line tag entry contains the physical address tag, a lock bit, dirty bit, and a valid
bit. The format of a tag entry is shown in Figure 4-3.

Figure 4-3. Cache Tag Format

Each field of the tag entry is detailed in Table 4-4.

Table 4-1. Tag Entry Field Descriptions

Field Description

A[0:19] Physical address tag. The physical address corresponding to the data contained in this line.

P[0:1] Tag parity

L Lock bit
0 The line has not been locked.
1 The line has been locked and is not available for replacement.

D Dirty bit
0 The data contained in this entry has not been modified.
1 The data contained in this entry has been modified and is not consistent with physical memory.

V Valid bit
0 This bit signifies that the cache line is invalid and a tag match should not occur.
1 This bit signifies that the cache line is valid.

Way 0 Way 1 Way 2 Way 7

Line

•••
•••

•••
•••

Set 0
Set 1

Set 126
Set 127

•••

VDTAG

20-bit Physical Lock Bit

Cache Line Format

Double Word 3Double Word 2Double Word 1Double Word 0

Dirty bit

L

Valid Bit
Address Tag + 2 Parity Bits

A[0:19]

Tag Address Tag

VD

Valid

L

Line
Lock

Line
Dirty

P[0:1]

Parity

4-4 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Cache Lookup

4.3 Cache Lookup
Once enabled, the unified cache is searched for a tag match on all instruction fetches and
data accesses from the CPU. If a match is found, the cached data is forwarded on a read
access to the instruction fetch unit or the load/store unit (data access), or is updated on a
write access, and may also be written-through to memory if required.

When a read miss occurs, if there is a TLB hit and the I bit of the hitting TLB entry is clear,
the translated physical address is used to fetch a 4 double-word cache line beginning with
the requested double word (critical double word first). The line is fetched and placed into
the appropriate cache block and the critical double word is forwarded to the CPU.
Subsequent double words may be streamed to the CPU if they have been requested and
streaming is enabled via L1CSR0. Write misses do not allocate cache entries.

During a cache line fill, double words received from the bus are placed into a cache line fill
buffer and may be forwarded (streamed) to the CPU if such a request is pending. Accesses
from the CPU following delivery of the critical double word may be satisfied from the
cache (hit under fill, non-blocking) or from the line-fill buffer if the requested information
has been already received.

The cache always fills an entire line, thereby providing validity on a line-by-line basis. A
cache line is always in one of the following states: invalid, valid, or modified (and valid).
For invalid lines, the V bit is zero, causing the line to be ignored during lookups. Valid lines
have their V bit set and D bit cleared, indicating the line contains valid data consistent with
memory. Modified cache lines have the D and V bits set, indicating that the line has valid
entries that have not been written to memory. In addition, a cache line may be locked (L bit
set) indicating the line is not available for replacement.

Figure 4-4 shows the general flow of cache operation for the 32-Kbyte cache. To determine
if the address is already allocated in the cache, the following steps are performed:

1. The cache set index, virtual address bits A[20:26], are used to select one cache set.
A set is defined as the grouping of eight lines (one from each way), corresponding
to the same index into the cache array.

2. Physical address bits A[0:19] are used as a tag reference or to update the cache line
tag field.

3. The tags from the selected cache set are compared with the tag reference. If any tag
matches the tag reference and the tag status is valid, a cache hit has occurred.

4. Virtual address bits A[27:28] are used to select one of the 4 double words in each
line. A cache hit indicates that the selected double word in that line contains valid
data (for a read access), or can be written with new data depending on the status of
the W access control bit from the MMU (for a write access).

Chapter 4. L1 Cache 4-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Cache Control

Figure 4-4. 32-Kbyte Cache Lookup Flow

4.4 Cache Control
The L1 cache control and status register (L1CSR0) provides control bits to enable/disable
the cache and to invalidate it of all entries. In addition, availability of each way of the cache
may be selectively controlled for use by instruction accesses and data accesses. This way
control provides cache way locking capability, as well as controlling way availability on a
cache line replacement. Ways 0–3 may be selectively disabled for instruction miss
replacements and data miss replacements by using the WID and WDD control bits. In an
eight-way cache, control for ways 4–7 is grouped, using a single disable bit (AWID and
AWDD) for each type of replacement.

The following registers are defined for cache configuration and control:

• L1 cache control and status register—Used for general control and status of the L1
cache. See Section 2.13.1, “L1 Cache Control and Status Register 0 (L1CSR0).”

• L1 cache configuration register—Provides configuration information for the L1
cache supplied with this version of the e200z6 core. See Section 2.13.2, “L1 Cache
Configuration Register 0 (L1CFG0).”

31272620190

IndexTag Data/Tag Reference

MUX

Comparator
0

1
2

7

Logical OR

Hit 7
Hit 2
Hit 1
Hit 0

Hit

 Select

Set 0

Set 1

Set 127

•
•
•

TAG
Reference

A[0:19]

Way 0
Way 1

Way 2
Way 7

Data or
Instruction

STATUS DW0 DW1 DW2 DW3

TAG STATUS DW0 DW1 DW2 DW3

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

Virtual Address

Set
Select

A[20:26])

TAG

Physical Address

•••

••
••

••••
••

••

4-6 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Cache Coherency

• L1 cache flush and invalidate register. Provides software-based flush and
invalidation control for the L1 cache supplied with this version of the e200z6 core.
See Section 2.13.3, “L1 Cache Flush and Invalidate Register (L1FINV0).”

4.5 Cache Coherency
Cache coherency is supported through software operations to invalidate lines, to flush
modified lines to memory, or to invalidate modified lines. The cache may operate in either
write-through or copy-back mode, and in conjunction with an MMU, it may designate
certain accesses as write-through or copy-back. To ensure coherency, cache misses force
the push and store buffers to empty before the access. No other hardware coherency support
is provided.

4.6 Address Aliasing
The cache is physically addressed, thus eliminating any problems associated with potential
cache synonyms due to effective address aliasing.

4.7 Cache Parity
Cache parity is supported for both the tag and data arrays. Two bits of parity are provided
for the tag entry. Byte parity is supported for the data arrays. Parity checking is controlled
by L1CSR0[CPE]. When parity checking is enabled, parity is checked on each cache
access, whether for lookup or for modified line replacement. If a parity error is detected on
any portion of the accessed data, a parity error is signaled, regardless of whether a cache hit
or miss occurs. Parity errors are never signaled if L1CSR0[CPE] = 0. Signaling of a parity
error causes a machine check exception and a syndrome bit to be set in the machine check
syndrome register (MCSR). Section 5.6.2, “Machine Check Interrupt (IVOR1),” describes
machine check exceptions, interrupts, and checkstop conditions. Section 2.7.2.3, “Machine
Check Syndrome Register (MCSR),” describes how to use MCSR to determine the source
of machine check exceptions.

4.8 Operation of the Cache
The following sections describe cache behavior.

4.8.1 Cache at Reset

L1CSR0[CE] is cleared on power-on reset or normal reset, disabling the cache.
Section 4.8.2, “Cache Enable/Disable,” describes behavior when the cache is disabled.

Reset does not invalidate the cache lines; therefore, the cache should be invalidated
explicitly after a hardware reset. After initial power-up, cache contents are undefined. The

Chapter 4. L1 Cache 4-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Operation of the Cache

L, D, and V bits may be set on some lines, necessitating invalidation of the cache by
software before being enabled. See Section 4.8.6, “Cache Invalidation.”

4.8.2 Cache Enable/Disable

The cache is enabled or disabled by using the cache enable bit, L1CSR0[CE]. L1CSR0[CE]
is cleared on power-on reset or normal reset, disabling the cache. If the cache is disabled,
cache tag status bits are ignored and the cache is not accessed for normal loads, stores, or
instruction fetches. All normal accesses are propagated to the system bus as single-beat
(non-burst) transactions.

Note that the state of the cache-inhibited access attribute (I) remains independent of the
state of L1CSR0[CE]. Disabling the cache does not affect the MMU translation logic.
Translation attributes are still used when generating p_hprot[4:2] information on the
system bus. (p_hprot signals are described in Section 8.3, “Signal Descriptions.”)

The store buffer is available even if the cache is disabled.

Altering the CE bit must be preceded by an isync and msync to prevent the cache from
being disabled or enabled in the middle of a data or instruction access. In addition, the cache
may need to be globally flushed before it is disabled to prevent coherency problems when
it is re-enabled.

Disabling the cache affects all cache operations. Cache management instructions (except
for mtspr L1FINV0 and mtspr L1CSR0) do not affect the cache when it is disabled.

4.8.3 Cache Fills

Cache line fills are requested when a cacheable load miss occurs. Store misses do not
allocate cache lines. The burst fill is performed critical double word first on the bus. The
critical double word is forwarded to the requesting unit before being written to the cache,
thus minimizing stalls due to fill delays. Cache line fills load a 4-double-word line-fill
buffer, and actual updates to the cache array are delayed until the next cache line fill is
initiated. Read accesses may hit in the line buffer and data supplied from the buffer to the
CPU. On writes, hits to the buffer cause it to be updated with the write data, although these
writes stall until the buffer has been filled.

Data may be streamed to the CPU as it arrives from the bus if a corresponding request is
pending. In addition, the cache supports hit under fill, allowing subsequent CPU accesses
to be satisfied by cache hits while the remainder of the line fill completes. This
non-blocking capability improves performance by hiding a portion of the line fill latency
when data already in the cache or line-fill buffer is subsequently requested by the CPU.

Cache fill operations are performed as four-beat wrapping bursts (WRAP4 bursts) on the
system bus. WRAP4 burst operations are described in Chapter 8, “External Core Complex

4-8 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Operation of the Cache

Interfaces.” If an ERROR response is received on any element of the burst, the burst is
terminated and the cache line are marked invalid.

4.8.4 Cache Line Replacement

On a cache read miss, the cache controller uses a pseudo-round-robin replacement
algorithm to determine which cache line is selected to be replaced. There is a single
replacement counter for the entire cache.

The replacement algorithm acts as follows: On a miss, if the replacement pointer is pointing
to a way that is not enabled for replacement by the type of the miss access (the selected line
or way is locked), it is incremented until an available way is selected (if any). After a cache
line is successfully filled without error, the replacement pointer increments to point to the
next cache way. If no way is available for the replacement, the access is treated as a
single-beat access and no cache line fill occurs.

Modified lines selected for replacement must be copied back to main memory. This is
performed by first storing the replaced line in a 32-byte push buffer (if it is enabled) while
the missed data is fetched. After the new line is filled, the buffer contents are written to
memory beginning with double word 0. If the push buffer is disabled, the copy back of a
modified line precedes a line fill for the missed read address. These copy-back transfers
begin with the quad word corresponding to the offset in the cache line of the requested data.

The replacement pointer is initialized to point to way 0 on a reset or on a
cache-invalidate-all operation.

4.8.5 Cache-Inhibited Accesses

If a cache miss occurs while caching is inhibited, all accesses are performed as single-beat
transactions on the system bus. Cache-inhibited status is ignored on all cache hits. For
cache-inhibited accesses, the processor termination is withheld until the store buffer is
flushed of all entries, the push buffer is emptied, and the store completes to memory (see
Section 4.9, “Push and Store Buffers”).

4.8.6 Cache Invalidation

The e200z6 supports full invalidation of the cache under software control. The cache may
be invalidated through the cache invalidate control bit L1CSR0[CINV]. This function is
available even when the cache is disabled.

Reset does not invalidate the cache automatically. Software must use the CINV control for
invalidation after a reset. Proper use of this bit is to determine that it is clear and then set it
with a pair of mfspr mtspr operations. A 0-to-1 transition on CINV initiates a flash
invalidation that lasts for multiple (approximately 134) CPU cycles. Once set, CINV is
cleared by hardware after the operation is complete. It remains set during the invalidation

Chapter 4. L1 Cache 4-9
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Push and Store Buffers

interval and may be tested by software to determine when the operation has completed. An
mtspr operation to L1CSR0 that attempts to change the state of CINV during invalidation
does not affect the state of that bit.

During the process of performing the invalidation, the cache does not respond to accesses,
and remains busy. Interrupts may still be recognized and processed, potentially aborting the
invalidation operation. When this occurs, L1CSR0[ABT] is set to indicate unsuccessful
completion of the operation. Software should read L1CSR0 to determine that the operation
has completed (L1CSR0[CINV] cleared), and then check the status of L1CSR0[ABT] to
determine completion status.

Individual cache blocks may be invalidated using icbi, dcbi, or dcbf. For these instructions
to operate normally the cache must be enabled.

4.8.7 Cache Flush/Invalidate by Set and Way

The e200z6, shown in Figure 4-1, supports software-controlled cache flushing. The cache
may be flushed and/or invalidated by index and way through an mtspr l1finv0 instruction.

The L1 flush and invalidate control register 0 is used to select a set and way to be
flushed/invalidated. No tag match is required. This function is available even if the cache is
disabled. See Section 2.13.3, “L1 Cache Flush and Invalidate Register (L1FINV0).”

External termination errors that occur on the push of a modified cache line cause a machine
check condition.

4.9 Push and Store Buffers
The push buffer reduces latency for requested new data on a cache miss by temporarily
holding displaced modified data while the new data is fetched from memory. The push
buffer contains 32 bytes of storage (one displaced cache line).

If a cache miss displaces a modified line and the push buffer is enabled, the line-fill request
is immediately forwarded to the external bus. While waiting for the response, the current
contents of the modified cache line are placed into the push buffer. When the line-fill
transaction (burst read) completes, the cache controller can generate the appropriate burst
write bus transaction to write the contents of the push buffer into memory.

In the disabled push buffer case, modified line replacement is performed by first generating
a burst write transaction, copying out the entire modified line starting with the double word
in the modified line corresponding to the missed address. After completion of the modified
line write, a line fill is requested beginning with the critical double word (miss address).

To maximize performance, the store buffer contains a FIFO that can defer pending write
misses or writes marked as write-through. The store buffer can buffer as many as 8 words
(32 bytes) for this purpose. The store buffer may be disabled for debug purposes. Store

4-10 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Cache Management Instructions

buffer operation is independent of L1CSR0[CE]. When the store buffer is enabled,
cacheable store operations that miss the cache or are marked as write through are placed in
the store buffer, and the CPU access is terminated. To properly drive the p_hprot[4:1]
outputs on a buffered store access, each buffer entry contains 32 bits of physical address,
32 bits of data, size information, and 3 bits of access attribute information (W, G, and S/U).
Section 8.3, “Signal Descriptions,” describes the p_hprot signals.

Once the push or store buffer has valid data, the internal bus controller uses the next
available external bus cycle to generate the appropriate write cycles. In the event that
another cache fill is required (for example, cache read miss to process) during the continued
instruction execution by the processor pipeline, the pipeline stalls until the push and store
buffers are empty before generating the required external bus transaction.

The store buffer is always emptied before a cache line push to avoid memory consistency
issues. After the push buffer has been loaded, a subsequent store may be buffered, but is not
written to memory until the push has completed.

For cache-inhibited accesses, processor termination is withheld until all store buffer entries
are flushed, the push buffer is emptied, and the store completes to memory.

A write to L1CSR0 may be used to force the push and store buffers to empty before
proceeding with the actual L1CSR0 update. Additionally, msync and mbar also cause
these buffers to be emptied before completion.

If an external transfer ERROR response occurs while emptying the store buffer, a machine
check exception is signaled to the CPU, and a store for the next entry to be written (if any)
is initiated. If a transfer error occurs for a push buffer transaction, the push of the remaining
portion of the cache line is aborted, and a machine check exception is signaled to the CPU.
This is also the case for a modified line copyback with the push buffer disabled, or a cache
control operation that causes a line to be pushed. Following the transfer error, the line is
marked invalid. If a transfer error can to be returned by the system on a push or a buffered
store, and if this could cause a problem, the address must be marked cache inhibited.

For cache flush operations, if a transfer error occurs on a cache line flush, the push of the
remaining portion of the cache line is aborted, the line remains marked modified and valid.

4.10 Cache Management Instructions
Table 4-2 describes the implementation of cache management instructions in the e200z6.
Full descriptions of these instructions are provided in the EREF.

Chapter 4. L1 Cache 4-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Touch Instructions

4.11 Touch Instructions
Due to the limitations of using the icbt, dcbt, and dcbtst instructions, a program that uses
these instructions improperly may actually see a degradation in performance from their use.
To avoid this, the e200z6 treats these instructions as no-ops.

Table 4-2. Cache Management Instructions

Instruction e200z6 Implementation Description

Instruction Cache Block
Invalidate (icbi)

The e200z6 maps the icbi instruction to dcbf.

Instruction Cache Block
Touch (icbt)

Treated as a no-op.

Data Cache Block
Allocate (dcba)

Treated as a no-op.

Data Cache Block Flush
(dcbf)

If dcbf addresses a byte in a modified cache line, the line is copied back to memory and
subsequently invalidated, regardless of whether it was copied back or locked. If a cache line
fill is in progress and the line-fill data corresponds to the EA associated with a dcbf, the cache
is not updated with line-fill data.
This instruction is treated as a load for the purposes of access protection.
If the cache is disabled, this instruction is treated as a no-op.

Data Cache Block
Invalidate (dcbi)

If dcbi addresses a byte in a line present in the cache, the line is invalidated, regardless of
lock status. If dcbi addresses a modified line, no copy back occurs. If a cache line fill is in
progress and the line-fill data corresponds to the EA associated with a dcbi, the cache is not
updated with line-fill data.
This instruction is privileged. It is treated as a store for the purposes of access protection.
If the cache is disabled, this instruction is treated as a no-op in supervisor mode.

Data Cache Block Store
(dcbst)

If dcbst addresses a byte in a modified line in the cache, the line is copied back to memory
and then marked clean. The lock status is unchanged
This instruction is treated as a load for the purposes of access protection.
If the cache is disabled, this instruction is treated as a no-op.

Data Cache Block
Touch (dcbt)

Treated as a no-op.

Data Cache Block
Touch for Store (dcbtst)

Treated as a no-op.

Data Cache Block Set
to Zero (dcbz)

If dcbz addresses a byte in a line in the cache, the line is zeroed, marked as modified, and
remains valid. Lock status remains unchanged. If the line is not present and the address is
cacheable, the line is established in the cache (without fetching from memory), is zeroed, and
marked as modified and valid.
This instruction is treated as a store for the purposes of access protection.
dcbz causes an alignment exception if the EA is marked by the MMU as cache-inhibited and
a cache miss occurs, or if the EA is marked by the MMU as write-through required, or if the
cache is disabled or is operating in write-through mode, or if an overlocking condition prevents
the allocation of a line into the cache.

4-12 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Cache Line Locking/Unlocking APU

4.12 Cache Line Locking/Unlocking APU
The e200z6 supports the Motorola Book E cache line locking APU, which defines
user-mode instructions to perform cache locking/unlocking. Three of the instructions are
for data cache locking control (dcblc, dcbtls, and dcbtstls) and the remaining instructions
are for instruction cache locking control (icblc and icbtls).

For the e200z6 unified cache, the instruction and data versions of these instructions operate
similarly, although separate exception syndrome register (ESR) bits are supported for some
error conditions. No state is maintained to indicate whether a cache line was locked with an
icbtls, dcbtls, or dcbtstls instruction; thus the icblc and dcblc unlock a matching cache line
regardless of how the lock bit was originally set.

The dcbtls, dcbtstls, and dcblc lock instructions are treated as reads for checking access
permissions when translated by the TLB, and exceptions are taken for data TLB errors or
data storage interrupts. The icbtls and icblc instructions require either execute (X) or
read (R) permission when translated by the TLB. Exceptions are taken using data TLB
errors or data storage interrupts, not ITLB or ISI.

The user-mode cache lock enable bit, MSR[UCLE], may be used to restrict user-mode
cache line locking. If MSR[UCLE] is zero, any cache lock instruction executed in
user-mode takes a cache-locking DSI exception and sets either ESR[DLK] or ESR[ILK].
If MSR[UCLE] is set, cache-locking instructions can be executed in user-mode and they do
not take a DSI for cache-locking. However, they may still cause a DSI for access violations
or precise external termination errors.

In the following cases, attempting to set a lock fails even if no DSI or DTLB exceptions
occur:

• The target address is marked cache inhibited and a cache miss occurs.

• The cache is disabled.

• The cache target indicated by the CT field (bits 6–10) of the instruction is not zero.

In these cases, the lock set instruction is treated as a no-op, and the cache unable to lock bit,
L1CSR0[CUL], is set.

Assuming no exception conditions occur (DSI or DTLB error), for dcbtls, dcbtstls, and
icbtls an attempt is made to lock the corresponding cache line. If a miss occurs and all
available ways (ways enabled for a particular access type) are already locked in a given
cache set, an attempt to lock another line in the same set causes an overlocking situation.
In this case, the new line is not cached and the cache overlock bit, L1CSR0[CLO], is set to
indicate that an overlocking situation occurred. This does not cause an exception condition.

The CUL conditions have priority over the CLO condition.

If multiple no-op or exception conditions arise on a cache lock instruction, the results are
determined by the order of precedence described in Table 4-4.

Chapter 4. L1 Cache 4-13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Cache Line Locking/Unlocking APU

It is possible to lock all ways of a given cache set. If an attempt is made to perform a
non-locking line fill for a new address in the same cache set, the new line is not put into the
cache. It is satisfied on the bus using a single-beat transfer instead of normal burst transfers.
If dcbz is executed and all ways available for allocation are locked, an alignment exception
is generated and no line is put into the cache.

Cache line locking interacts with the ability to control replacement of lines in certain cache
ways via the L1CSR0 WID, AWID, WDD, and AWDD control bits. If any cache line
locking instruction (icbtls, dcbtls, dcbtstls) executes and finds a matching line in the
cache, the line’s lock bit is set regardless of the WID, AWID, WDD, and AWDD settings.
In this case, no replacement has been made. However, for cache misses which occur while
executing a cache line lock set instruction, the only candidate lines available for locking are
those which correspond to ways of the cache which have not been disabled for the particular
type of line-locking instruction (controlled by WDD and AWDD for dcbtls and dcbtstls,
controlled by WID and AWID for icbtls). Thus, an overlocking condition may result even
though fewer than eight lines with the same index are locked.

The cache-locking DSI handler must decide whether or not to lock a given cache line based
upon available cache resources. If the locking instruction is a set lock instruction, and if the
handler decides to lock the line, it should do the following:

• Add the line address to its list of locked lines.

• Execute the appropriate set lock instruction to lock the cache line.

• Modify save/restore register 0 to point to the instruction immediately after the
locking instruction that caused the DSI.

• Execute an rfi.

If the locking instruction is a clear lock instruction, and if the handler decides to unlock the
line, it should do the following:

• Remove the line address from its list of locked lines.

• Execute the appropriate clear lock instruction to unlock the cache line.

• Modify save/restore register 0 to point to the instruction immediately after the
locking instruction that caused the DSI.

• Execute an rfi.

Table 4-3 describes the e200z6 implementation of the cache locking APU instructions,
which are fully described in the EREF. Note that the e200z6 only supports a cache target
(CT) value of 0.

4-14 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Cache Instructions and Exceptions

4.12.1 Effects of Other Cache Instructions on Locked Lines

The icbt, dcba, dcbz, dcbst, dcbt, and dcbtst instructions do no affect the state of a cache
line's lock bit.

The dcbf, dcbi and icbi instructions flush/invalidate and unlock a L1 cache line.

4.12.2 Flash Clearing of Lock Bits

The e200z6 supports flash clearing of cache lock bits under software control by using the
cache flash clear locks control bit, L1CSR0[CFCL].

Lock bits are not cleared automatically at power-up (m_por) or normal reset (p_reset_b).
Software must use CLFC to clear the lock bits after reset. This bit should be read (using
mfspr) to determine that it is clear and then set (using mtspr). A 0-to-1 transition on CLFC
initiates a flash clearing of the lock bits, which lasts approximately 134 CPU cycles. CLFC
remains set (and may be read) until the operation completes, at which point it is cleared by
hardware. During invalidation, an mtspr to L1CSR0 cannot affect the state of CLFC.

During the flash clearing process, the cache does not respond to accesses and remains busy.
If an interrupt is recognized and processed, causing the flash clearing operation to fail,
L1CSR0[ABT] is set. Software should read L1CSR0 to determine if the operation
completed (CLFC = 0) and then read L1CSR0[ABT] to determine completion status.

4.13 Cache Instructions and Exceptions
All cache-management instructions (except icbt, dcba, dcbt and dcbtst, which are treated
as no-ops) can generate TLB miss exceptions if the effective address cannot be translated,
or may generate DSI exceptions due to permission violations. In addition, dcbz may
generate an alignment interrupt as described in Table 4-2.

Table 4-3. Cache Locking APU Instructions

Instruction e200z6 Implementation Description

Data Cache Block Touch and
Lock Set (dcbtls)

If CT ≠ 0 or if the cache is disabled, dcbtls is no-oped and L1CSR0[CUL] is set indicating
an unable-to-lock condition. No other exceptions are reported.

Data Cache Block Touch for
Store and Lock Set (dcbtstls)

The e200z6 handles dcbtstls and dcbtls identically because no hardware coherency
mechanisms are implemented for the cache.

Data Cache Block Lock Clear
(dcblc)

If CT ≠ 0 or if the cache is disabled, the dcblc is no-oped. No other exceptions are
reported.

Instruction Cache Block
Touch and Lock Set (icbtls)

If CT ≠ 0 or if the cache is disabled, the icbtls is no-oped and L1CSR0[CUL] is set
indicating an unable-to-lock condition. No other exceptions are reported.

Instruction Cache Block Lock
Clear (icblc)

If CT ≠ 0 or if the cache is disabled, the icblc is no-oped. No other exceptions are
reported.

Chapter 4. L1 Cache 4-15
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Cache Instructions and Exceptions

The cache-locking instructions (dcblc, dcbtls, dcbtstls, icblc, and icbtls) generate DSI
exceptions if MSR[UCLE] is clear and the locking instruction is executed in user mode
(MSR[PR] = 1). Data cache locking instructions that cause a DSI exception for this reason
set ESR[DLK] (documented as DLK0 in Book E); instruction cache locking instructions
that cause a DSI exception for this reason set ESR[ILK] (documented as DLK1 in Book E).

4.13.1 Exception Conditions for Cache Instructions

If multiple no-op or exception conditions arise on a cache instruction, the results are
determined by the order of precedence described in Table 4-4.

Table 4-4. Special Case Handling

Operation CT!=0
Cache

Disabled
TLB
Miss

User &
UCLE=0

Protection
Violation

CI and
Cache Miss

All Available
Ways

Locked

WT or Cache in
Write-Through

Mode

Precise External
Termination

Error

dcbtls
dcbtstls

dcblc

DCUL
DCUL
NOP

DCUL
DCUL
NOP

DTLB
DTLB
DTLB

DLK
DLK
DLK

DSI
DSI
DSI

DCUL
DCUL

—

DCLO
DCLO

—

—
—
—

XTE
XTE
—

icbtls
icblc

ICUL
NOP

ICUL
NOP

DTLB
DTLB

ILK
ILK

DSI
DSI

ICUL
—

ICLO
—

—
—

XTE
—

dcbz — ALI DTLB — DSI ALI ALI ALI —

dcbf,
dcbst,

icbi

— NOP DTLB — DSI — — — XTE

dcbi 1

1 Privileged

— NOP DTLB — DSI — — — —

lwarx
stwcx.

—
—

—
—

DTLB
DTLB

—
—

DSI
DSI

—
—

—
—

—
—

XTE
XTE

load
store

—
—

—
—

DTLB
DTLB

—
—

DSI
DSI

—
—

—
—

—
—

XTE
XTE

Notes
 • Priority decreases from left to right
 • Cache operations that do not set or clear locks ignore the value of the CT field
 • “dash” indicates executes normally
 • “NOP” indicates treated as a no-op
 • DSI = data storage interrupt; ALI = alignment interrupt; DTLB = data TLB interrupt
 • DCUL, ICUL = no-op, and set L1CSR0[CUL]
 • DCLO, ICLO = no-op, and set L1CSR0[CLO]
 • DLK, ILK = data storage interrupt (DSI) and set ESR[DLK] or ESR[ILK]
 • MC = Machine check and update DEAR
 • XTE = DSI + set ESR[XTE]

4-16 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Sequential Consistency

4.13.2 Transfer Type Encodings for Cache Management
Instructions

Transfer type encodings are used to indicate to the cache whether a normal access, atomic
access, cache management control access, or MMU management control access is being
requested. These attribute signals are driven with addresses when an access is requested.
Table 4-5 shows the definitions of the p_ttype[0:3] encodings.

4.14 Sequential Consistency
The PowerPC architecture requires that all memory operations executed by a single
processor be sequentially self-consistent. This means that all memory accesses appear to be
executed in the order that is specified by the program with respect to exceptions and data
dependencies. The e200z6 CPU achieves this effect by operating a single pipeline to the
cache/MMU. All memory accesses are presented to the MMU in the same order that they
appear in the program and therefore exceptions are determined in order.

4.15 Self-Modifying Code Requirements
The following sequence of instructions synchronizes the instruction stream.

dcbf
icbi
msync
isync

Table 4-5. Transfer Type Encoding

p_ttype[0:3] Transfer Type Instruction

0000 Normal Normal loads / stores

0001 Atomic lwarx, stwcx.

0010 Flush block dcbst

0011 Flush and Invalidate block dcbf, icbi

0100 Allocate and zero block dcbz

0101 Invalidate block dcbi

0110–0111 Reserved —

1000 TLB invalidate tlbivax

1001 TLB search tlbsx

1010 TLB read entry tlbre

1011 TLB write entry tlbwe

1100 Lock clear for data dcblc

1101 Lock set for data dcbtls, dcbtstls

1110 Lock clear for instruction icblc

1111 Lock set for instruction icbtls

Chapter 4. L1 Cache 4-17
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Page Table Control Bits

This sequence is redundant for the e200z6, but ensures that the operation is correct for other
Book E–compliant processors which implement separate instruction and data caches, as
well as for multiple-processor cache-coherent systems.

4.16 Page Table Control Bits
The PowerPC architecture allows certain memory characteristics to be set on a page and on
a block basis. These characteristics include write through (using the W bit), cacheability
(using the I bit), coherency (using the M bit), guarded memory (using the G bit), and
endianness (using the E bit). Incorrect use of these bits may create situations where
coherency paradoxes are observed by the processor. In particular, this can occur when the
state of these bits is changed without appropriate precautions being taken (that is, flushing
pages that correspond to the changed bits from the cache), or when the address translations
of aliased real addresses specify different values for any of the WIMGE bits. Generally,
certain mixing of WIMG settings are allowed by the Book E architecture, however others
may present cache coherence paradoxes and are considered programming errors.

4.16.1 Write-Through Stores

A write-through store (WIMGE = 0b1xxxx) may normally hit to a valid cache line. In this
case, the cache line remains in its current state, the store data is written into the cache, and
the store goes out on the bus as a single-beat write.

4.16.2 Cache-Inhibited Accesses

When the cache-inhibited attribute is indicated by translation (WIMGE = b’x1xxx’) and a
cache miss occurs, all accesses are performed as single-beat transactions on the system bus
with a size indicator corresponding to the size of the load, store or prefetch operation.
Cache inhibited status is ignored on all cache hits. For cache-inhibited misses, the store and
push buffers are emptied prior to performing the miss access.

4.16.3 Memory Coherence Required

For the e200z6, the memory coherence required storage attribute (WIMGE = b’xx1xx’) is
ignored.

4.16.4 Guarded Storage

For the e200z6, the guarded storage attribute (WIMGE = b’xxx1x’) is ignored except for
generation of the p_hprot[4:2] attributes on an external access, since no out-of-order
execution is supported by the hardware. (p_hprot signals are described in Section 8.3,
“Signal Descriptions.”)

4-18 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Reservation Instructions and Cache Interactions

4.16.5 Misaligned Accesses and the Endian (E) Bit

Misaligned load or store accesses that cross page boundaries can cause data corruption if
the two pages do not have the same endianness. That is, if one page is big endian and the
other is little endian, the processor would not get all the bytes, or would get some bytes out
of order, resulting in garbled data. To protect against data corruption, the e200z6 core takes
a DSI exception and sets the byte ordering bit, ESR[BO], when this occurs.

4.17 Reservation Instructions and Cache Interactions
The e200z6 core treats lwarx and stwcx. accesses as though they were cache inhibited,
regardless of page attributes. Additionally, a cache line corresponding to the address of a
lwarx or stwcx. access are flushed to memory if modified, and then invalidated (even if
marked as locked), prior to the lwarx or stwcx. access being issued to the bus. This allows
the building of external reservation logic that properly signals a reservation failure. The bus
access is treated as a single-beat transfer.

4.18 Effect of Hardware Debug on Cache Operation
Hardware debug facilities use normal CPU instructions to access register and memory
contents during a debug session. This may have the unavoidable side-effect of causing the
store and push buffers to be flushed. During hardware debug, the MMU page attributes are
controllable by the debug firmware via settings of the OnCE control register, described in
Section 10.5.5.3, “e200z6 OnCE Control Register (OCR).”

4.19 Cache Memory Access during Debug
The cache memory provides resources needed to do background accesses through the
JTAG/OnCE port to read and write the cache SRAM arrays. Accesses are supported via a
pair of OnCE-mapped registers. These resources are intended for use only by special debug
tools and debug software.

Access to cache memory SRAM arrays using this port can occur only if the CPU is in debug
mode before a read or write access is initiated.

This debug port allows access only to the SRAM arrays used for cache tag and data storage.
This function is available even when the cache is disabled. The cache line-fill, push, store,
and late-write buffers are all outside of the SRAM arrays and are not accessible. However,
before a debug memory access request is serviced, the push and store buffers are written to
external memory, and the late write and line-fill buffers should be written to the cache
arrays using the merging control GO command described in the next section.

The CPU must be in the debug state before a merge control command is initiated.

Chapter 4. L1 Cache 4-19
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Cache Memory Access during Debug

4.19.1 Merging Line-Fill and Late-Write Buffers into the Cache
Array

To ensure that the cache array is updated with the latest information in various internal
buffers, the content of these buffers must be merged back into the actual cache arrays, To
merge late-write and line-fill buffer data contents into the cache arrays, the user must access
and write CDACNTL[GO] to 10. This ensures that the cache arrays contain the data from
the last cache write hit (late write) and the last line loaded from a read miss (line fill).

4.19.2 Cache Memory Access through JTAG/OnCE Port

Cache debug access control and data information is serially accessed through the OnCE
controller using the cache debug access control and data registers, CDACNTL and
CDADATA (see Table 4-6 and Table 4-7). Accesses are performed one word at a time.

For a cache write access, the user must first write CDADATA with the desired tag or data
values. The second step is to write CDACNTL with desired tag or data location, parity and
modified information (for data writes only), and set the CDACNTL R/W and GO bits.

Information about accessing OnCE registers is provided in Section 10.5.5.2, “e200z6
OnCE Command Register (OCMD).”

For a cache read access, the user must first access and write to CDACNTL with desired tag
or data location, and set the R/W and GO bits in CDACNTL. The second step is to access
and read CDADATA for the tag or data and read CDACNTL for parity (data reads only).

Completion of any operation can be determined by reading CDACNTL. Operations are
indicated as complete when CDACNTL[GO] = 00. Debug firmware should poll
CDACNTL to determine when an access has been completed prior to assuming validity of
any other information in CDACNTL or CDADATA.

4.19.2.1 Cache Debug Access Control Register (CDACNTL)

CDACNTL, shown in Figure 4-5, contains location information (T/D, CWAY, CSET, and
WORD), and control (R/W and GO) needed to access the cache tag or data SRAM arrays.
It includes data SRAM parity bit values, which must be supplied by the user for write
accesses, and which is supplied by the cache for read accesses of the data SRAM arrays.

0 1 3 4 5 6 12 13 15 16 19 20 28 29 30 31

Field T/D CWAY — CSET WORD PARITY — R/W GO

Reset All zeros

R/W R/W

Number OCMD[RS] = 111 1010

Figure 4-5. CDACNTL Register

4-20 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Cache Memory Access during Debug

Table 4-6 describes CDACNTL fields.

4.19.2.2 Cache Debug Access Data Register (CDADATA)

The cache debug access data register (CDADATA), shown in Figure 4-6, contains SRAM
data for a debug access. It is also used for tag and data SRAM read and write operations.

Table 4-7 describes CDADATA fields.

Table 4-6. Cache Debug Access Control Register Definition

Bits Name Description

0 T/D Tag/data:
0 Data array selected
1 Tag array selected

1–3 CWAY Cache way. Specifies the cache way to be selected

4–5 — Reserved, should be cleared.

6–12 CSET Cache set. Specifies the cache set to be selected

13–15 WORD Word (data array access only). Specifies one of 8 words of selected set

16–19 PARITY Data parity bits (data array access only). Byte parity bits. One bit per data byte (Bytes 0–3 of selected
word) (cache parity checkers assume odd parity.)
16: Parity for byte 0, 17: Parity for byte 1, 18: Parity for byte 2, 19: Parity for byte 3

20–28 — Reserved, should be cleared.

29 R/W Read/write:
0 Selects write operation. Write the data in CDADATA to the location specified by CDACNTL.
1 Selects read operation. Read the cache memory location specified by this CDACNTL register and

store the resulting data in the CDADATA register and if the access is to the data array, store the
parity bits in this CDACNTL register.

30 GO GO command bits
00 Inactive or complete (no action taken) hardware sets GO=00 when an operation is complete
01 Read or write cache memory location specified by this CDACNTL register.
10 Merge valid late write and line-fill buffer data into the cache arrays
11 Reserved

0 31

Field TAG or DATA

Reset All zeros

R/W R/W

Access OCMD[RS] = 111 1011

Figure 4-6. Cache Debug Access Data Register (CDADATA)

Chapter 4. L1 Cache 4-21
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Cache Memory Access during Debug

Table 4-7. CDADATA Field Descriptions

Bits Name Description

0–31 TAG TAG array access data
0–19 Tag compare bits
20 Valid bit
21–22 Lock bits. These two bits must always have the same value, 1-Locked, 0-Unlocked.
23 Parity high bit, parity for bits 0–10 (cache parity checkers assume odd parity)
24 Parity low bit, parity for bits 11–22 (cache parity checkers assume odd parity)
25 Dirty bit
26–31 Reserved, write as zero

DATA DATA array access data (bytes 0–3 of the selected word)
0–7 Byte 0
8–15 Byte 1
16–23 Byte 2
24–31 Byte 3

4-22 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Cache Memory Access during Debug

Chapter 5. Interrupts and Exceptions 5-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Chapter 5
Interrupts and Exceptions
This chapter provides a general description of the PowerPC Book E interrupt and exception
model and gives details of the additions and changes to that model that are implemented in
the e200z6 core. This chapter identifies features defined by Book E, the Motorola Book E
implementation standards (EIS), and the e200z6 implementation.

5.1 Overview
Book E defines the mechanisms by which the e200z6 core implements interrupts and
exceptions. Note the following definitions:

Interrupt Action in which the processor saves its old context and begins
execution at a predetermined interrupt handler address

Exceptions Events that, if enabled, cause the processor to take an interrupt

The PowerPC exception mechanism allows the processor to change to supervisor state for
the following reasons:

• As a result of unusual conditions (exceptions) arising in the execution of instructions

• As a response to the assertion of external signals, bus errors, or various internal
conditions

When an interrupt occurs, information about the processor state held in the MSR and the
address at which execution should resume after the interrupt is handled are saved to a pair
of save/restore registers (SRR0/SRR1 for non-critical interrupts, CSRR0/CSRR1 for
critical interrupts, or DSRR0/DSRR1 for debug interrupts when the debug APU is enabled)
and the processor begins executing at an address (interrupt vector) determined by the
interrupt vector prefix register (IVPR) and an interrupt-specific interrupt vector offset
register (IVORn). Processing of instructions within the interrupt handler begins in
supervisor mode.

Multiple exception conditions can map to a single interrupt vector and may be
distinguished by examining registers associated with the interrupt. The exception syndrome
register (ESR) is updated with information specific to the exception type when an interrupt
occurs.

5-2 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

e200z6 Interrupts

To prevent loss of state information, interrupt handlers must save the information stored in
the save/restore registers soon after the interrupt is taken. Hardware supports nesting of
critical interrupts within non-critical interrupts, and debug interrupts within both critical
and non-critical interrupts. The interrupt handler must save necessary state information if
interrupts of a given class are re-enabled within the handler.

The following terms are used to describe the stages of exception processing:

Recognition Exception recognition occurs when the condition that can cause an
exception is identified by the processor. Recognition is also referred
to as an ‘exception event.’

Taken An interrupt is said to be taken when control of instruction execution
is passed to the interrupt handler; that is, the context is saved, the
instruction at the appropriate vector offset is fetched, and the
interrupt handler routine begins.

Handling Interrupt handling is performed by the software linked to the
appropriate vector offset. Interrupt handling is begun in supervisor
mode.

Returning from an interrupt is performed by executing rfi, rfci, or rfdi, which restores state
information from their respective save/restore registers and returns instruction fetching to
the interrupted flow.

The e200z6 supports the existence of multiple hardware register contexts. A new operating
context can be selected during the process of handing off control of instruction execution
to an interrupt handler. Contexts are selected by control field in the IVOR used to determine
the location of an interrupt handler. See Section 2.15, “Support for Fast Context
Switching,” for more information on context support.

5.2 e200z6 Interrupts
The Book E architecture specifies that interrupts can be precise or imprecise, synchronous
or asynchronous, and critical or non-critical, and are described as follows:

• Asynchronous exceptions are caused by events external to the processor’s
instruction execution.

• Synchronous exceptions are directly caused by instructions or by an event somehow
synchronous to the program flow, such as a context switch.

• A precise interrupt architecturally guarantees that no instruction beyond the
instruction causing the exception has (visibly) executed. An imprecise interrupt does
not have this guarantee.

• Book E defines critical and non-critical interrupt types, and the e200z6 defines an
implementation-specific debug APU that includes the debug interrupt type. Each
interrupt type provides separate resources (save/restore registers and return from

Chapter 5. Interrupts and Exceptions 5-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

e200z6 Interrupts

interrupt instructions) that allow interrupts of one type to not interfere with the state
handling of an interrupt of another type.

Table 5-1 describes how these definitions apply to the interrupts implemented by the
e200z6 core.

The classifications in Table 5-1 are discussed in greater detail in Section 5.6, “Interrupt
Definitions.” Table 5-2 lists interrupts implemented in the e200z6 and the exception
conditions that cause them. Note that although this table lists system reset, Book E does not
define system reset as an interrupt and assigns no interrupt vector to it.

Table 5-1. Interrupt Classifications

Interrupt Types Synchronous/Asynchronous Precise/Imprecise Critical/Non-Critical/Debug

System reset (not an interrupt on
the e200z6; included here for
reference)

Asynchronous, non-maskable Imprecise —

Machine check — — Critical

Critical input
Watchdog timer

Asynchronous, maskable Imprecise Critical

External input
Fixed-interval timer
Decrementer

Asynchronous, maskable Imprecise Non-critical

Instruction-based debug Synchronous Precise Critical/debug

Debug (UDE)
Debug imprecise

Asynchronous Imprecise Critical/Debug

Data storage/alignment/TLB
Instruction storage/TLB

Synchronous Precise Non-critical

Table 5-2. Exceptions and Conditions

Interrupt Type IVORn Cause Section/Page

System reset (not
an interrupt)

None, vector to
[p_rstbase[0:19]] ||
0xFFC

 • Reset by assertion of p_reset_b
 • Watchdog timer reset control
 • Debug reset control

—

Critical input IVOR 0 1 p_critint_b is asserted and MSR[CE]=1 5.6.1/5-9

Machine check IVOR 1 • p_mcp_b is asserted and MSR[ME] =1
 • ISI, ITLB error on first instruction fetch for an exception

handler and current MSR[ME] = 1
 • Parity error signaled on cache access and current

MSR[ME]=1
 • Write bus error on buffered store or cache line push

5.6.2/5-10

Data storage IVOR 2 • Access control
 • Byte ordering due to misaligned access across page

boundary to pages with mismatched E bits
 • Cache locking exception
 • Precise external termination error (p_hresp=ERROR

and precise recognition)

5.6.3/5-12

5-4 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Exception Syndrome Register (ESR)

5.3 Exception Syndrome Register (ESR)
The ESR provides a syndrome to differentiate exceptions that can generate the same
interrupt type. The e200z6 adds implementation-specific bits to the ESR.

The ESR fields are described in Table 5-3.

Instruction
storage

IVOR 3 • Access control
 • Precise external termination error (p_hresp=ERROR

and precise recognition)

5.6.4/5-13

External input IVOR 41 p_extint_b is asserted and MSR[EE]=1 5.6.5/5-14

Alignment IVOR 5 • lmw, stmw not word aligned
 • lwarx or stwcx. not word aligned
 • dcbz with disabled cache, or to W or I storage
 • Misaligned SPE load and store instructions

5.6.6/5-14

Program IVOR 6 Illegal, privileged, trap, floating-point enabled, APU
enabled, unimplemented operation

5.6.7/5-15

Floating-point
unavailable

IVOR 7 MSR[FP] = 0 and attempt to execute a Book E
floating-point operation

5.6.8/5-16

System call IVOR 8 Execution of the System Call (sc) instruction 5.6.9/5-17

APU unavailable IVOR 9 Unused by the e200z6 5.6.10/5-17

Decrementer IVOR 10 As specified in Book E 5.6.11/5-17

Fixed-interval
timer

IVOR 11 As specified in Book E 5.6.12/5-18

Watchdog timer IVOR 12 As specified in Book E 5.6.13/5-19

Data TLB error IVOR 13 Data translation lookup did not match a valid TLB entry. 5.6.14/5-20

Instruction TLB
error

IVOR 14 Instruction translation lookup did not match a valid TLB
entry.

5.6.15/5-20

Debug IVOR 15 Trap, instruction address compare, data address compare,
instruction complete, branch taken, return from interrupt,
interrupt taken, debug counter, external debug event,
unconditional debug event

5.6.16/5-21

Reserved IVOR 16–31 — —

SPE unavailable
exception

IVOR 32 See Section 5.6.18, “SPE APU Unavailable Interrupt
(IVOR32).”

5.6.18/5-25

SPE data
exception

IVOR 33 See Section 5.6.19, “SPE Floating-Point Data Interrupt
(IVOR33).”

5.6.19/5-25

SPE round
exception

IVOR 34 See Section 5.6.20, “SPE Floating-Point Round Interrupt
(IVOR34).”

5.6.20/5-26

1 Autovectored external and critical input interrupts use this IVOR. Vectored interrupts supply an interrupt vector offset
directly.

Table 5-2. Exceptions and Conditions (continued)

Interrupt Type IVORn Cause Section/Page

Chapter 5. Interrupts and Exceptions 5-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Machine State Register (MSR)

5.4 Machine State Register (MSR)
The MSR, shown in Figure 5-4, defines the state of the processor.

The MSR bits are described in Table 5-4.

Table 5-3. ESR Field Descriptions

Bit(s) Name Description Associated Interrupt Type

32–35 — Reserved, should be cleared. —

36 PIL Illegal instruction exception Program

37 PPR Privileged instruction exception Program

38 PTR Trap exception Program

39 FP Floating-point operation Alignment, data storage, data TLB, program

40 ST Store operation Alignment, data storage, data TLB

41 — Reserved, should be cleared. —

42 DLK Data cache locking Data storage

43 ILK Instruction cache locking Data storage

44 AP Auxiliary processor operation (unused in the
E200z6)

Alignment, data storage, data TLB, program

45 PUO Unimplemented operation exception Program

46 BO Byte ordering exception Data storage

47 PIE Program imprecise exception—unused in the
e200z6 (reserved, should be cleared)

—

48–55 — Reserved, should be cleared. —

56 SPE SPE APU operation SPE unavailable, SPE floating-point data
exception, SPE floating-point round exception,
alignment, data storage, data TLB

57–62 — Reserved on the e200z6, should be cleared. —

63 XTE External termination error (precise) Data storage, instruction storage

32 36 37 38 39 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 63

Field — UCLE SPE — WE CE — EE PR FP ME FE0 UBLE DE FE1 — IS DS —

Reset All zeros

R/W R/W

Figure 5-1. Machine State Register (MSR)

5-6 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Machine State Register (MSR)

Table 5-4. MSR Field Descriptions

Bits Name Description

32–36 — Reserved, should be cleared.

37 UCLE User cache lock enable
0 Execution of the cache locking instructions in user mode (MSR[PR] = 1) disabled; DSI exception

taken instead, and ILK or DLK is set in the ESR.
1 Execution of the cache lock instructions in user mode enabled

38 SPE SPE available
0 Execution of SPE APU vector instructions is disabled; SPE Unavailable exception taken instead,

and ESR[SPE] is set.
1 Execution of SPE APU vector instructions is enabled.

39–44 — Reserved, should be cleared.

45 WE Wait state (power management) enable. Defined as optional by Book E and implemented in the
e200z6.
0 Power management is disabled.
1 Power management is enabled. The processor can enter a power-saving mode when additional

conditions are present. The mode chosen is determined by HID0[DOZE,NAP,SLEEP], described in
Section 2.11.1, “Hardware Implementation-Dependent Register 0 (HID0).”

46 CE Critical interrupt enable
0 Critical input and watchdog timer interrupts are disabled.
1 Critical input and watchdog timer interrupts are enabled.

47 — Preserved

48 EE External interrupt enable
0 External Input, decrementer, and fixed-interval timer interrupts are disabled.
1 External input, decrementer, and fixed-interval timer interrupts are enabled.

49 PR Problem state
0 The processor is in supervisor mode, can execute any instruction, and can access any resource (for

example, GPRs, SPRs, MSR, etc.).
1 The processor is in user mode, cannot execute any privileged instruction, and cannot access any

privileged resource.

50 FP Floating-point available
0 Floating-point unit is unavailable. The processor cannot execute floating-point instructions, including

floating-point loads, stores, and moves. (An FP unavailable interrupt is generated on attempted
execution of floating-point instructions).

1 Floating-point unit is available. The processor can execute floating-point instructions. (Note that for
the e200z6, the floating-point unit is not supported; an unimplemented operation exception is
generated for attempted execution of floating-point instructions when FP is set).

51 ME Machine check enable
0 Machine check interrupts are disabled. Checkstop mode is entered when p_mcp_b is recognized

asserted or an ISI or ITLB exception occurs on a fetch of the first instruction of an exception handler.
1 Machine check interrupts are enabled.

52 FE0 Floating-point exception mode 0 (not used by the e200z6)

53 — Reserved, should be cleared.

54 DE Debug interrupt enable
0 Debug interrupt APU is disabled and the Book E–defined critical-type debug interrupt is invoked if

a debug interrupt occurs.
1 Debug interrupt APU is enabled and the e200z6-defined debug APU interrupt is invoked if a debug

interrupt occurs.

Chapter 5. Interrupts and Exceptions 5-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Machine State Register (MSR)

5.4.1 Machine Check Syndrome Register (MCSR)

When the core complex takes a machine check interrupt, it updates the machine check
syndrome register (MCSR), to differentiate among machine check conditions. The MCSR
also indicates whether the source of a machine check condition is recoverable. When an
MCSR bit is set, the core complex asserts p_mcp_out for system information.

Table 5-5 describes MCSR fields.

5.4.1.1 Interrupt Vector Prefix Register (IVPR)

The IVPR, shown in Figure 5-2, is used during interrupt processing for determining the
starting address for the software interrupt handler. The value contained in the vector offset
field of the IVOR selected for a particular interrupt type is concatenated with the value in
the IVPR to form an instruction address from which execution is to begin.

55 FE1 Floating-point exception mode 1 (not used by the e200z6)

56 — Reserved, should be cleared.

57 — Preserved, should be cleared.

58 IS Instruction address space
0 The processor directs all instruction fetches to address space 0 (TS=0 in the relevant TLB entry).
1 The processor directs all instruction fetches to address space 1 (TS=1 in the relevant TLB entry).

59 DS Data address space
0 The core directs all data storage accesses to address space 0 (TS=0 in the relevant TLB entry).
1 The core directs all data storage accesses to address space 1 (TS=1 in the relevant TLB entry).

60–61 — Reserved, should be cleared.

62–63 — Preserved, should be cleared.

Table 5-5. MCSR Field Descriptions

Bits Name Description Recoverable

32 MCP Machine check input pin Maybe

33 — Reserved, should be cleared. —

34 CP_PERR Cache push parity error Unlikely

35 CPERR Cache parity error Precise

36 EXCP_ERR ISI, ITLB, or bus error on first instruction fetch for an exception handler Precise

37–60 — Reserved, should be cleared. —

61 BUS_WRERR Write bus error on buffered store or cache line push Unlikely

62–63 — Reserved, should be cleared. —

Table 5-4. MSR Field Descriptions (continued)

Bits Name Description

5-8 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Vector Offset Registers (IVORn)

IVPR fields are defined in Table 5-6.

5.5 Interrupt Vector Offset Registers (IVORn)
IVORs are used during interrupt processing for determining the starting address of a
software interrupt handler. The value in the vector offset field of the IVOR assigned to the
interrupt type is concatenated with the value in IVPR to form an instruction address at
which execution is to begin. The e200z6 also defines the low-order bits of the IVORs
(defined as zeros in Book E) as a context selector field to be used as the current context
number once interrupt handling begins when multiple hardware contexts are supported
(CTXCR[NUMCTX] ≠ 0). For forward compatibility, this field should be written to zero
when only a single context is supported because it will not be implemented and is read as
zero.

IVOR SPR assignments are shown in Table 5-7.

32 47 48 63

Field Vector Base —

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 63

Figure 5-2. Interrupt Vector Prefix Register (IVPR)

Table 5-6. IVPR Field Descriptions

Bits Name Description

32–47 Vector
Base

Used to define the base location of the vector table, aligned to a 64-Kbyte boundary. This field
provides the high-order 16 bits of the location of all interrupt handlers. The contents of the IVORn
appropriate for the type of exception being processed are concatenated with the IVPR vector base to
form the address of the handler in memory.

48–63 — Reserved, should be cleared.

32 47 48 59 60 63

Field — Vector Offset — CS

Reset Unaffected

R/W R/W

SPR See Table 5-7.

Figure 5-3. Interrupt Vector Offset Registers (IVOR)

Chapter 5. Interrupts and Exceptions 5-9
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Definitions

5.6 Interrupt Definitions
The following sections describes interrupts as they are implemented on the e200z6.

5.6.1 Critical Input Interrupt (IVOR0)

A critical input exception is signaled to the processor by the assertion of the critical
interrupt pin (p_critint_b). When the e200z6 detects the exception, if critical interrupts are
enabled (MSR[CE] = 1), the e200z6 takes the critical input interrupt. The p_critint_b input
is a level-sensitive signal expected to remain asserted until the e200z6 acknowledges the
interrupt. If p_critint_b is negated early, recognition of the interrupt request is not
guaranteed. After the e200z6 begins execution of the critical interrupt handler, the system
can safely negate p_critint_b.

Table 5-7. IVOR Assignments

IVOR Number SPR Interrupt Type

IVOR0 400 Critical input

IVOR1 401 Machine check

IVOR2 402 Data storage

IVOR3 403 Instruction storage

IVOR4 404 External input

IVOR5 405 Alignment

IVOR6 406 Program

IVOR7 407 Floating-point unavailable

IVOR8 408 System call

IVOR9 409 Auxiliary processor unavailable. Not used by the e200z6.

IVOR10 410 Decrementer

IVOR11 411 Fixed-interval timer interrupt

IVOR12 412 Watchdog timer interrupt

IVOR13 413 Data TLB error

IVOR14 414 Instruction TLB error

IVOR15 415 Debug

IVOR16–IVOR31 — Reserved for future architectural use

e200z6-Specific IVORs (Defined by the EID)

IVOR32 528 SPE APU unavailable

IVOR33 529 SPE floating-point data exception

IVOR34 530 SPE floating-point round exception

5-10 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Definitions

A critical input interrupt may be delayed by other higher priority exceptions or if MSR[CE]
is cleared when the exception occurs.

Table 5-8 lists register settings when a critical input interrupt is taken.

When the debug APU is enabled, MSR[DE] is not automatically cleared by a critical input
interrupt, but can be configured to be cleared through HID0 (HID0[CICLRDE]). Refer to
Section 2.11.1, “Hardware Implementation-Dependent Register 0 (HID0).”

IVOR0 is the vector offset register used by autovectored critical input interrupts to
determine the interrupt handler location. The e200z6 also provides the capability to directly
vector critical input interrupts to multiple handlers by allowing a critical input interrupt
request to be accompanied by a vector offset. The p_voffset[0:11] inputs are used in place
of the value in IVOR0 to form the interrupt vector when a critical input interrupt request is
not autovectored (p_avec_b negated when p_critint_b asserted).

5.6.2 Machine Check Interrupt (IVOR1)

The e200z6 implements the machine check exception as defined in Book E except for
automatic clearing of MSR[DE] (see later paragraph). The e200z6 initiates a machine
check interrupt if MSR[ME]=1 and any of the machine check sources listed in Table 5-2 is
detected. As defined in Book E, the interrupt is not taken if MSR[ME] is cleared, in which
case the processor generates an internal checkstop condition and enters checkstop state.
When a processor is in checkstop state, instruction processing is suspended and generally
cannot continue without restarting the processor. Note that other conditions may lead to the
checkstop condition; the disabled machine check exception is only one of these.

Table 5-8. Critical Input Interrupt Register Settings

Register Setting Description

CSRR0 Set to the effective address of the instruction that the processor would have attempted to execute next if
no exception conditions were present.

CSRR1 Set to the contents of the MSR at the time of the interrupt.

MSR UCLE 0
SPE 0
WE 0
CE 0
EE 0

PR 0
FP 0
ME —
FE0 0

DE —/0 1

FE1 0
IS 0
DS 0

1 DE is cleared when the debug APU is disabled. Clearing of DE is optionally supported by control in HID0 when the
debug APU is enabled.

ESR Unchanged

MCSR Unchanged

DEAR Unchanged

Vector IVPR[32–47] || IVOR0[48–59] || 0b0000 (autovectored)
IVPR[32–47] || p_voffset[0:11] || 0b0000 (non-autovectored)

Chapter 5. Interrupts and Exceptions 5-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Definitions

The e200z6 implements the machine check syndrome register (MCSR) to record the
sources of machine checks.

MSR[DE] is not automatically cleared by a machine check exception, but can be configured
to be cleared or left unchanged through HID0[MCCLRDE]. See Section 2.11.1, “Hardware
Implementation-Dependent Register 0 (HID0).”

5.6.2.1 Machine Check Interrupt Enabled (MSR[ME]=1)

Machine check interrupts are enabled when MSR[ME]=1. When a machine check interrupt
is taken, registers are updated as shown in Table 5-9.

The machine check input, p_mcp_b, can be masked by HID0[EMCP].

Most machine check exceptions are unrecoverable in the sense that execution cannot
resume in the context that existed before the interrupt. However, system software can use
the machine check interrupt handler to try to identify and recover from the machine check
condition.

The MCSR is provided to identify the sources of a machine check and may be used to
identify recoverable events.

The interrupt handler should set MSR[ME] as soon as possible to avoid entering checkstop
state if another machine check condition occurs.

5.6.2.2 Checkstop State

Exception-related checkstop conditions are as follows:

• MSR[ME] = 0 and a machine check occurs

Table 5-9. Machine Check Interrupt Register Settings

Register Setting Description

CSRR0 On a best-effort basis, the e200z6 sets this to the address of some instruction that was executing or about to
be executing when the machine check condition occurred.

CSRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE 0

EE 0
PR 0
FP 0
ME 0

DE 0 — Cleared when the debug APU is disabled. Clearing of DE is optionally
supported by control in HID0 when the debug APU is enabled.

FE1 0
IS 0
DS 0

ESR Unchanged

MCSR Updated to reflect the sources of a machine check

DEAR Unchanged unless machine check is due to a data access causing a cache parity error to be signaled;
updated with data access effective address in that case

Vector IVPR[32–47] || IVOR1[48–59] || 0b0000

5-12 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Definitions

• First instruction in an interrupt handler cannot be executed due to a translation miss
(ITLB), page marked no execute (ISI), or a bus error termination, and MSR[ME]=0

• Bus error termination for a buffered store or a cache line push and MSR[ME]=0

• Cache parity error condition is signaled and MSR[ME] = 0

Non-exception–related checkstop conditions are as follows:

• TCR[WRC]—Watchdog reset control bits set to checkstop on second watchdog
timer overflow event

When a processor is in checkstop state, instruction processing is suspended and generally
cannot resume without the processor being reset. To indicate that a checkstop condition
exists, the p_chkstop output is asserted whenever the CPU is in checkstop state.

When a debug request is presented to the e200z6 core while in the checkstop state,
p_wakeup is asserted, and when m_clk is provided to the CPU, it temporarily exits
checkstop state and enters debug mode. The p_chkstop output is negated for the duration of
the time the CPU remains in a debug session (p_debug_b asserted). When the debug session
is exited, the CPU re-enters checkstop state. Note that the external system logic may be in
an undefined state following a checkstop condition, such as having an outstanding bus
transaction, or other inconsistency; thus, no guarantee can be made in general about
activities performed in debug mode while a checkstop is still outstanding. Debug logic does
have the capability of generating assertion of p_resetout_b through DBCR0.

5.6.3 Data Storage Interrupt (IVOR2)

A data storage interrupt (DSI) may occur if no higher priority exception exists and one of
the following exception conditions exists:

• Read or write access control exception condition

• Byte ordering exception condition

• Cache locking exception condition

• External termination error (precise)

Access control is defined as in Book E. A byte-ordering exception condition occurs for any
misaligned access across a page boundary to pages with mismatched E bits. Cache locking
exception conditions occur for any attempt to execute dcbtls, dcbtstls, dcblc, icbtls, or
icblc in user mode with MSR[UCLE] = 0. External termination errors occur when a load,
cache-inhibited, or guarded store is terminated by assertion of a p_hpresp=ERROR
termination response.

Table 5-10 lists register settings when a DSI is taken.

Chapter 5. Interrupts and Exceptions 5-13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Definitions

5.6.4 Instruction Storage Interrupt (IVOR3)

An instruction storage interrupt (ISI) occurs when no higher priority exception exists and
an execute access control exception occurs. This interrupt is implemented as defined by
Book E, except that the byte ordering condition does not occur in the e200z6 and the
addition of precise external termination errors that occur when an instruction fetch is
terminated by assertion of a p_hpresp=ERROR termination response.

Table 5-11 lists register settings when an ISI is taken.

Table 5-10. Data Storage Interrupt Register Settings

Register Setting Description

SRR0 Set to the effective address of the excepting load/store instruction

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0

PR 0
FP 0
ME —
FE0 0

DE —
FE1 0
IS 0
DS 0

ESR Access:
Byte ordering:
Cache locking:
External termination error (precise):

[ST], [SPE]. All other bits cleared.
[ST], [SPE], BO. All other bits cleared.
(DLK, ILK), [ST]. All other bits cleared.
[ST], [SPE], XTE. All other bits cleared.

MCSR Unchanged

DEAR For access and byte-ordering exceptions, set to the effective address of a byte within the page whose
access caused the violation. Undefined on cache-locking exceptions. (The e200z6 does not update DEAR
on a cache locking exception.)

Vector IVPR[32–47] || IVOR2[48–59] || 0b0000

Table 5-11. Instruction Storage Interrupt Register Settings

Register Setting Description

SRR0 Set to the effective address of the excepting instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0

PR 0
FP 0
ME —
FE0 0

DE —
FE1 0
IS 0
DS 0

ESR [XTE]. All other bits cleared.

MCSR Unchanged

DEAR Unchanged

Vector IVPR[32–47] || IVOR3[48–59] || 0b0000

5-14 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Definitions

5.6.5 External Input Interrupt (IVOR4)

An external input exception is signaled to the processor by the assertion of the external
interrupt input (p_extint_b), a level-sensitive signal expected to remain asserted until the
e200z6 acknowledges the external interrupt. If p_extint_b is negated early, recognition of
the interrupt request is not guaranteed. When the e200z6 detects the exception, if the
exception is enabled by MSR[EE], the e200z6 takes an external input interrupt.

An external input interrupt may be delayed by other higher priority exceptions or if
MSR[EE] is cleared when the exception occurs.

Table 5-12 lists register settings when an external input interrupt is taken.

IVOR4 is the vector offset register used by autovectored external input interrupts to
determine the interrupt handler location. The e200z6 also provides the capability to directly
vector external input interrupts to multiple handlers by allowing an external input interrupt
request to be accompanied by a vector offset. The p_voffset[0:11] input signals are used in
place of the value in IVOR4 when an external input interrupt request is not autovectored
(p_avec_b negated when p_extint_b asserted).

5.6.6 Alignment Interrupt (IVOR5)

The e200z6 implements the alignment interrupt as defined by Book E. An alignment
exception is generated when any of the following occurs:

• The operand of lmw or stmw is not word-aligned.

• The operand of lwarx or stwcx. is not word-aligned.

• Execution of dcbz is attempted with a disabled cache.

Table 5-12. External Input Interrupt Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0

PR 0
FP 0
ME —
FE0 0

DE —
FE1 0
IS 0
DS 0

ESR Unchanged

MCSR Unchanged

DEAR Unchanged

Vector IVPR[32–47] || IVOR4[48–59] || 0b0000
IVPR[32–47] || p_voffset[0:11] || 0b0000 (non-autovectored)

Chapter 5. Interrupts and Exceptions 5-15
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Definitions

• Execution of dcbz is attempted with an enabled cache and W or I =1.

• Execution is attempted of an SPE APU load or store instruction that is not properly
aligned.

Table 5-13 lists register settings when an alignment interrupt is taken.

5.6.7 Program Interrupt (IVOR6)

The e200z6 implements the program interrupt as defined by Book E. A program interrupt
occurs when no higher priority exception exists and one or more of the following exception
conditions defined in Book E occur:

• Illegal instruction exception

• Privileged instruction exception

• Trap exception

• Unimplemented operation exception

The e200z6 invokes an illegal instruction program exception on attempted execution of the
following instructions:

• Instruction from the illegal instruction class

• mtspr and mfspr with an undefined SPR specified

The e200z6 invokes a privileged instruction program exception on attempted execution of
the following instructions when MSR[PR]=1 (user mode):

• A privileged instruction

• mtspr and mfspr instructions that specify a SPRN value with SPRN[5] = 1 (even if
the SPR is undefined).

Table 5-13. Alignment Interrupt Register Settings

Register Setting Description

SRR0 Set to the effective address of the excepting load/store instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0

PR 0
FP 0
ME —
FE0 0

DE —
FE1 0
IS 0
DS 0

ESR [ST], [SPE]. All other bits cleared.

MCSR Unchanged

DEAR Set to the effective address of a byte of the load or store whose access caused the violation.

Vector IVPR[32–47] || IVOR5[48–59] || 0b0000

5-16 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Definitions

The e200z6 invokes an trap exception on execution of tw and twi if the trap conditions are
met and the exception is not also enabled as a debug interrupt.

The e200z6 invokes an unimplemented operation program exception on attempted
execution of the instructions lswi, lswx, stswi, stswx, mfapidi, mfdcr, mfdcrx, mtdcr,
mtdcrx, or any Book E floating-point instruction when MSR[FP]=1. All other defined or
allocated instructions that are not implemented by the e200z6 cause a illegal instruction
program exception.

Table 5-14 lists register settings when a program interrupt is taken.

5.6.8 Floating-Point Unavailable Interrupt (IVOR7)

The floating-point unavailable exception is implemented as defined in Book E. A
floating-point unavailable interrupt occurs when no higher priority exception exists, an
attempt is made to execute a floating-point instruction (including floating-point load, store,
or move instructions), and the floating-point available bit in the MSR is disabled
(MSR[FP]=0).

Table 5-15 lists register settings when a floating-point unavailable interrupt is taken.

Table 5-14. Program Interrupt Register Settings

Register Setting Description

SRR0 Set to the effective address of the excepting instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt.

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0

PR 0
FP 0
ME —
FE0 0

DE —
FE1 0
IS 0
DS 0

ESR Illegal: PIL. All other bits cleared.
Privileged: PPR. All other bits cleared.
Trap: PTR. All other bits cleared.
Unimplemented: PUO, [FP]. All other bits cleared.

MCSR Unchanged

DEAR Unchanged

Vector IVPR[32–47] || IVOR6[48–59] || 0b0000

Table 5-15. Floating-Point Unavailable Interrupt Register Settings

Register Setting Description

SRR0 Set to the effective address of the excepting instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

Chapter 5. Interrupts and Exceptions 5-17
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Definitions

5.6.9 System Call Interrupt (IVOR8)

A system call interrupt occurs when a system call (sc) is executed and no higher priority
exception exists. Table 5-16 lists register settings when a system call interrupt is taken.

5.6.10 Auxiliary Processor Unavailable Interrupt (IVOR9)

An APU exception is defined by Book E to occur when an attempt is made to execute an
APU instruction which is implemented but configured as unavailable, and no higher
priority exception condition exists.

The e200z6 does not use this interrupt.

5.6.11 Decrementer Interrupt (IVOR10)

The e200z6 implements the decrementer exception as described in Book E. A decrementer
interrupt occurs when no higher priority exception exists, a decrementer exception

MSR UCLE 0
SPE 0
WE 0
CE —
PR 0

FP 0
ME —
FE0 0
DE —

FE1 0
IS 0
DS 0

ESR Unchanged

MCSR Unchanged

DEAR Unchanged

Vector IVPR[32–47] || IVOR7[48–59] || 0b0000

Table 5-16. System Call Interrupt Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction following the sc instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0

PR 0
FP 0
ME —
FE0 0

DE —
FE1 0
IS 0
DS 0

ESR Unchanged

MCSR Unchanged

DEAR Unchanged

Vector IVPR[32–47] || IVOR8[48–59] || 0b0000

Table 5-15. Floating-Point Unavailable Interrupt Register Settings (continued)

Register Setting Description

5-18 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Definitions

condition exists (TSR[DIS]=1), and the interrupt is enabled (both TCR[DIE] and
MSR[EE]=1).

The timer status register (TSR) holds the decrementer interrupt bit set by the timer facility
when an exception is detected. Software must clear this bit in the interrupt handler to avoid
repeated decrementer interrupts.

Table 5-17 lists register settings when a decrementer interrupt is taken.

5.6.12 Fixed-Interval Timer Interrupt (IVOR11)

The e200z6 implements the fixed-interval timer exception as defined in Book E. The
triggering of the exception is caused by selected bits in the time base register changing from
0 to 1.

A fixed-interval timer interrupt occurs when no higher priority exception exists, a
fixed-interval timer exception exists (TSR[FIS]=1), and the interrupt is enabled (both
TCR[FIE] and MSR[EE]=1).

The timer status register (TSR) holds the fixed-interval timer interrupt bit set by the timer
facility when an exception is detected. Software must clear this bit in the interrupt handler
to avoid repeated fixed-interval timer interrupts.

Table 5-18 lists register settings when a fixed-interval timer interrupt is taken.

Table 5-17. Decrementer Interrupt Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0

PR 0
FP 0
ME —
FE0 0

DE —
FE1 0
IS 0
DS 0

ESR Unchanged

MCSR Unchanged

DEAR Unchanged

Vector IVPR[32–47] || IVOR10[48–59] || 0b0000

Table 5-18. Fixed-Interval Timer Interrupt Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 Set to the contents of the MSR at the time of the interrupt.

Chapter 5. Interrupts and Exceptions 5-19
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Definitions

5.6.13 Watchdog Timer Interrupt (IVOR12)

The e200z6 implements the watchdog timer interrupt as defined in Book E. The exception
is triggered by the first enabled watchdog timeout.

A watchdog timer interrupt occurs when no higher priority exception exists, a watchdog
timer exception exists (TSR[WIS]=1), and the interrupt is enabled (both TCR[WIE] and
MSR[CE] = 1).

The TSR holds the watchdog interrupt bit set by the timer facility when an exception is
detected. Software must clear this bit in the interrupt handler to avoid repeated watchdog
interrupts. Table 5-19 lists register settings when a watchdog timer interrupt is taken.

MSR[DE] is not automatically cleared by a watchdog timer interrupt, but can be configured
to be cleared through HID0[CICLRDE]. Refer to Section 2.11.1, “Hardware
Implementation-Dependent Register 0 (HID0).”

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0

PR 0
FP 0
ME —
FE0 0

DE —
FE1 0
IS 0
DS 0

ESR Unchanged

MCSR Unchanged

DEAR Unchanged

Vector IVPR[32–47] || IVOR11[48–59] || 0b0000

Table 5-19. Watchdog Timer Interrupt Register Settings

Register Setting Description

CSRR0 Set to the effective address of the instruction that the processor would have attempted to execute next if
no exception conditions were present.

CSRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE 0
EE 0

PR 0
FP 0
ME —
FE0 0

DE 0/— Cleared when the debug APU is disabled. Clearing DE is optionally
supported by control in HID0 when the debug APU is enabled.

FE1 0
IS 0
DS 0

ESR Unchanged

MCSR Unchanged

DEAR Unchanged

Vector IVPR[32–47] || IVOR12[48–59] || 0b0000

Table 5-18. Fixed-Interval Timer Interrupt Register Settings (continued)

Register Setting Description

5-20 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Definitions

5.6.14 Data TLB Error Interrupt (IVOR13)

A data TLB error interrupt occurs when no higher priority exception exists and a data TLB
error exception exists due to a data translation lookup miss in the TLB. Table 5-20 lists
register settings when a DTLB interrupt is taken.

5.6.15 Instruction TLB Error Interrupt (IVOR14)

An instruction TLB error interrupt occurs when no higher priority exception exists and an
instruction TLB error exception exists due to an instruction translation lookup miss in the
TLB. Table 5-21 lists register settings when an ITLB interrupt is taken.

Table 5-20. Data TLB Error Interrupt Register Settings

Register Setting Description

SRR0 Set to the effective address of the excepting load/store instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0

PR 0
FP 0
ME —
FE0 0

DE —
FE1 0
IS 0
DS 0

ESR [ST], [SPE]. All other bits cleared.

MCSR Unchanged

DEAR Set to the effective address of a byte of the load or store whose access caused the violation.

Vector IVPR[32–47] || IVOR13[48–59] || 0b0000

Table 5-21. Instruction TLB Error Interrupt Register Settings

Register Setting Description

SRR0 Set to the effective address of the excepting instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0

PR 0
FP 0
ME —
FE0 0

DE —
FE1 0
IS 0
DS 0

ESR Unchanged

MCSR Unchanged

DEAR Unchanged

Vector IVPR[32–47] || IVOR14[48–59] || 0b0000

Chapter 5. Interrupts and Exceptions 5-21
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Definitions

5.6.16 Debug Interrupt (IVOR15)

The e200z6 implements the debug interrupt as defined in Book E with the following
changes:

• When the debug APU is enabled (MSR[DE] = 1), debug is no longer a critical
interrupt, but uses DSRR0 and DSRR1 for saving machine state on context switch.

• The return from debug interrupt instruction (rfdi) supports the debug APU
save/restore registers (DSRR0 and DSRR1).

• The critical interrupt taken debug event allows critical interrupts to generate a debug
event.

• The critical return debug event allows debug events to be generated for rfci
instructions.

Multiple sources can signal a debug exception. A debug interrupt occurs when no higher
priority exception exists, a debug exception is indicated in the debug status register
(DBSR), and debug interrupts are enabled (DBCR0[IDM]=1 (internal debug mode) and
MSR[DE]=1). Enabling debug events and other debug modes is discussed in Chapter 10,
“Debug Support.”

With the debug APU enabled (see Section 2.11.1, “Hardware Implementation-Dependent
Register 0 (HID0)”), the debug interrupt uses its own set of save/restore registers (DSRR0,
DSRR1) to allow debugging of both critical and non-critical interrupt handlers. This
capability also allows interrupts to be handled while in a debug software handler. External
and critical interrupts are not automatically disabled when a debug interrupt occurs but can
be configured to be cleared through HID0[DCLREE,DCLRCE]. See Section 2.11.1,
“Hardware Implementation-Dependent Register 0 (HID0).” When the debug APU is
disabled, debug interrupts use CSRR0 and CSRR1 to save machine state.

NOTE
For additional details regarding the following descriptions of
debug exception types, refer to Section 10.4, “Software Debug
Events and Exceptions.”

5-22 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Definitions

Table 5-22. Debug Exceptions

Exception Cause

Instruction
address
compare (IAC)

Instruction address compare events are enabled and an instruction address match occurs as defined
by the debug control registers. This could either be a direct instruction address match or a selected set
of instruction addresses. IAC has the highest priority of all instruction-based interrupts, even if the
instruction itself encountered an ITLB error or instruction storage exception.

Branch taken
(BRT)

A branch instruction is considered taken by the branch unit and branch taken events are enabled. The
debug interrupt is taken when no higher priority exception is pending.

Data address
compare
(DAC)

Data address compare events are enabled and a data access address match occurs as defined by the
debug control registers. This could either be a direct data address match or a selected set of data
addresses. The debug interrupt is taken when no higher priority exception is pending. The e200z6 does
not implement the data value compare debug mode, specified in Book E. The e200z6 implementation
provides IAC linked with DAC exceptions. This results in a DAC exception only if one or more IAC
conditions are also met. See Chapter 10, “Debug Support,” for more details.

Trap (TRAP)
debug

Program trap exception is generated while trap events are enabled. If MSR[DE] is set, the debug
exception has higher priority than the program exception and is taken instead of a trap type program
interrupt. The debug interrupt is taken when no higher priority exception is pending. If MSR[DE] is
cleared when a trap debug exception occurs, a trap exception type program interrupt is taken instead.

Return (RET) Return exceptions are enabled and rfi is executed. Return debug exceptions are not generated for rfci
or rfdi. If MSR[DE]=1 when rfi executes, a debug interrupt occurs if no higher priority exception exists
that is enabled to cause an interrupt. CSRR0 (debug APU disabled) or DSRR0 (debug APU enabled)
is set the address of the rfi. If MSR[DE] = 0 when rfi executes, a debug interrupt does not occur
immediately; the event is recorded by setting DBSR[RET] and DBSR[IDE].

Critical return
(CRET)

Critical return debug events are enabled and rfci is executed. Critical return debug exceptions are only
generated for rfci. If MSR[DE]=1 when rfci executes, a debug interrupt occurs if no higher priority
exception exists that is enabled to cause an interrupt. CSRR0 (debug APU disabled) or DSRR0 (debug
APU enabled) is set to the address of the rfci. If MSR[DE] = 0 when rfci executes, a debug interrupt
does not occur immediately, but the event is recorded by setting DBSR[CRET] and DBSR[IDE]. Note
that critical return debug events should not normally be enabled unless the debug APU is enabled to
avoid corrupting CSRR0 and CSRR1.

Instruction
complete
(ICMP)

An instruction completed while this event is enabled. A mtmsr or mtdbcr0 that causes both MSR[DE]
and DBCR0[IDM] to end up set, enabling precise debug mode, may cause an imprecise (delayed)
debug exception to be generated due to an earlier recorded event in the DBSR.

Interrupt taken
(IRPT)

A non-critical interrupt context switch is detected. This exception is imprecise and unordered with
respect to the program flow. Note that an IRPT debug interrupt occurs only when detecting a non-critical
interrupt on the e200z6. The value saved in CSRR0/DSRR0 is the address of the non-critical interrupt
handler.

Critical
interrupt taken
(CIRPT)

A critical interrupt context switch is detected. This exception is imprecise and unordered with respect
to program flow. Note that a CIRPT debug interrupt occurs only when detecting a critical interrupt on
the e200z6. The address of the critical interrupt handler is saved in CSRR0/DSRR0. To avoid corrupting
CSRR0 and CSRR1, critical interrupt taken debug events should not normally be enabled unless the
debug APU is enabled.

Unconditional
debug event
(UDE)

The unconditional debug event signal (p_ude) transitions to asserted state.

Debug counter A debug counter exception is enabled and a debug counter decrements to zero.

External
debug

An external debug exception is enabled and an external debug event (p_devt1, p_devt2) transitions to
the asserted state.

Chapter 5. Interrupts and Exceptions 5-23
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Definitions

The DBSR provides a syndrome to differentiate among debug exceptions that can generate
the same interrupt. See Chapter 10, “Debug Support.” Table 5-23 lists register settings
when a debug interrupt is taken.

5.6.17 System Reset Interrupt

The e200z6 implements the system reset interrupt as defined in Book E. The system reset
exception is a non-maskable, asynchronous exception signaled to the processor through the
assertion of system-defined signals.

A system reset may be initiated as follows:

Table 5-23. Debug Interrupt Register Settings

Register Setting Description

CSRR0 (MSR[DE]=0)
DSRR0 (MSR[DE]=1)

Set to the effective address of the excepting instruction for IAC, BRT, RET, CRET, and TRAP.
Set to the effective address of the next instruction to be executed following the excepting instruction
for DAC and ICMP.
For UDE, IRPT, CIRPT, DCNT, or DEVT type exceptions, set to the effective address of the
instruction that would have attempted to execute next if no exception conditions were present.

CSRR1/ DSRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE0
SPE 0
WE 0
CE —/0 1
EE —/01

1 Conditional based on HID0 control bits.

PR 0
FP 0
ME —
FE0 0

DE 0
FE1 0
IS 0
DS 0

DBSR 2

2 Note that multiple DBSR bits may be set.

Unconditional debug event:
Instruction complete debug event:
Branch taken debug event:
Interrupt taken debug event:
Critical interrupt taken debug event:
Trap instruction debug event:
Instruction address compare:
Data address compare:
Return debug event:
Critical return debug event:
Debug counter event:
External debug event:
and optionally, an
imprecise debug event flag

UDE
ICMP
BRT
IRPT
CIRPT
TRAP
{IAC1, IAC2, IAC3, IAC4}
{DAC1R, DAC1W, DAC2R, DAC2W}
RET
CRET
{DCNT1, DCNT2}
{DEVT1, DEVT2}

{IDE}

ESR Unchanged

MCSR Unchanged

DEAR Unchanged

Vector IVPR[32–47] || IVOR15[48–59] || 0b0000

5-24 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Definitions

• By asserting the p_reset_b input. p_reset_b must remain asserted for a period
(specified in the hardware specifications) that allows internal logic to be reset.
Assertion for less than the required interval causes unpredictable results.

• By asserting m_por during power-on reset. m_por must be asserted during power up
and must remain asserted for a period (specified in the hardware specifications) that
allows internal logic to be reset. Assertion for less than the required interval causes
unpredictable results.

• By watchdog timer reset control

• By debug reset control

When a reset request occurs, the processor branches to the system reset exception vector
(value on p_rstbase[0:19] concatenated with 0xFFC) without attempting to reach a
recoverable state. If reset occurs during normal operation, all operations stop and machine
state is lost. The internal state of the e200z6 after a reset is defined in Section 2.16.4, “Reset
Settings.”

For reset initiated by watchdog timer or debug reset control, the e200z6 implements
TSR[WRS] or DBSR[MRR] to help software determine the cause. Watchdog timer and
debug reset control provide the capability to assert p_resetout_b. External logic may factor
this signal into p_reset_b to cause an e200z6 reset.

Table 5-24 shows the TSR bits associated with reset status.

Table 5-25 shows the DBSR bits associated with reset status.

Table 5-26 lists register settings when a system reset interrupt is taken.

Table 5-24. TSR Watchdog Timer Reset Status

Bits Name Description

34–35 WRS 00 No action performed by watchdog timer
01 Watchdog timer second timeout caused checkstop.
10 Watchdog timer second timeout caused p_resetout_b to be asserted.
11 Reserved

Table 5-25. DBSR Most Recent Reset

Bits Name Function

34–35 MRR 00 No reset occurred since these bits were last cleared by software.
01 A reset occurred since these bits were last cleared by software.
1x Reserved

Table 5-26. System Reset Interrupt Register Settings

Register Setting Description

CSRR0 Undefined

CSRR1 Undefined

Chapter 5. Interrupts and Exceptions 5-25
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Definitions

5.6.18 SPE APU Unavailable Interrupt (IVOR32)

The SPE APU unavailable exception is taken if MSR[SPE] is cleared and execution of an
SPE APU instruction other than an embedded scalar floating-point or brinc instruction is
attempted. When the SPE APU unavailable exception occurs, the processor suppresses
execution of the instruction causing the exception. Table 5-27 lists register settings when
an SPE unavailable interrupt is taken.

5.6.19 SPE Floating-Point Data Interrupt (IVOR33)

The SPE floating-point data interrupt is taken if no higher priority exception exists and an
SPE floating-point data exception is generated. When a floating-point data exception
occurs, the processor suppresses execution of the instruction causing the exception.

Table 5-28 lists register settings when an SPE floating-point data interrupt is taken.

MSR UCLE 0
SPE 0
WE 0
CE 0

EE 0
PR 0
FP 0
ME 0

DE 0
FE1 0
IS 0
DS 0

ESR Cleared

DEAR Undefined

Vector [p_rstbase[0:19]] || 0xFFC

Table 5-27. SPE Unavailable Interrupt Register Settings

Register Setting Description

SRR0 Set to the effective address of the excepting SPE instruction

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0

PR 0
FP 0
ME —
FE0 0

DE —
FE1 0
IS 0
DS 0

ESR SPE. All other bits cleared.

MCSR Unchanged

DEAR Unchanged

Vector IVPR[32–47] || IVOR32[48–59] || 0b0000

Table 5-26. System Reset Interrupt Register Settings (continued)

Register Setting Description

5-26 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Exception Recognition and Priorities

5.6.20 SPE Floating-Point Round Interrupt (IVOR34)

The SPE floating-point round interrupt is taken when an SPE floating-point instruction
generates an inexact result and inexact exceptions are enabled.

Table 5-29 lists register settings when an SPE floating-point round interrupt is taken.

5.7 Exception Recognition and Priorities
The following list of exception categories describes how the e200z6 handles exceptions up
to the point of signaling the appropriate interrupt to occur. Also, instruction completion is
defined as updating all architectural registers associated with that instruction as necessary,
and then removing the instruction from the pipeline.

Table 5-28. SPE Floating-Point Data Interrupt Register Settings

Register Setting Description

SRR0 Set to the effective address of the excepting SPE instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0

PR 0
FP 0
ME —
FE0 0

DE —
FE1 0
IS 0
DS 0

ESR SPE. All other bits cleared.

MCSR Unchanged

DEAR Unchanged

Vector IVPR[32–47] || IVOR33[48–59] || 0b0000

Table 5-29. SPE Floating-Point Round Interrupt Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction following the excepting SPE instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0

PR 0
FP 0
ME —
FE0 0

DE —
FE1 0
IS 0
DS 0

ESR SPE. All other bits cleared.

MCSR Unchanged

DEAR Unchanged

Vector IVPR[32–47] || IVOR34[48–59] || 0b0000

Chapter 5. Interrupts and Exceptions 5-27
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Exception Recognition and Priorities

• Interrupts caused by asynchronous events (exceptions). These exceptions are further
distinguished by whether they are maskable and recoverable.

— Asynchronous, non-maskable, non-recoverable:

System reset by assertion of p_reset_b

Has highest priority and is taken immediately regardless of other pending
exceptions or recoverability. (Includes watchdog timer reset control and
debug reset control)

— Asynchronous, maskable, non-recoverable:

Machine check interrupt

Has priority over any other pending exception except system reset conditions;
is dependent on the source of the exception. Typically non-recoverable.

— Asynchronous, maskable, recoverable:

External input, fixed-interval timer, decrementer, critical input, unconditional
debug, external debug event, debug counter event, and watchdog timer interrupts

Before handling this type of exception, the processor needs to reach a
recoverable state. A maskable recoverable exception remains pending until
taken or cancelled by software.

• Synchronous, non-instruction-based interrupts. The only exception in this category
is the interrupt taken debug exception, recognized by an interrupt taken event. It is
not considered instruction-based but is synchronous with respect to program flow.

— Synchronous, maskable, recoverable:

Interrupt taken debug event

The machine is in a recoverable state due to the state of the machine at the
context switch triggering this event.

• Instruction-based interrupts. These interrupts are further organized by the point in
instruction processing in which they generate an exception.

— Instruction fetch:

Instruction storage, instruction TLB, and instruction address compare debug
exceptions

Once these types of exceptions are detected, the excepting instruction is
tagged. When the excepting instruction is next to begin execution and a
recoverable state has been reached, the interrupt is taken. If an event prior to
the excepting instruction causes a redirection of execution, the instruction
fetch exception is discarded (but may be encountered again).

— Instruction dispatch/execution:

Program, system call, data storage, alignment, floating-point unavailable, SPE
unavailable, data TLB, SPE floating-point data, SPE floating-point round, debug
(trap, branch taken, return) interrupts.

5-28 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Exception Recognition and Priorities

These types of exceptions are determined during decode or execution of an
instruction. The exception remains pending until all instructions before the
exception-causing instruction in program order complete. The interrupt is
then taken without completing the exception-causing instruction. If
completing previous instructions causes an exception, that exception takes
priority over the pending instruction dispatch/execution exception, which is
discarded (but may be encountered again when instruction processing
resumes).

— Post-instruction execution

Debug (data address compare, instruction complete) interrupt

These debug exceptions are generated following execution and completion of
an instruction while the event is enabled. If executing the instruction produces
conditions for another type of exception with higher priority, that exception is
taken and the post-instruction exception is discarded for the instruction (but
may be encountered again when instruction processing resumes).

5.7.1 Exception Priorities

Exceptions are prioritized as described in Table 5-30. Some exceptions may be masked or
imprecise, which affects their priority. Non-maskable exceptions such as reset and machine
check may occur at any time and are not delayed even if an interrupt is being serviced; thus,
state information for any interrupt may be lost. Reset and most machine checks are
non-recoverable.

Table 5-30. e200z6 Exception Priorities

Priority Exception Cause

Asynchronous Exceptions

0 System reset Assertion of p_reset_b, watchdog timer reset control, or debug reset control

1 Machine check Assertion of p_mcp_b, cache parity error, exception on fetch of first instruction
of an interrupt handler, bus error on buffered store or cache line push

2 — —

3 1 1. Debug: UDE
2. Debug: DEVT1

3. Debug: DEVT2
4. Debug: DCNT1
5. Debug: DCNT2

6. Debug: IDE

1. Assertion of p_ude (unconditional debug event)
2. Assertion of p_devt1 and event enabled (external debug event 1)

3. Assertion of p_devt2 and event enabled (external debug event 2)
4. Debug counter 1 exception
5. Debug counter 2 exception

6. Imprecise debug event (event imprecise due to previous higher priority
interrupt

41 Critical Input Assertion of p_critint_b

51 Watchdog timer Watchdog timer first enabled time-out

61 External input Assertion of p_extint_b

Chapter 5. Interrupts and Exceptions 5-29
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Exception Recognition and Priorities

71 Fixed-interval timer Posting of a fixed-interval timer exception in TSR due to programmer-specified
bit transition in the time base register

81 Decrementer Posting of a decrementer exception in TSR due to programmer-specified
decrementer condition

Instruction Fetch Exceptions

9 Debug: IAC (unlinked) Instruction address compare match for enabled IAC debug event and
DBCR0[IDM] asserted

10 ITLB error Instruction translation lookup miss in the TLB

11 Instruction storage • Access control (no execute permission)
 • External termination error (precise)

Instruction Dispatch/Execution Interrupts

12 Program: Illegal Attempted execution of an illegal instruction

13 Program: privileged Attempted execution of a privileged instruction in user mode

14 Floating-point unavailable Any floating-point unavailable exception condition

SPE Unavailable Any SPE unavailable exception condition

15 Program: unimplemented Attempted execution of an unimplemented instruction

16 1. Debug: BRT

2. Debug: Trap
3. Debug: RET
4. Debug: CRET

1. Attempted execution of a taken branch instruction

2. Condition specified in tw or twi instruction met.
3. Attempted execution of a rfi instruction
4. Attempted execution of an rfci instruction

Note: Exceptions require corresponding debug event enabled, MSR[DE]=1,
and DBCR0[IDM]=1.

17 Program: trap Condition specified in tw or twi instruction met and not trap debug.

System call Execution of the system call (sc) instruction.

SPE floating-point data NaN, infinity, or denormalized data detected as input or output, or underflow,
overflow, divide by zero, or invalid operation in the SPE APU.

SPE round Inexact result

18 Alignment lmw, stmw, lwarx, or stwcx. Not word aligned. dcbz with cache disabled

19 Debug with concurrent
DTLB or DSI exception:
1. DAC/IAC linked 2

2. DAC unlinked2

Debug with concurrent DTLB or DSI exception. DBSR[IDE] also set.

1. Data address compare linked with instruction address compare

2. Data address compare unlinked
Note: Exceptions require corresponding debug event enabled, MSR[DE]=1,
and DBCR0[IDM]=1. In this case, the debug exception is considered imprecise
and DBSR[IDE] is set. Saved PC points to the load or store instruction causing
the DAC event.

20 Data TLB error Data translation lookup miss in the TLB.

Table 5-30. e200z6 Exception Priorities (continued)

Priority Exception Cause

5-30 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Processing

5.8 Interrupt Processing
When an interrupt is taken, the processor uses SRR0/SRR1 for non-critical interrupts,
CSRR0/CSRR1 for critical interrupts, and either CSRR0/CSRR1 or DSRR0/DSRR1 for
debug interrupts to save the contents of the MSR and to assist in identifying where
instruction execution should resume after the interrupt is handled.

When an interrupt occurs, one of SRR0/CSRR0/DSRR0 is set to the address of the
instruction that caused the exception or to the following instruction if appropriate.

SRR1 is used to save machine state (selected MSR bits) on non-critical interrupts and to
restore those values when an rfi executes. CSRR1 is used to save machine status (selected
MSR bits) on critical interrupts and to restore those values when an rfci instruction is

21 Data storage 1. Access control.
2. Byte ordering due to misaligned access across page boundary to pages with

mismatched E bits.
3. Cache locking due to attempt to execute a dcbtls, dcbtstls, dcblc, icbtls,

or icblc in user mode with MSR[UCLE] = 0.
4. External termination error (precise)

22 Alignment dcbz to W=1 or I=1 storage with cache enabled

23 1. Debug: IRPT

2. Debug: CIRPT

1. Interrupt taken (non-critical)

2. Critical interrupt taken (critical only)
Note: Exceptions requires corresponding debug event enabled, MSR[DE]=1
and DBCR0[IDM]=1.

Post-Instruction Execution Exceptions

24 1. Debug: DAC/IAC
linked2

2. Debug: DAC unlinked2

1. Data address compare linked with instruction address compare
2. Data address compare unlinked

Notes: Exceptions requires corresponding debug event enabled, MSR[DE]=1,
and DBCR0[IDM]=1. Saved PC points to the instruction following the load or
store instruction causing the DAC event.

25 Debug: ICMP Completion of an instruction.
Note: Exceptions requires corresponding debug event enabled, MSR[DE]=1,
and DBCR0[IDM]=1.

1 These exceptions are sampled at instruction boundaries, and may actually occur after exceptions that are due to a
currently executing instruction. If one of these exceptions occurs during execution of an instruction in the pipeline, it
is not processed until the pipeline has been flushed, and the exception associated with the excepting instruction may
occur first.

2 When no data storage interrupt or data TLB error occurs, the e200z6 implements the data address compare debug
exceptions as post-instruction exceptions, which differs from the Book E definition. When a TEA (either a DTLB error
or DSI) occurs in conjunction with an enabled DAC or linked DAC/IAC on a load or store class instruction, the debug
interrupt takes priority, and the saved PC value points to the load or store class instruction, rather than to the next
instruction.

Table 5-30. e200z6 Exception Priorities (continued)

Priority Exception Cause

Chapter 5. Interrupts and Exceptions 5-31
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Processing

executed. DSRR1 is used to save machine status (selected MSR bits) on debug interrupts
when the debug APU is enabled and to restore those values when an rfdi executes.

The ESR is loaded with information specific to the exception type. Some interrupt types
can only be caused by a single exception type, and thus do not use an ESR setting to indicate
the interrupt cause.

The MSR is updated to preclude unrecoverable interrupts from occurring during the initial
portion of the interrupt handler. Specific settings are described in Table 5-31.

For alignment, data storage, or data TLB miss interrupts, or for a machine check due to
cache parity error on data access interrupts, the data exception address register (DEAR) is
loaded with the address which caused the interrupt to occur.

For machine check interrupts, the MCSR is loaded with information specific to the
exception type.

Instruction fetch and execution resumes, using the new MSR value, at a location specific to
the exception type. The location is determined by the IVPR and an IVOR specific for each
type of interrupt (see Table 5-2). A new operating context is selected using the low-order
three bits of the specific IVOR selected by the type of interrupt.

Table 5-31 shows the MSR settings for different interrupt categories. Note that reserved
and preserved MSR bits are unimplemented and are read as 0.

Table 5-31. MSR Setting Due to Interrupt

Bits MSR Definition Reset Setting Non-Critical Interrupt Critical Interrupt Debug Interrupt

37 UCLE 0 0 0 0

38 SPE 0 0 0 0

45 WE 0 0 0 0

46 CE 0 — 0 —/0 1

1 Conditionally cleared based on control bits in HID0

48 EE 0 0 0 —/01

49 PR 0 0 0 0

50 FP 0 0 0 0

51 ME 0 — — —

52 FE0 0 0 0 0

54 DE 0 — —/01 0

55 FE1 0 0 0 0

58 IS 0 0 0 0

59 DS 0 0 0 0

5-32 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Processing

5.8.1 Enabling and Disabling Exceptions

When a condition exists that may cause an exception to be generated, it must be determined
whether the exception is enabled for that condition.

• System reset exceptions cannot be masked.

• A machine check exception can occur only if the machine check enable bit
(MSR[ME]) is set. If MSR[ME] is cleared, the processor goes directly into
checkstop state when a machine check exception condition occurs. Individual
machine check exceptions can be enabled and disabled through HID0 bits.

• Asynchronous, maskable non-critical exceptions (such as the external input and
decrementer) are enabled by setting MSR[EE]. When MSR[EE] = 0, recognition of
these exception conditions is delayed. MSR[EE] is cleared automatically when a
non-critical or critical interrupt is taken to mask further recognition of conditions
causing those exceptions.

• Asynchronous, maskable critical exceptions (such as critical input and watchdog
timer) are enabled by setting MSR[CE]. When MSR[CE] = 0, recognition of these
exception conditions is delayed. MSR[CE] is cleared automatically when a critical
interrupt is taken to mask further recognition of conditions causing those exceptions.

• Synchronous and asynchronous debug exceptions are enabled by setting MSR[DE].
When MSR[DE]=0, recognition of these exception conditions is masked. MSR[DE]
is cleared automatically when a debug interrupt is taken to mask further recognition
of conditions causing those exceptions. See Chapter 10, “Debug Support,” for more
details on individual control of debug exceptions.

• The floating-point unavailable exception can be prevented by setting MSR[FP]
(although the e200z6 generates an unimplemented instruction exception instead).

5.8.2 Returning from an Interrupt Handler

The Return from Interrupt (rfi), Return from Critical Interrupt (rfci) and Return from
Debug Interrupt (rfdi) instructions perform context synchronization by allowing
previously-issued instructions to complete before returning to the interrupted process. In
general, execution of rfi, rfci, or rfdi ensures the following:

• All previous instructions have completed to a point where they can no longer cause
an exception. This includes post-execute type exceptions.

• Previous instructions complete execution in the context (privilege and protection)
under which they were issued.

• The rfi copies SRR1 bits back into the MSR.

• The rfci copies CSRR1 bits back into the MSR.

• The rfdi copies DSRR1 bits back into the MSR.

Chapter 5. Interrupts and Exceptions 5-33
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Process Switching

• Instructions fetched after this instruction execute in the context established by this
instruction.

• Program execution resumes at the instruction indicated by SRR0 for rfi, CSRR0 for
rfci and DSRR0 for rfdi.

Note that the rfi may be subject to a return type debug exception and that rfci may be
subject to a critical return type debug exception. For a complete description of context
synchronization, refer to Book E.

5.9 Process Switching
The following instructions are useful for restoring proper context during process switching:

• msync orders the effects of data memory instruction execution. All instructions
previously initiated appear to have completed before the msync instruction
completes, and no subsequent instructions appear to be initiated until the msync
instruction completes.

• isync waits for all previous instructions to complete and then discards any fetched
instructions, causing subsequent instructions to be fetched (or refetched) from
memory and to execute in the context (privilege, translation, and protection)
established by the previous instructions.

• stwcx. clears any outstanding reservations, ensuring that a load and reserve
instruction in an old process is not paired with a store conditional instruction in a
new one.

5-34 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Process Switching

Chapter 6. Memory Management Unit 6-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Chapter 6
Memory Management Unit
This chapter describes the implementation details of the e200z6 core complex MMU
relative to the Book E architecture and the Motorola Book E standards.

6.1 Overview
The e200z6 memory management unit is a 32-bit PowerPC Book E–compliant
implementation.

6.1.1 MMU Features

The MMU of the e200z6 core has the following feature set:

• Motorola Book E MMU architecture compliant

• 32-bit effective address translated to 32-bit real address (using a 41-bit interim
virtual address)

• 32-entry fully associative translation lookaside buffer (TLB1) that supports the nine
page sizes shown in Table 6-2

• One 8-bit PID register (PID0) for supporting up to 255 translation IDs at any time
in the TLB

• No page table format defined; software is free to use its own page table format

• Hardware assist for TLB miss exceptions

• TLB1 managed by tlbre, tlbwe, tlbsx, tlbsync, and tlbivax instructions and six
MMU assist (MAS) registers

• IPROT bit implemented in TLB1 prevents invalidations, protecting critical entries
(so designated by having the IPROT bit set) from being invalidated.

6.1.2 TLB Entry Maintenance Features Summary

The TLB entries of the e200z6 core complex must be loaded and maintained by the system
software; this includes performing any required table search operations in memory. The
e200z6 provides support for maintaining TLB entries in software with the resources shown
in Table 6-1. Note that many of these features are defined at the Motorola Book E level.

6-2 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Effective-to-Real Address Translation

Other hardware assistance features for maintenance of the TLB on the e200z6 are described
in Section 6.6.5.2, “MAS Register Updates.”

6.2 Effective-to-Real Address Translation
This section describes the general principles that guide the PowerPC Book E definition for
memory management, and further describes the structure for MMUs defined by the
Motorola Book E implementation standard (EIS) and the e200z6 MMU.

Figure 6-1 illustrates the high-level translation flow, showing that because the smallest
page size supported by the e200z6 core complex is 4 Kbytes, the least significant 12 bits
always index within the page and are untranslated.

Table 6-1. TLB Maintenance Programming Model

Features Description
More Information

Section/Page

TLB
Instructions

tlbre TLB Read Entry instruction 6.4.1/6-10

tlbwe TLB Write Entry instruction 6.4.2/6-11

tlbsx rA, rB TLB Search for Entry instruction 6.4.3/6-11

tlbivax rA, rB TLB Invalidate Entries instruction 6.4.4/6-12

tlbsync TLB Synchronize Invalidations with other masters’
instruction (privileged nop on the e200z6)

6.4.5/6-12

Registers PID0 Process ID register 2.3.2/2-9

MMUCSR0 MMU control and status register 2.14.1/2-59

MMUCFG MMU configuration register 2.14.2/2-60

TLB0CFG–TLB1CFG TLB configuration registers 2.14.3/2-61

MAS0–MAS4, MAS6 MMU assist registers. Note that MAS5 is not
implemented on the e200z6.

2.14.4/2-63

DEAR Data exception address register 2.7.1.5/2-21

Interrupts Instruction TLB miss exception Causes instruction TLB error interrupt 5.6.15/5-20

Data TLB miss exception Causes data TLB error interrupt 5.6.14/5-20

Instruction permission
violation exception

Causes ISI interrupt 5.6.4/5-13

Data permission violation
exception

Causes DSI interrupt 5.6.3/5-12

Chapter 6. Memory Management Unit 6-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Effective-to-Real Address Translation

Figure 6-1. Effective-to-Real Address Translation Flow

6.2.1 Effective Addresses

Instruction accesses are generated by sequential instruction fetches or due to a change in
program flow (branches and interrupts). Data accesses are generated by load, store, and
cache management instructions. The e200z6 instruction fetch, branch, and load/store units
generate 32-bit effective addresses. The MMU translates these effective addresses to 32-bit
real addresses that are then used for memory accesses.

The PowerPC Book E architecture divides the effective (virtual) and real (physical) address
space into pages. The page represents the granularity of effective address translation,
permission control, and memory/cache attributes. The e200z6 MMU supports nine page
sizes (4 Kbytes to 256 Mbytes, as defined in Table 6-2). In order for an effective to real
address translation to exist, a valid entry for the page containing the effective address must
be in a TLB. Accesses to addresses for which no TLB entry exists (a TLB miss) cause
instruction or data TLB errors.

6.2.2 Address Spaces

The PowerPC Book E architecture defines two effective address spaces for instruction
accesses and two effective address spaces for data accesses. The current effective address
space for instruction or data accesses is determined by the value of MSR[IS] (instruction
address space bit) and MSR[DS] (data address space bit), respectively. The address space
indicator (the corresponding value of either MSR[IS] or MSR[DS]) is used in addition to

Effective Page Number Byte Address

Real Page Number Byte Address

32-bit Effective Address (EA)

32-bit Real Address

15–20 bits* >12 bits*

15–20 bits* >12 bits*

MMU (Unified)

Three 41-bit Virtual Addresses (VAs)

8 bits

MSR••• IS DS •••

Instruction Access

Data Access

AS PID0

* Number of bits depends on page size
(4 Kbytes–128 Mbytes)

32-Entry Fully-Assoc. VSP Array (TLB1)
MAS Registers

6-4 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Effective-to-Real Address Translation

the effective address generated by the processor for translation into a physical address by
the TLB mechanism. Because MSR[IS] and MSR[DS] are both cleared to 0 when an
interrupt occurs, an address space value of 0b0 can be used to denote interrupt-related
address spaces (or possibly all system software address spaces), and an address space value
of 0b1 can be used to denote non interrupt-related (or possibly all user address spaces)
address spaces.

The address space associated with an instruction or data access is included as part of the
virtual address in the translation process (AS).

6.2.3 Virtual Addresses and Process ID

The PowerPC Book E architecture defines that a process ID (PID) value is associated with
each effective address (instruction or data) generated by the processor to construct a virtual
address for each access. At the Book E level, a single PID register is defined as a 32-bit
register, and it maintains the value of the PID for the current process. This PID value is
included as part of the virtual address in the translation process (PID0).

For the e200z6 MMU, the PID is 8 bits in length. The most-significant 24 bits are
unimplemented and read as 0. The p_pid0[0:7] interface signals indicate the current
process ID.

The core complex implements a single process ID (PID) register, PID0, as an SPR shown
in Section 2.14.5, “Process ID Register (PID0).” The current value in the PID register is
used in the TLB look-up process and compared with the TID field in all the TLB entries. If
the PID value in PID0 matches with a TLB entry in which all the other match criteria are
met, that entry is used for translation.

Note that when a TID value in a TLB entry is all zeros, it always causes a match in the PID
compare (effectively ignoring the values of the PID register). Thus, the operating system
can set the values of all the TIDs to zero, effectively eliminating the PID value from all
translation comparisons.

6.2.4 Translation Flow

The effective address, concatenated with the address space value of the corresponding MSR
bit (MSR[IS] or MSR[DS]), is compared to the appropriate number of bits of the EPN field
(depending on the page size) and the TS field of TLB entries. If the contents of the effective
address plus the address space bit matches the EPN field and TS bit of the TLB entry, that
TLB entry is a candidate for a possible translation match. In addition to a match in the EPN
field and TS, a matching TLB entry must match with the current process ID of the access
(in PID0), or have a TID value of 0, indicating that the entry is globally shared among all
processes.

Chapter 6. Memory Management Unit 6-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Effective-to-Real Address Translation

Figure 6-2 shows the translation match logic for the effective address plus its attributes,
collectively called the virtual address, and how it is compared with the corresponding fields
in the TLB entries.

Figure 6-2. Virtual Address and TLB-Entry Compare Process

The page size defined for a TLB entry determines how many bits of the effective address
are compared with the corresponding EPN field in the TLB entry as shown in Table 6-2.
On a TLB hit, the corresponding bits of the real page number (RPN) field are used to form
the real address.

On a TLB hit, the generation of the physical address occurs as shown in Figure 6-1.

6.2.5 Permissions

An operating system may restrict access to virtual pages by selectively granting
permissions for user-mode read, write, and execute, and supervisor-mode read, write, and

Table 6-2. Page Size (for e200z6 Core) and EPN Field Comparison

SIZE Field Page Size (4SIZE Kbytes)
EA to EPN Comparison
(Bits 32–53; 2 × SIZE)

0b0001 4 Kbytes EA[32–51] = EPN[32–51]?

0b0010 16 Kbytes EA[32–49] = EPN[0–49]?

0b0011 64 Kbytes EA[32–47] = EPN[32–47]?

0b0100 256 Kbytes EA[32–45] = EPN[32–45]?

0b0101 1 Mbyte EA[32–43] = EPN[32–43]?

0b0110 4 Mbytes EA[32–41] = EPN[32–41]?

0b0111 16 Mbytes EA[32–39] = EPN[32–39]?

0b1000 64 Mbytes EA[32–37] = EPN[32–37]?

0b1001 256 Mbytes EA[32–35] = EPN[32–35]?

TLB Entry Hit

=0?

Private Page

Shared Page

=?

=?

TLB_entry[V]

TLB_entry[TS]

AS (from MSR[IS] or MSR[DS])

Process ID

TLB_entry[TID]

TLB_entry[EPN]
EA Page Number Bits

=?

6-6 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Effective-to-Real Address Translation

execute on a per-page basis. These permissions can be set up for a particular system (for
example, program code may be execute only, and data structures may be mapped as
read/write/no-execute) and be changed by the operating system based on application
requests and operating system policies.

The UX, SX, UW, SW, UR, and SR access control bits are provided to support selective
permissions (access control):

• SR—Supervisor read permission. Allows loads and load-type cache management
instructions to access the page while in supervisor mode (MSR[PR = 0]).

• SW—Supervisor write permission. Allows stores and store-type cache management
instructions to access the page while in supervisor mode (MSR[PR = 0]).

• SX—Supervisor execute permission. Allows instruction fetches to access the page
and instructions to be executed from the page while in supervisor mode
(MSR[PR = 0]).

• UR—User read permission. Allows loads and load-type cache management
instructions to access the page while in user mode (MSR[PR = 1]).

• UW—User write permission. Allows stores and store-type cache management
instructions to access the page while in user mode (MSR[PR = 1]).

• UX—User execute permission. Allows instruction fetches to access the page and
instructions to be executed from the page while in user mode (MSR[PR = 1]).

If the translation match was successful, the permission bits are checked as shown in
Figure 6-3. If the access is not allowed by the access permission mechanism, the processor
generates an instruction or data storage interrupt (ISI or DSI).

Figure 6-3. Granting of Access Permission

Access Granted

instruction Fetch
MSR[PR]

TLB_entry[UX]

TLB_entry[SX]

Load-Class Data Access
TLB_entry[UR]

TLB_entry[SR]

Store-Class Data Access
TLB_entry[UW]

TLB_entry[SW]

TLB Match (see Figure 6-2)

Chapter 6. Memory Management Unit 6-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Translation Lookaside Buffer

6.3 Translation Lookaside Buffer
The Motorola Book E architecture defines support for zero or more TLBs in an
implementation, each with its own characteristics, and provides configuration information
for software to query the existence and structure of the TLB(s) through a set of special
purpose registers—MMUCFG, TLB0CFG, TLB1CFG, and so on. By convention, TLB0 is
used for a set-associative TLB with fixed page sizes, TLB1 is used for a fully-associative
TLB with variable page sizes, and TLB2 is arbitrarily defined by an implementation. The
e200z6 MMU supports a single TLB that is fully associative and supports variable page
sizes; thus it corresponds to TLB1 in the programming model.

The TLB on the e200z6 MMU (TLB1) consists of a 32-entry, fully-associative
content-addressable memory (CAM) array with support for nine page sizes. To perform a
lookup, the TLB is searched in parallel for a matching TLB entry. The contents of a
matching TLB entry are then concatenated with the page offset of the original effective
address. The result constitutes the real (physical) address of the access.

A hit to multiple TLB entries is considered to be a programming error. If this occurs, the
TLB generates an invalid address and TLB entries may be corrupted (an exception will not
be reported).

The structure of TLB1 is shown in Figure 6-4.

Figure 6-4. e200z6 TLB1 Organization

6.3.1 IPROT Invalidation Protection in TLB1

The IPROT bit in TLB1 is used to protect TLB entries from invalidation. TLB1 entries with
IPROT set are not invalidated by a tlbivax instruction executed by this processor (even
when the INV_ALL command is indicated), or by a flash invalidate initiated by writing to
MMUCSR0[TLB1_FI]. The IPROT bit can be used to protect critical code and data such
as interrupt vectors/handlers in order to guarantee that the instruction fetch of those vectors

0

15

TLB1

Compare

Compare

RPN Hit

Real Address
(translated bits,

depending on page size)

Virtual Address

6-8 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Translation Lookaside Buffer

never takes a TLB miss exception. Entries with IPROT set can only be invalidated by
writing a 0 to the valid bit of the entry (by using the MAS registers and executing the tlbwe
instruction).

Invalidation operations generated by execution of the tlbivax instruction are guaranteed to
invalidate the entry that translates the address specified in the operand of the tlbivax
instruction. Additional entries may also be invalidated by this operation if they are not
protected with IPROT. A precise invalidation can be performed by writing a 0 to the valid
bit of a TLB entry.

6.3.2 Replacement Algorithm for TLB1

The replacement algorithm for TLB1 must be implemented completely by system software.
Thus, when an entry in TLB1 is to be replaced, the software can select which entry to
replace and write the entry number to the MAS0[ESEL] field before executing a tlbwe
instruction.

Alternately, the software can load the entry number of the next desired victim into
MAS0[NV]. The e200z6 then automatically loads MAS0[ESEL] from MAS0[NV] on a
TLB error condition as shown in Figure 6-5.

See Table 6-6 for a complete description of MAS register updates on various exception
conditions.

Figure 6-5. Victim Selection

6.3.3 TLB Access Time

The TLB array is checked for a translation hit in parallel with the on-chip L1 cache lookups,
and no penalty on a TLB hit is incurred. If the TLB array misses, a TLB miss interrupt is
reported.

MAS0

ESEL

NV

On tlbwe, selects entry

TLB Miss (TLB error interrupt)

Written by software

Chapter 6. Memory Management Unit 6-9
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Translation Lookaside Buffer

6.3.4 The G Bit (of WIMGE)

The G bit provides protection from bus accesses that could be canceled due to an exception
on a prior uncompleted instruction.

If G = 1 (guarded), these types of accesses must stall (if they miss in the cache) until the
exception status of the instruction(s) in progress is known. If G = 0 (unguarded), these
accesses may be issued to the bus regardless of the completion status of other instructions.
Because the e200z6 does not make requests to the cache for load or store instructions until
it is known that prior instructions will complete without exceptions, the G bit is essentially
ignored. Proper operation always occurs to guarded memory.

6.3.5 TLB Entry Field Summary

Table 6-3 summarizes the fields of e200z6 TLB entries. Note that all of these fields are
defined at the Motorola Book E level.

Table 6-3. TLB Entry Bit Fields for e200z6

Field Description

V Valid bit for entry

TS Translation address space (compared with AS bit of the current access)

TID[0–7] Translation ID (compared with PID0 or TIDZ (all zeros))

EPN[0–19] Effective page number (compared with effective address)

RPN[0–19] Real page number (translated address)

SIZE[0–3] Encoded page size
0000 Reserved
0001 4 Kbytes
0010 16 Kbytes
0011 64 Kbytes
0100 256 Kbytes
0101 1 Mbyte
0110 4 Mbytes
0111 16 Mbytes
1000 64 Mbytes
1001 256 Mbytes
All others—reserved

PERMIS[0–5] Supervisor execute, write, and read permission bits, and user execute, write, and read permission bits.

WIMGE Memory/cache attributes (write-through, cache-inhibit, memory coherence required, guarded, endian)

U0–U3 User attribute bits—used only by software

IPROT Invalidation protection

6-10 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Software Interface and TLB Instructions

6.4 Software Interface and TLB Instructions
TLB1 is accessed indirectly through several MMU assist (MAS) registers. Software can
write and read the MMU assist registers with mtspr and mfspr instructions. These registers
contain information related to reading and writing a given entry within TLB1. Data is read
from the TLB into the MAS registers with a tlbre (TLB read entry) instruction. Data is
written to the TLB from the MAS registers with a tlbwe (TLB write entry) instruction.

Certain fields of the MAS registers are also written by hardware when an instruction TLB
error, data TLB error, DSI, or ISI interrupt occurs.

On a TLB error interrupt, the MAS registers are written by hardware with the proper EA,
default attributes (TID, WIMGE, permissions, and so on), TLB selection information, and
an entry in the TLB to replace. Software manages this entry selection information by
updating a replacement entry value during TLB miss handling. Software must provide the
correct RPN and permission information in one of the MAS registers before executing a
tlbwe instruction.

On taking a DSI or ISI interrupt, the hardware updates only the search PID (SPID) and
search address space (SAS) fields in the MAS registers, using the contents of PID0 and the
corresponding value of MSR[IS] or MSR[DS] that was used when the DSI or ISI exception
was recognized. During the interrupt handler, software can issue a TLB search instruction
(tlbsx), which uses the SPID field along with the SAS field, to determine the entry related
to the DSI or ISI exception. Note that it is possible that the entry that caused the DSI or ISI
interrupt no longer exists in the TLB by the time the search occurs if a TLB invalidate or
replacement removes the entry between the time the exception is recognized and when the
tlbsx is executed.

The tlbre, tlbwe, tlbsx, tlbivax, and tlbsync instructions are privileged.

6.4.1 TLB Read Entry Instruction (tlbre)

The TLB Read Entry instruction causes the contents of a single TLB entry to be placed in
the MMU assist registers. The entry is specified by the TLBSEL and ESEL fields of the
MAS0 register. The entry contents are placed in the MAS1, MAS2, and MAS3 registers.
See Table 6-6 for details on how MAS register fields are updated.

tlbre tlbre
TLB Read Entry Form X

31 0 1 1 1 0 1 1 0 0 1 0 0

0 5 6 20 21 30 31

Chapter 6. Memory Management Unit 6-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Software Interface and TLB Instructions

tlb_entry_id = MAS0(TLBSEL, ESEL)
result = MMU(tlb_entry_id)
MAS1, MAS2, MAS3 = result

6.4.2 TLB Write Entry Instruction (tlbwe)

The TLB Write Entry instruction causes the contents of certain fields within the MMU
assist registers MAS1, MAS2, and MAS3 to be written into a single TLB entry in the
MMU. The entry written is specified by the TLBSEL and ESEL fields of the MAS0
register.

tlbwe tlbwe
TLB Write Entry Form X

tlb_entry_id = MAS0(TLBSEL, ESEL)
MMU(tlb_entry_id) = MAS1, MAS2, MAS3

6.4.3 TLB Search Indexed Instruction (tlbsx)

The TLB Search Indexed instruction updates the MMU assist registers conditionally based
on success or failure of a lookup of the TLB. The lookup is controlled by an effective
address provided by GPR[RB] as specified in the instruction encoding, as well as by the
SAS and SPID search fields in MAS6. The values placed into MAS0, MAS1, MAS2, and
MAS3 differ depending on a successful or unsuccessful search. See Table 6-6 for details on
how MAS register fields are updated.

tlbsx tlbsx
TLB Search Indexed

tlbsx RA,RB Form X

if RA!=0 then EA = GPR(RA) + GPR(RB)
else EA = GPR(RB)
ProcessID = MAS6(SPID), 8’b00000000
AS = MAS6(SAS)
VA = AS || ProcessIDs || EA
if Valid_TLB_matching_entry_exists(VA)

then result = see Table 6-6, column “tlbsx hit”
else result = see Table 6-6, column “tlbsx miss”

MAS0, MAS1, MAS2, MAS3 = result

31 0 1 1 1 1 0 1 0 0 1 0 0

0 5 6 20 21 30 31

31 0 RA RB 1 1 1 0 0 1 0 0 1 0 0

0 5 6 10 11 15 16 20 21 30 31

6-12 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Software Interface and TLB Instructions

6.4.4 TLB Invalidate (tlbivax) Instruction

The TLB invalidate operation is performed whenever a TLB Invalidate Virtual Address
Indexed (tlbivax) instruction is executed. This instruction invalidates TLB entries which
correspond to the virtual address calculated by this instruction. The address is detailed in
Table 6-4. No other information except for that shown in Table 6-4 is used for the
invalidation (the AS and TID values are don’t-cared).

Additional information about the targeted TLB entries is encoded in two of the lower bits
of the effective address calculated by the tlbivax instruction. Bit 28 of the tlbivax effective
address is the TLBSEL field. This bit should be set to one to ensure that TLB1 is targeted
by the invalidate. Bit 29 of the tlbivax effective address is the INV_ALL field. If this bit is
set, it indicates that the invalidate operation needs to completely invalidate all entries of
TLB1 that are not marked as invalidation protected (IPROT bit of entry set to one).

The bits of EA used to perform the tlbivax invalidation of TLB1 are bits 0–19.
t

tlbivax tlbivax
TLB Invalidate Virtual Address Indexed

tlbivax RA,RB Form X

if RA!=0 then EA = GPR(RA) + GPR(RB)
else EA = GPR(RB)

VA = EA
if (Valid_TLB_matching_entry_exists(VA) or INV_ALL) and Entry_IPROT_not_set

InvalidateTLB(VA)

6.4.5 TLB Synchronize Instruction (tlbsync)

The TLB Synchronize instruction is treated as a privileged no-op by the e200z6.

Table 6-4. tlbivax EA Bit Definitions

Bits Field

0–19 EA[0–19]

20–27 Reserved 1

1 These bits should be zero for future compatibility. They are ignored.

28 TLBSEL (1 = TLB1)
Should be set to ‘1’ for future compatibility.

29 INV_ALL

30–31 Reserved 1

31 0 RA RB 1 1 0 0 0 1 0 0 1 0 0

0 5 6 10 11 15 16 20 21 30 31

Chapter 6. Memory Management Unit 6-13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

TLB Operations

tlbsync tlbsync
TLB Synchronize

tlbsync RA,RB Form X

6.5 TLB Operations
This section describes how the software (with some hardware assistance) maintains TLB1.

6.5.1 Translation Reload

The TLB reload function is performed in software with some hardware assistance. This
hardware assistance consists of:

• Five 32-bit MMU assist registers (MAS0–4, MAS6) for support of the tlbre, tlbwe,
and tlbsx TLB management instructions.

• Loading of MAS0–2 based upon defaults in MAS4 for TLB miss exceptions. This
automatically generates most of the TLB entry.

• Loading of the data exception address register (DEAR) with the effective address of
the load, store, or cache management instruction that caused an alignment, data TLB
miss, or data storage interrupt.

• The tlbwe instruction. When tlbwe is executed, the new TLB entry contained in
MAS0–MAS2 is written into the TLB.

6.5.2 Reading the TLB

The TLB array can be read by first writing the necessary information into MAS0 using
mtspr and then executing the tlbre instruction. To read an entry from TLB1, the TLBSEL
field in MAS0 must be set to 01, and the ESEL bits in MAS0 must be set to point to the
desired entry. After executing the tlbre instruction, MAS1–MAS3 are updated with the
data from the selected TLB entry. See Section 6.4.1, “TLB Read Entry Instruction (tlbre),”
for more information.

6.5.3 Writing the TLB

The TLB1 array can be written by first writing the necessary information into
MAS0–MAS3 using mtspr and then executing the tlbwe instruction. To write an entry into
TLB1, the TLBSEL field in MAS0 must be set to 01, and the ESEL bits in MAS0 must be
set to point to the desired entry. When the tlbwe instruction is executed, the TLB entry

31 0 1 0 0 0 1 1 0 1 1 0 0

0 5 6 10 11 15 16 20 21 30 31

6-14 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

TLB Operations

information stored in MAS1–MAS3 is written into the selected TLB entry. See
Section 6.4.2, “TLB Write Entry Instruction (tlbwe),” for more information.

6.5.4 Searching the TLB

TLB1 can be searched using the tlbsx instruction by first writing the necessary information
into MAS6. The tlbsx instruction searches using EPN[0–19] from the GPR selected by the
instruction, SAS (search AS bit) in MAS6, and SPID in MAS6. If the search is successful,
the given TLB entry information is loaded into MAS0–MAS3. The valid bit in MAS1 is
used as the success flag. If the search is successful, the valid bit in MAS1 is set; if
unsuccessful it is cleared. The tlbsx instruction is useful for finding the TLB entry that
caused a DSI or ISI exception. See Section 6.4.3, “TLB Search Instruction (tlbsx),” for
more information.

6.5.5 TLB Coherency Control

The e200z6 core provides the ability to invalidate a TLB entry as described in the Book E
PowerPC architecture. The tlbivax instruction invalidates local TLB entries only. No
broadcast is performed, as no hardware-based coherency support is provided.

The tlbivax instruction invalidates by effective address only. This means that only the TLB
entry’s EPN bits are used to determine if the TLB entry should be invalidated. It is therefore
possible for a single tlbivax instruction to invalidate multiple TLB entries, since the AS and
TID fields of the entries are ignored.

6.5.6 TLB Miss Exception Update

When a TLB miss exception occurs, MAS0–MAS3 are updated with the defaults specified
in MAS4, and the AS and EPN[0–19] of the access that caused the exception. In addition,
the ESEL bits are updated with the replacement entry value.

This sets up all the TLB entry data necessary for a TLB write except for the RPN[0–19],
the U0–U3 user bits, and the UX/SX/UW/SW/UR/SR permission bits, all of which are
stored in MAS3. Thus, if the defaults stored in MAS4 are applicable to the TLB entry to be
loaded, the TLB miss exception handler only has to update MAS3 through mtspr before
executing tlbwe. If the defaults are not applicable to the TLB entry being loaded, the TLB
miss exception handler must update MAS0–MAS2 before performing the TLB write.

See Table 6-6 for more details on the automatic updates to the MAS registers on exceptions.

6.5.7 TLB Load on Reset

During reset, all TLB entries except entry 0 are automatically invalidated by the hardware.
TLB entry 0 is also loaded with the default values in Table 6-5.

Chapter 6. Memory Management Unit 6-15
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

MMU Configuration and Control Registers

6.6 MMU Configuration and Control Registers
Information about the configuration for a given MMU implementation is available to
system software by reading the contents of the MMU configuration SPRs. These SPRs
describe the architectural version of the MMU, the number of TLB arrays, and the
characteristics of each TLB array. Additionally, there are a number of MMU control and
assist registers summarized in Section 2.14.4, “MMU Assist Registers (MAS0–MAS4,
MAS6).”

6.6.1 MMU Configuration Register (MMUCFG)

The MMUCFG register provides configuration information for the MMU supplied with
this version of the e200z6 CPU core. A description of the MMUCFG register can be found
in Section 2.14.2, “MMU Configuration Register (MMUCFG).”

6.6.2 TLB0 and TLB1 Configuration Registers

The TLB0CFG and TLB1CFG registers provide configuration information for the MMU
TLBs supplied with this version of the e200z6 CPU core. A description of these registers
can be found in Section 2.14.3, “TLB Configuration Registers (TLBnCFG).”

Table 6-5. TLB Entry 0 Values after Reset

Field Reset Value Comments

VALID 1 Entry is valid

TS 0 Address space 0

TID[0–7] 0x00 TID value for shared (global) page

EPN[0–19] value of
p_rstbase[0:19]

Page address present on p_rstbase[0:19].
See Chapter 8, “External Core Complex Interfaces,” for more information.

RPN[0–19] value of
p_rstbase[0:19]

Page address present on p_rstbase[0:19].
See Chapter 8, “External Core Complex Interfaces,” for more information.

SIZE[0–3] 0001 4KB page size

SX/SW/SR 111 Full supervisor mode access allowed

UX/UW/UR 111 Full user mode access allowed

WIMG 0100 Cache inhibited, non-coherent

E value of
p_rst_endmode

Value present on p_rst_endmode.
See Chapter 8, “External Core Complex Interfaces,” for more information.

U0–U3 0000 User bits

IPROT 1 Page is protected from invalidation

6-16 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

MMU Configuration and Control Registers

6.6.3 DEAR Register

The data exception address register (DEAR) is loaded with the effective address of the data
access which results in an alignment, data TLB miss, or DSI exception. A description of
DEAR can be found in Section 2.7.1.5, “Data Exception Address Register (DEAR).”

6.6.4 MMU Control and Status Register 0 (MMUCSR0)

The MMU control and status register 0 (MMUCSR0) is a 32-bit register that controls the
state of the MMU. The MMUCSR0 register is shown in Section 2.14.1, “MMU Control and
Status Register 0 (MMUCSR0).”

6.6.5 MMU Assist Registers (MAS)

The e200z6 uses six special purpose registers (MAS0, MAS1, MAS2, MAS3, MAS4 and
MAS6) to facilitate reading, writing, and searching the TLBs. The MAS registers can be
read or written using the mfspr and mtspr instructions. The e200z6 does not implement
the MAS5 register, present in other Motorola Book E designs, because the tlbsx instruction
only searches based on a single SPID value.

The MAS registers are shown in detail in Section 2.14.4, “MMU Assist Registers
(MAS0–MAS4, MAS6).”

6.6.5.1 MAS Registers Summary

The fields of the MAS registers are summarized in Figure 6-6.

Chapter 6. Memory Management Unit 6-17
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

MMU Configuration and Control Registers

6.6.5.2 MAS Register Updates

Table 6-6 details the updates to each MAS register field for each update type.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

M
A
S
0

0 T
L
B
S
E
L

(01)

0 ESEL 0 NV

M
A
S
1

V
A
L
I
D

I
P
R
O
T

0 TID 0 T
S

TSIZ 0

M
A
S
2

EPN 0 W I M G E

M
A
S
3

RPN 0 U
0

U
1

U
2

U
3

U
X

S
X

U
W

S
W

U
R

S
R

M
A
S
4

0 T
L
B
S
E
L
D

(01)

0 T
I
D
S
E
L
D

0 TSIZED 0 W
D

I
D

M
D

G
D

E
D

M
A
S
6

0 SPID 0 S
A
S

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 6-6. MMU Assist Registers Summary

Table 6-6. MMU Assist Register Field Updates

Bit/Field
MAS

Affected
Instr/Data
TLB Error

tlbsx hit tlbsx miss tlbre tlbwe ISI/DSI

TLBSEL 0 TLBSELD ‘01’ TLBSELD NC 1 NC NC

ESEL 0 NV Matched entry NV NC NC NC

NV 0 NC NC NC NC NC NC

6-18 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Effect of Hardware Debug on MMU Operation

6.7 Effect of Hardware Debug on MMU Operation
Hardware debug facilities use normal CPU instructions to access register and memory
contents during a debug session. If desired during a debug session, the debug firmware may
disable the translation process and may substitute default values for the access protection
(UX, UR, UW, SX, SR, SW) bits and values obtained from the OnCE control register for
page attribute (W, I, M, G, E) bits normally provided by a matching TLB entry. In addition,
no address translation is performed, and instead, a 1:1 mapping of effective to real
addresses is performed. When disabled during the debug session, no TLB miss or TLB
access protection-related DSI conditions will occur. If the debugger desires to use the
normal translation process, the MMU may be left enabled in the OnCE OCR, and normal
translation (including the possibility of a TLB miss or DSI) remains in effect. Refer to
Section 10.5.5.3, “e200z6 OnCE Control Register (OCR),” for more details on controlling
MMU operation during debug sessions.

VALID 1 1 1 0 V(array) NC NC

IPROT 1 0 Matched IPROT 0 IPROT(array) NC NC

TID[0–7] 1 TIDSELD
(pid0,TIDZ)

TID(array) SPID TID(array) NC NC

TS 1 MSR(IS/DS) SAS SAS TS(array) NC NC

TSIZE[0–3] 1 TSIZED TSIZE(array) TSIZED TSIZE(array) NC NC

EPN[0–19] 2 I/D EPN EPN(array) tlbsx EPN EPN(array) NC NC

WIMGE 2 Default values WIMGE(array) Default values WIMGE(array) NC NC

RPN[0–19] 3 Zeroed RPN(Array) Zeroed RPN(array) NC NC

ACCESS
(PERMISS +

U0:U3)

3 Zeroed Access(Array) Zeroed Access(array) NC NC

TLBSELD 4 NC NC NC NC NC NC

TIDSELD[0–1] 4 NC NC NC NC NC NC

TSIZED[0–3] 4 NC NC NC NC NC NC

Default WIMGE 4 NC NC NC NC NC NC

SPID 6 PID0 NC NC NC NC NC

SAS 6 MSR(IS/DS) NC NC NC NC NC

1 NC—no change

Table 6-6. MMU Assist Register Field Updates (continued)

Bit/Field
MAS

Affected
Instr/Data
TLB Error

tlbsx hit tlbsx miss tlbre tlbwe ISI/DSI

Chapter 7. Instruction Pipeline and Execution Timing 7-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Chapter 7
Instruction Pipeline and Execution
Timing
This section describes the e200z6 instruction pipeline and instruction timing information.

7.1 Overview of Operation
Figure 7-1 is a block diagram of the e200z6 core.

Figure 7-1. e200z6 Block Diagram

Additional Features
 • OnCe/Nexus 1/Nexus 3

control logic
 • Cache line locking
 • Cache partitioning
 • AMBA AHB-Lite bus
 • SPE APU (SIMD)
 • Embedded scalar/

Vector floating-point
 • Power management
 • Time base/ decrementer

counter
 • Clock multiplier

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

Fetch Unit

Branch Processing Unit

Instruction/Control Unit

Instruction Buffer

Core Interface Unit

Software-Managed

Unified 8-Way Set-Associative

Unified Memory Unit

MAS
Registers

32 GPRs
(64-bit)

XER
CR

4-, 16-, 64-, 256-Kbyte;
1-, 4-, 16-, 64-,

256-Mbyte Page Sizes

Execution Units

SPRs

Integer

+ x ÷
Unit

SPE APU

+ x ÷
Unit

Embedded

+ x ÷
Scalar FPU

Embedded

+ x ÷
Vector FPU

Load/Store

Branch
Unit

(7 instructions)

Decode

32-Kbyte Cache

8-Entry Branch

Write-Back Stage

•
•
•

128

8 ways

Two
instruction

64

32 64 N

Address Data Control

Stage

64

64

Data

+

+ EA calc

L1 Unified MMU

Line Fill Buffer
(Critical double-word

Unit

CTR
LR

Single-instruction, in-order dispatch

Single-instruction, in-order write back

Two-stage
fetch

Program Counter

•
•
•

32-Entry
Fully Associative

TLB

EA calc

forwarding)

Three-stage
single-path
execute
pipeline with
overlapped
execution
and feed-
forwarding

Push Buffer

8-Entry Store Buffer

sets

Target Buffer

Pipeline stage

7-2 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Overview of Operation

The e200z6 core contains the following major subsystems:

• Instruction unit—Fetches instructions from memory into the instruction buffer.
Includes logic that predicts branches.

• Control unit—Coordinates the instruction fetch, branch, instruction decode,
instruction dispatch, and completion units and the exception handling logic

• Decode unit—Decodes each instruction and generates information needed by the
branch unit and the execution units. Branch target instructions are written into the
branch target refetch buffers, while sequentially fetched instructions are written into
the instruction buffer.

• Execution units:

— Integer unit—Executes all computational and logical instructions

— Load/store unit (LSU)—Executes loads, stores, and other memory access
instructions

— The e200z6 implements the following optional units:

– SPE APU unit—Executes all SPE logical and computational instructions.
Note that SPE vector load and store instructions are executed by the LSU.

– Embedded vector and scalar single-precision floating-point units—Execute
all logical and computational floating-point instructions defined by the
Motorola Book E architecture. Note that the e200z6 does not implement the
Book E–defined floating-point instructions.

— Branch unit—Resolves branch prediction and updates the CTR and LR, where
required.

The executions are described in detail in Section 7.2.3, “Execute Stages.”

• Core interface—Provides the interface between the core and the system integrated
logic.

The e200z6 core dispatches a single instruction each cycle to the three-stage execute
pipeline. All instructions must pass through each of the three execute stages, although most
computational instructions have a single-cycle latency and can feed forward their results on
the next clock cycle, even through the instruction still occupies a position in the execute
pipeline.

Source operands for each instruction are provided from the general-purpose registers
(GPRs) or by the operand feed-forwarding mechanism. Data or resource hazards may
create stall conditions that cause instruction dispatch to be stalled for one or more cycles
until the hazard is eliminated.

The execution units write the results of a finished instruction onto the proper result bus and
into the destination registers. The write-back (or completion) logic retires an instruction
when the instruction has vacated the execution stages and written back results to the
architected registers. Up to two results can be simultaneously written for a single

Chapter 7. Instruction Pipeline and Execution Timing 7-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Pipeline

instruction (for example, load with update instructions (lwhu and lwzu) or a Load Multiple
Word (lmw) instruction.

7.1.1 Instruction Unit

The instruction unit controls the flow of instructions from the cache to the instruction buffer
and decode unit. A seven-entry instruction buffer and a two-entry branch target instruction
prefetch buffer allow the instruction unit to fetch instructions and decouple memory from
the execution pipeline.

• Control logic coordinates the instruction fetch unit, branch unit, instruction decode
unit, instruction dispatch unit, completion unit, and exception handling logic.

• The branch processing unit predicts conditional branches and provides branch target
addresses for instruction fetches.

• The instruction decode unit includes the seven-entry instruction buffer, into which
instructions are fetched. A single instruction per processor clock cycle can be
decoded and dispatched from the bottom entry of this buffer. The major functions of
the decode logic are as follows:

— Opcode decoding to determine the instruction class and resource requirements
for the decoded instruction

— Source and destination register dependency checking

— Execution unit assignment

— Determination of any decode serialization that would inhibit subsequent
instructions from decoding and dispatching. Serialization is described in
Section 7.5, “Instruction Serialization.”

The decode latency is a single processor clock cycle. Although it takes one clock
cycle to decode an instruction, an instruction cannot dispatch for any of the
following reasons:

— The previous instruction is either dispatch or prefetch serializing

— Space is not available in the execution unit (for example, if a divide instruction
is executing)

— A multiple-cycle instruction (such as a multiply) with a following data
dependency is present

• The exception handling unit includes logic to handle exceptions, interrupts, and
traps.

7.2 Instruction Pipeline
The seven-stage processor pipeline is shown in Figure 7-2.

7-4 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Pipeline

Figure 7-2. Seven-Stage Instruction Pipeline

The instruction pipeline consists of the following stages:

• Two instruction fetch stages. As many as two instructions are fetched per clock cycle
and placed in the lowest available entries in the seven-entry instruction buffer. An
instruction can be fetched directly into the bottom entry, in which instruction
decoding takes place. The decode stage is as follows.

• Instruction decode/dispatch stage. Each instruction takes 1 cycle to decode and is
dispatched at the end of the decode stage. Instructions are dispatched in order when

• A three-stage execution pipeline that includes feed-forwarding, which allows
dependent instructions to continue through the pipeline.

All instructions, including branch instructions, pass through all three stages of the
execute pipeline in order and in single-file. Any combination of up to three of the
six execute units can participate in the three-stage pipeline per clock cycle. The
execution units are as follows:

— Integer unit—Executes all integer logical and computational instructions

— Load/store unit (LSU)—Executes all load and store instructions and all
instructions that affect memory, such as cache and TLB management
instructions. These include the 64-bit load and store instructions that are defined
by the SPE APU and by the embedded vector floating-point APU.

— Signal processing engine (SPE) APU unit—Executes all logical and
computational instructions defined by the Motorola Book E SPE APU
instruction set, except vector loads and stores, which are handled by the LSU.

— Embedded vector single-precision floating-point unit—executes all logical and
computational instructions defined by the Motorola Book E embedded vector

Fetch 0

Fetch 1

Execute 0

Execute 1

Write Back

Execute 2

Decode

Most instructions complete
computation in 1 clock and
make results available by
they time they enter the
second execute stage.

Instructions take one clock
cycle to decode and
dispatch to the single-flow
execution pipeline.

Adds, logical

Execute

Feed forward

Feed forward

Loads, stores

EA calc

Memory access

Data format and forward

Multiply

Execute 0

Execute 1

Execute 2

Example execute operations

Chapter 7. Instruction Pipeline and Execution Timing 7-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Pipeline

single-precision floating-point APU, except for the vector load and store
instructions that are shared by the SPE APU.

— Embedded scalar single-precision floating-point unit—executes all logical and
computational instructions defined by the Motorola Book E embedded scalar
single-precision floating-point APU.

— Branch unit—executes branch instructions. All branch instructions, including
unconditional branch instructions, pass through all three execute pipeline stages.

Single-cycle instructions (that are not synchronizing and do not have special
serialization requirements) finish executing after the first stage and make results
available immediately so subsequent dependent instructions can enter the
three-stage pipeline without waiting for the write-back stage.

Instructions pass through the instruction pipeline in order and in single file. At a
given time, any combination of up to three execute units can be in use, although
parallel execution is not supported per individual stage in the three-stage execute
pipeline.

• A result write back stage, in which results are committed to architected registers
(such as GPRs) and instructions are deallocated from the instruction pipeline.

Instructions pass single-file through the pipeline, decoding, executing, and writing back in
order with a maximum throughput of one instruction per processor clock cycle.

Instructions pass through the seven pipeline stages as shown in Figure 7-3.

Figure 7-3. Pipeline

IFetch0/1

Decode

Execute0

Feed forward I1 I2

IFetch0/1

Decode

EA calculation/Drive address

Drive/merge/align data

L1 L2

L1 L2

L1 L2

L1 L2

Memory Access L1 L2

Simple Instruction

Load Instruction

I1 I2Feed forward

L1 L2Writeback

I1 I2

I1 I2

I1 I2

I1 I2

Writeback

7-6 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Pipeline

7.2.1 Fetch Stages

The fetch pipeline stages retrieve instructions from the memory system and determine
where the next instruction fetch is performed. Up to two instructions every cycle are sent
from memory to the instruction buffer.

7.2.1.1 Instruction Buffer

The e200z6 contains a seven-entry instruction buffer. The bottom entry, referred to as the
instruction register (IR), is where an instruction resides for the decode stage.

Instruction fetches request a 64-bit double-word and the buffer is filled with a pair of
instructions at a time, except for the case of a change of flow fetch where the target is to the
second (odd) word. In that case only a 32-bit (single-instruction) fetch is performed to load
the instruction buffer. This 32-bit fetch may be immediately followed by a 64-bit fetch to
fill slots 0 and 1 in case the branch is resolved to be taken.

In normal sequential execution, instructions are loaded into the IR from slot 0, and as a pair
of slots are emptied, they are refilled (for maximum fetch rate of two instructions every two
cycles). Whenever a pair of slots is empty, a 64-bit fetch is initiated, which fills the lowest
empty slot pairs beginning with slot 0.

If the instruction buffer empties, dispatch stalls until the buffer is refilled. The first returned
instruction is forwarded directly to the IR. Open cycles on the memory bus are used to keep
the buffer full when possible, but bus priority is given to data loads and stores.

Chapter 7. Instruction Pipeline and Execution Timing 7-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Pipeline

Figure 7-4. e200z6 Instruction Buffer

7.2.1.2 Branch Target Buffer (BTB)

To resolve branch instructions and improve the accuracy of branch predictions, the e200z6
implements a dynamic branch prediction mechanism using an eight-entry branch target
buffer (BTB), a fully associative address cache of branch target addresses. The BTB on the
e200z6 is purposefully small to reduce cost and power. It is expected to accelerate the
execution of loops with some potential change of flow within the loop body.

A BTB entry is allocated whenever a branch resolves as taken and the BTB is enabled.
Branches that have not been allocated are always predicted as not taken. BTB entries are
allocated on taken branches using a FIFO replacement algorithm.

Each BTB entry holds a 2-bit branch history counter, whose value is incremented or
decremented on a BTB hit, depending on whether the branch was taken. The counter can
assume four different values: strongly taken, weakly taken, weakly not taken, and strongly
not taken.

A branch is predicted as taken on a hit in the BTB with a counter value of strongly or
weakly taken. In this case the target address in the BTB is used to redirect the instruction
fetch stream to the target of the branch prior to the branch reaching the instruction decode
stage. In the case of a mispredicted branch, the instruction fetch stream returns to the
sequential instruction stream after the branch has been resolved.

Slot0 Slot1

Slot2

Decode

Slot3

MUX

IR

DATA 0:63

Slot4 Slot5

7-8 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Pipeline

When a branch is predicted taken and the branch is later resolved (in the branch execute
stage), the counter value is updated. A branch whose counter indicates weakly taken is
resolved as taken, the counter increments so that the prediction becomes strongly taken. If
the branch resolves as not taken, the prediction changes to weakly not-taken. The counter
saturates in the strongly taken states when the prediction is correct.

The e200z6 does not implement the static branch prediction that is defined by the PowerPC
architecture. The prediction bit in the BO operand is ignored.

Dynamic branch prediction is enabled by setting BUCSR[BPEN]. Clearing
BUCSR[BPEN] disables dynamic branch prediction, in which case the e200z6 predicts
every branch as not taken. Additional control is available in HID0[BPRED] to control
whether forward or backward branches (or both) are candidates for entry into the BTB, and
thus for branch prediction. After a branch is in the BTB, HID0[BPRED] has no further
effect on that branch entry.

The BTB uses virtual addresses for performing tag comparisons. On allocation of a BTB
entry, the effective address of a taken branch, along with the current instruction space (as
indicated by MSR[IS]) is loaded into the entry and the counter value is set to weakly taken.
The current PID value is not maintained as part of the tag information.

The e200z6 does support automatic flushing of the BTB when the current PID value is
updated by a mtcr PID0 instruction. Software is otherwise responsible for maintaining
coherency in the BTB when a change in effective-to-real (virtual-to-physical) address
mapping is changed. This is supported by BUCSR[BBFI].

The valid bit in each BTB entry is zero (invalid) at reset. When a branch instruction first
enters the instruction pipeline, it is not allocated in the BTB and so by default is predicted
as not taken. It is not allocated in the BTB until it is taken; the initial prediction is weakly
taken, as shown in the example in Figure 7-6.

TAG TAG

Branch addr[0:29] IS1 Target addr[0:29] Counter Entry 0

Branch addr[0:29] IS Target addr[0:29] Counter Entry 1

Branch addr[0:29] IS Target addr[0:29] Counter ...

Branch addr[0:29] IS Target addr[0:29] Counter Entry 7

1 IS = Instruction space

Figure 7-5. e200z6 Branch Target Buffer

Chapter 7. Instruction Pipeline and Execution Timing 7-9
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Pipeline

Figure 7-6. Updating Branch History

7.2.2 Decode Stage

The decode pipeline stage decodes instructions and checks for dependencies.

7.2.3 Execute Stages

Most instructions occupy only one of the three stages in the execute pipeline in any given
clock cycle. For example, the following instruction sequence passes through the pipeline as
shown in Figure 7-7:

ldx r1,r2,r3
add r5,r6,r7
mulli r8,r5,r6 /r5 depends on the results of add)

The execution of this sequence is described as follows:

• Clock cycle 0: The ldx instruction enters execute stage 0, during which the LSU
calculates the effective address of the load.

0 1 2 3 4 5

Execute 0 ldx
LSU: EA calc

add
IU 0

mulli
IU 0

Execute1 ldx
LSU: Mem acc

add
Feed forward

mulli
IU 1

Execute 2 ldx
LSU: Data fmt/fwd

add
Feed forward

mulli
IU 2

Write Back ldx add mulli

Figure 7-7. Pipelining—Execute and Write Back Stages

Strongly not taken
Weakly not taken

Weakly taken
Strongly taken

00
01
10
11

Strongly not taken
Weakly not taken

Weakly taken
Strongly taken

00
01
10
11

Strongly not taken
Weakly not taken

Weakly taken
Strongly taken

00
01
10
11

Default: not taken
(no BTB entry is allocated until branch is taken) (BTB allocated)

First mispredict

Strongly not taken
Weakly not taken

Weakly taken
Strongly taken

00
01
10
11

Strongly not taken
Weakly not taken

Weakly taken
Strongly taken

00
01
10
11

Branch not taken Branch not taken

Strongly not taken
Weakly not taken

Weakly taken
Strongly taken

00
01
10
11

Strongly not taken
Weakly not taken

Weakly taken
Strongly taken

00
01
10
11

Strongly not taken
Weakly not taken

Weakly taken
Strongly taken

00
01
10
11

Branch not taken Branch taken Branch not taken

Not taken

7-10 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Pipeline

• Clock cycle 1: The ldx instruction enters execute stage 1, during which the LSU
initiates the memory access.

The single-cycle add instruction is executed by the integer unit.

• Clock cycle 2: The ldx instruction enters execute stage 2, during which the LSU
handles data formatting and forwarding.

The results of the add instruction (in r5) are made available to mulli.

The 3-cycle mulli, which is executed by the IU, enters execute stage 0.

• Clock cycle 3: The ldx instruction writes back its results to the destination GPR (r1)
and is deallocated from the pipeline.

The results of the add instruction remain available to any subsequent dependent
instructions.

The mulli instruction enters execute stage 1.

• Clock cycle 4: The add instruction writes back its results to its destination GPR (r5).

mulli enters execute stage 2.

• Clock cycle 5: The mulli instruction writes back its results to its destination GPR
(r8).

The execution pipeline is closely coupled with registers required for execution. Some of
these registers are specified explicitly by the instruction (GPRs, condition register (CR),
link register (LR), count register (CTR)). Others, such as the integer exception register
(XER) and the SPE/embedded floating-point status and control register (SPEFSCR), and
the CR are accessed implicitly, typically to record conditions or arithmetic exceptions.

Instructions are dispatched when all register resources are allocated and data dependencies
are resolved. Most instructions perform their calculations in a single clock cycle, as shown
in the latency tables in Section 7.7, “Instruction Timings.” Results are made available by
the next clock cycle, so even though architected registers (such as GPRs) are not updated
until instructions pass through the three-stage execution pipeline, dependent instructions do
not have to wait for the instruction to pass through the entire three-stage execution pipeline.
Therefore, a sequence of instructions with single-cycle latency can have a throughput of
one instruction per cycle, even though each instruction must spend a cycle in each stage of
the three-stage pipeline.

Note that although the core has multiple execution units for integer, SPE, embedded
floating-point, branch, and load/store instructions, parallel instruction issue is not
supported.

7.2.3.1 Integer Execution Unit

The integer execution unit executes integer arithmetic and logical instructions. Adds,
subtracts, compares, count leading zeros, shifts, and rotates execute in a single cycle.

Chapter 7. Instruction Pipeline and Execution Timing 7-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Pipeline

Multiply instructions have a 3-cycle latency with a maximum throughput of one per cycle.
A sequence of floating-point instructions has a one-instruction-per-cycle throughput as
long as they have no data dependencies.

Divide instructions have a variable latency of 6–16 cycles depending on the operand data.
The worst-case integer divide takes 16 cycles. During execution of the divide, the integer
execution pipeline is unavailable for additional instructions (blocking divide).

7.2.3.2 SPE Execution Unit

The SPE execution unit accesses the entire 64 bits of the GPRs to execute all SPE
computational and logical instructions. Instruction latency and throughput for these
instructions are similar to those for integer instructions: single-cycle latencies for most
computations except for multiplication and division. Latency and throughput for these
instructions are listed in Section 7.7.1, “SPE and Embedded Floating-Point APU
Instruction Timing.”

SPE load/store operations are handled by the LSU, and have the same latencies and
throughput as normal loads and stores.

7.2.3.3 Embedded Floating-Point Execution Units

The floating-point units execute all floating-point computational and comparison
instructions defined by the embedded floating-point APUs. Instruction latency and
throughput for these instructions are similar to those for integer instructions: single-cycle
latencies for most computations except for multiplication and division. Latency and
throughput as for these instructions are listed in Section 7.7.1, “SPE and Embedded
Floating-Point APU Instruction Timing.”

7.2.3.4 Load/Store Unit (LSU)

The LSU executes instructions that move data between the GPRs and the memory
subsystem. Loads, when free of data dependencies, execute with a maximum throughput of
one per cycle and 3-cycle latency. Stores also execute with a maximum throughput of one
per cycle and 3-cycle latency. Store data can be fed forward from an immediately preceding
load with no stall.

The LSU also executes all TLB and cache instructions.

7.2.3.5 Branch Execution Unit

Although branch prediction and redirection is handled in the fetch stages, branch execution
consists of resolving the prediction and updating any registers (such as the LR or CTR). In
certain cases, the branch unit predicts branches and supplies a speculative instruction
stream to the instruction buffer.

7-12 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Pipeline Drawings

7.3 Pipeline Drawings
Simple integer instructions, such as addition and logical instructions, complete execution
in the execute 0 stage of the pipeline. Load and store instructions use all three execute
stages, but may be dispatched one per clock assuming no data dependencies exist. Multiply
instructions require three execute stages, but may also be pipelined unless there are data
dependency stalls. Most condition-setting instructions complete in the execute 0 stage of
the pipeline; thus, conditional branches dependent on a condition-setting instruction may
be resolved by an instruction in this stage.

Result feed forward hardware forwards the result of one instruction into the source
operands of a subsequent instruction so that the execution of data-dependent instructions
does not wait until the completion of the result write back. Feed forward hardware is
supplied to allow bypassing of completed instructions from all three execute stages into the
end of the decode stage for a subsequent data-dependent instruction.

7.3.1 Pipeline Operation for Instructions with Single-Cycle
Latency

Sequences of single-cycle execution instructions follow the flow in Figure 7-8. Instructions
are dispatched and completed in program order. Most arithmetic and logical instructions
fall into this category.

7.3.2 Basic Load and Store Instruction Pipeline Operation

Load and store instructions require a minimum of three cycles in the execute stages. For
load and store instructions, the effective address is calculated in the Ex0/EA calculation
stage, and memory is accessed in the Ex1/Mem0 and Ex2/Mem1 stages.

Time Slot

1st instruction I fetch 0 I fetch 1 Decode Execute Feed fwd Feed fwd WB

2nd instruction I fetch 0 I fetch1 Decode Execute Feed fwd Feed fwd WB

3rd instruction I fetch 0 I fetch 1 Decode Execute Feed fwd Feed fwd WB

Figure 7-8. Basic Pipeline Flow, Single-Cycle Instructions

Chapter 7. Instruction Pipeline and Execution Timing 7-13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Pipeline Drawings

7.3.3 Change-of-Flow Instruction Pipeline Operation

Simple change-of-flow instructions require 3 cycles to refill the pipeline with the target
instruction for taken branches and branch and link instructions with no prediction.

In some situations, the 3-cycle timing for branch-type instructions can be reduced by
performing the target fetch speculatively while the branch instruction is still being fetched
into the instruction buffer. The branch target address is obtained from the BTB. The
resulting branch timing reduces to a single clock when the target fetch is initiated early
enough and the branch is taken.

7.3.4 Basic Multiple-Cycle Instruction Pipeline Operation

The divide and load and store multiple instructions require multiple cycles in the execute
stage.

Time Slot

1st load/store I fetch 0 I fetch 1 Decode EA calc Mem0 Mem1 WB

2nd load/store I fetch 0 I fetch1 Decode EA calc Mem0 Mem1 WB

3rd instruction I fetch 0 I fetch 1 Decode Execute Feed fwd Feed fwd

Figure 7-9. Basic Pipeline Flow, Load and Store Instructions

Time Slot

Branch instruction I fetch 0 I fetch 1 Decode Execute 0 WB

Target instruction I fetch 0 I fetch 1 Decode Execute 0 …

Figure 7-10. Basic Pipeline Flow, Branch Instructions

Time Slot

Branch instruction I fetch 0 Slot 0 Decode Execute 0 …

Target instruction
(speculative fetch)

BTB hit T fetch 0 T fetch 1 Decode Execute 0 …

Figure 7-11. Basic Pipeline Flow, Branch Speculation

7-14 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Pipeline Drawings

Most multiple-cycle instructions can be pipelined so that, for a series of multiple-cycle
instructions, the effective execution time, or throughput, is smaller than the overall number
of clocks spent in execution. This pipelining is allowed as long as no data dependencies
exist between the instructions. Instructions must complete and write back results in order.
To meet this requirement, a single-cycle instruction that follows a multiple-cycle
instruction must wait for completion of the multiple-cycle instruction before it can write
back. Result feed-forward paths are provided so that execution may continue prior to result
write back.

7.3.5 Additional Examples of Instruction Pipeline Operation
for Load and Store

Figure 7-13 shows an example of pipelining two non–data-dependent load or store
instructions with a following non-data dependent single-cycle instruction. While the first
load or store begins accessing memory in the MEM0 stage, the next load or store can be
calculating a new effective address in the EX0/EA stage. The add in this example does not
stall if no data dependency exists, but flows through two additional stages of
feed-forwarding logic to complete in proper order.

For memory access instructions, wait-states may occur. This causes a subsequent memory
access instruction to stall since the following memory access may not be initiated, as shown
in Figure 7-14. Here, the first load/store instruction incurs a wait-state on the bus interface,
causing succeeding instructions to stall.

Time Slot

lmw/stmw/div I fetch 0 I fetch 1 Decode Exec. 0/EA … Execute n WB

Figure 7-12. Basic Pipeline Flow, Multiple-Cycle Instructions

Time Slot

Load/store I fetch 0 I fetch 1 Decode Exec. 0/EA Mem 0 Mem 1 WB

Load/store I fetch 0 I fetch 1 Decode Exec. 0/EA Mem 0 Mem 1 WB

Add I fetch 0 I fetch 1 Decode Execute 0 Feed Fwd Feed Fwd WB

Figure 7-13. Pipelined Load/Store Instructions

Chapter 7. Instruction Pipeline and Execution Timing 7-15
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Pipeline Drawings

Figure 7-15 shows an example of pipelining two non-data-dependent load or store
instructions with a following load target data-dependent single-cycle instruction. While the
first load or store begins accessing memory in the MEM0 stage, the next load can be
calculating a new effective address in the EX0/EA stage. The add in this example stalls for
2 cycles because a data dependency exists on the target register of the second load.

Figure 7-16 shows an example of pipelining two non-data-dependent load or store
instructions with a following single-cycle instruction that has a data dependency on the
base register of a preceding load instruction with update. While the first load or store begins
accessing memory in the MEM0 stage, the next load with update can be calculating a new
effective address in the EX0/EA stage. Following the EA calculation, the updated base
register value can be fed forward to subsequent instructions. The add in this example does
not stall, even though a data dependency exists on the updated base register of the load.

Time Slot

Load/
store

I fetch 0 I fetch 1 Decode Exec. 0/EA Mem 0 Stall (wait) Mem 1 WB

Load/store (no wait) I fetch 0 I fetch 1 Decode Exec. 0/EA Stall (wait) Mem 0 Mem 1 WB

Add I fetch 0 I fetch 1 Decode Stall Execute Feed Fwd Feed Fwd WB

Figure 7-14. Pipelined Load/Store Instructions with Wait-State

Time Slot

Load/
store

I fetch 0 I fetch 1 Decode Exec. 0/EA Mem 0 Mem 1 WB

Load 2 I fetch 0 I fetch 1 Decode Exec. 0/EA Mem 0 Mem 1 WB

Add (dependent on load 2) I fetch 0 I fetch 1 Decode Stall Stall Execute WB

Figure 7-15. Pipelined Load Instructions with Load Target Data Dependency

7-16 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Pipeline Drawings

7.3.6 Move to/from SPR Instruction Pipeline Operation

Most mtspr and mfspr instructions are treated like single-cycle instructions in the pipeline,
and do not cause stalls. Exceptions are for the MSR, the debug SPRs, the optional
embedded floating-point APUs, and Cache/MMU SPRs that do cause stalls. Figure 7-17
through Figure 7-19 show examples of mtspr and mfspr instruction timing.

Figure 7-17 applies to the debug SPRs and to the SPEFSCR. These instructions do not
begin execution until all previous instructions have finished their execute stages. In
addition, execution of subsequent instructions stalls until mfspr and mtspr complete.

Figure 7-18 applies to mtmsr, wrtee, and wrteei. Execution of subsequent instructions is
stalled until these instructions write back.

Time Slot

Load/
store

I fetch 0 I fetch 1 Decode Exec. 0/EA Mem 0 Mem 1 WB

Writeback of both load
target rD and updated
base register rA

Load 2 I fetch 0 I fetch 1 Decode Exec. 0/EA Mem 0 Mem 1 WB

(dependent on load 2
base register update)

Add I fetch 0 I fetch 1 Decode Exec. 0 Feed fwd Feed fwd WB

Figure 7-16. Pipelined Instructions with Base Register Update Data Dependency

Time Slot

Prev. Inst. I fetch 0 I fetch 1 Decode Exec. 0 Exec. 1 Exec. 2 WB

mxspr I fetch 0 I fetch 1 Decode Stall Stall Exec. 0 Exec. 1 Exec. 2 WB

Next Inst. I fetch 0 I fetch 1 Decode Stall Stall Stall Stall Exec. 0 Exec. 1

Figure 7-17. mtspr, mfspr Instruction Execution - (1)

Chapter 7. Instruction Pipeline and Execution Timing 7-17
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Pipeline Drawings

Access to cache and MMU SPRs stalls until all outstanding bus accesses have completed
and the cache and MMU are idle (p_cmbusy negated) to allow an access window where no
translations or cache cycles are required. Figure 7-19 shows an example where an
outstanding bus access causes mtspr/mfspr execution to be delayed until the bus becomes
idle. Other situations such as a cache line fill may cause the cache to be busy even when the
processor interface is idle (p_tbusy[0]_b is negated). In these cases, execution stalls until
the cache and MMU are idle, as signaled by negation of p_cmbusy. Processor access
requests are held off during execution of a cache/MMU SPR instruction. A subsequent
access request may be generated the cycle following the last execute stage (WB cycle). This
same protocol applies to cache and MMU instructions (for example, dcbz, dcbf, tlbre, and
tlbwe).

Time Slot

Prev. Inst. I fetch 0 I fetch 1 Decode Exec. 0 … … WB

mtspr, wrtee[i] I fetch 0 I fetch 1 Decode Exec. 0 Exec. 1 Exec. 2 WB

Next Inst. I fetch 0 I fetch 1 Decode Stall Stall Stall Exec. 0 Exec. 1 Exec. 2

Figure 7-18. mtmsr, wrtee, and wrteei Execution

7-18 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Control Hazards

7.4 Control Hazards
Several internal control hazards exist in the e200z6 that can cause certain instruction
sequences to incur one or more stall cycles. These include the following cases:

• mfspr preceded by an mtspr—issue stalls until the mtspr completes

7.5 Instruction Serialization
There are three types of serialization required by the core:

• Completion serialization

• Dispatch (decode/issue) serialization

• Refetch serialization

7.5.1 Completion Serialization

A completion serialized instruction is held in the decode stage until all prior instructions
have completed. The instruction finishes executing when it is next to complete in program
order. Results from these instructions are not available for or forwarded to subsequent

Time Slot

Single-
cycle. Inst.

I fetch 0 I fetch 1 Decode Exec. 0 … … WB

mtspr, wrtee[i] I fetch 0 I fetch 1 Decode Stall Stall Exec. 0 Exec. 1 Exec. 2 WB

Next Inst. I fetch 0 I fetch 1 Decode Stall Stall Stall Stall Exec. 0 Exec. 1

Figure 7-19. Cache/MMU mtspr, mfspr, and MMU Instruction Execution

p_treq_b

p_tbusy[0]_b

p_ta_b

p_rd_spr,
p_wr_spr

p_cmbusy

Chapter 7. Instruction Pipeline and Execution Timing 7-19
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Recognition and Exception Processing

instructions until the instruction completes. The following instructions are completion
serialized:

• Instructions that access or modify system control or status registers. For example.
mcrxr, mtmsr, wrtee, wrteei, mtspr, and mfspr (except to CTR/LR)

• Instructions that manage caches and TLBs

• Instructions defined by the architecture as context or execution synchronizing:
isync, msync, rfi, rfci, rfdi, and sc

7.5.2 Dispatch Serialization

A dispatch-serialized instruction prevents the next instruction from decoding until all
instructions up to and including the dispatch-serialized instruction completes. The isync,
mbar, msync, rfi, rfci, rfdi, and sc instructions are dispatch serialized. (Note that all of
these instructions, except mbar, are also completion serialized.)

7.5.3 Refetch Serialization

Refetch serialized instructions inhibit dispatching of subsequent instructions and force a
pipeline refill to refetch subsequent instructions after completion. These include the
following instructions (which are also serialized at completion and dispatch):

• The context synchronizing instruction, isync.

• The rfi, rfci, rfdi, and sc instructions.

7.6 Interrupt Recognition and Exception Processing
Figure 7-20 shows timing for interrupt recognition and exception processing overhead.
This example shows best-case response timing when an interrupt is received and processed
during execution of a sequence of single-cycle instructions. The handler is present in the
cache and proceeds with no bubbles.

7-20 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Recognition and Exception Processing

Figure 7-20. Interrupt Recognition and Exception Processing Timing

Figure 7-21 shows timing for interrupt recognition and exception processing overhead.
This example shows best-case response timing when an interrupt is received and processed
during execution of a load or store instruction. The fetch for the handler is delayed until
completion of the load or store, regardless of the number of wait states.

Time Slot

EX0 EX2 WBEX1Single-cycle
Instructions

DEC Abort —EX0 —

p_extint_b
final sample point

p_iack

IF0 DEC EX0IF1 EX1 EX21st Instruction of handler

1 2 3 4 5 6 7 8 9 10

DEC Stall StallStall Stall

ec_excp_detected*

oldpc_->srr0*

oldmsr_->srr1*

update_esr*

update_msr*

* - internal operations

11

Chapter 7. Instruction Pipeline and Execution Timing 7-21
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Interrupt Recognition and Exception Processing

Figure 7-21. Interrupt Recognition and Handler Instruction Execution—Load/Store
in Progress

Figure 7-22 shows timing for interrupt recognition and exception processing overhead.
This example shows best-case response timing when an interrupt is received and processed
during execution of a multiple-cycle interruptible instructions. The handler is present in the
cache and proceeds with no bubbles.

Time Slot

EX0 Mem2 waitMem1Load/Store
Instructions

DEC Abort —EX0 —

p_extint_b

final sample point

p_iack

IF0 DEC EX0IF1 EX1
1st Instruction of handler

1 2 3 4 5 6 7 8 9 10

DEC Stall StallStall Stall

ec_excp_detected*

oldpc_->srr0*

oldmsr_->srr1*

update_esr*

update_msr*

* - internal operations

11

WB

7-22 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Timings

Figure 7-22. Interrupt Recognition and Handler Instruction Execution—Multiple-Cycle
Instruction Abort

The following instruction timing section accurately indicates the number of cycles an
instruction executes in the appropriate unit, however, determining the elapsed time or
cycles to execute a sequence of instructions is beyond the scope of this document.

7.7 Instruction Timings
Table 7-1 shows how timing is similar among related instructions; it does not show
latencies for all supported instructions. Pipelined instructions are shown with cycles of total
latency and throughput cycles. Divide instructions are not pipelined and block other

Time Slot

Next Instruction

DEC EX1 AbortEX0 — —Multiple-cycle
Interruptible

DEC Abort —(EX0) —

1 2 3 4 5 6 7 8 9 10

p_extint_b

final sample point

p_iack

IF0 DEC EX0IF1 EX11st Instruction of handler

ec_excp_detected*

oldpc_->srr0*

oldmsr_->srr1*

update_esr*

update_msr*

* - internal operations

Instruction

Chapter 7. Instruction Pipeline and Execution Timing 7-23
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Timings

instructions from executing during divide execution. Section 7.7.1, “SPE and Embedded
Floating-Point APU Instruction Timing,” describes timing for SPE instructions.

Load/store multiple instruction cycles are represented as a fixed number of cycles plus a
variable number of cycles where ‘n’ is the number of words accessed by the instruction.
Cycle times marked with a ‘&’ require variable number of additional cycles due to
serialization.

7.7.1 SPE and Embedded Floating-Point APU Instruction
Timing

This section shows latency and throughput for SPE and embedded floating-point
instructions. Pipelined instructions are shown with cycles of total latency and throughput
cycles. Divide instructions are not pipelined and block other instructions from executing
during execution.

Instruction pipelining is affected by the possibility of a floating-point instruction generating
an exception. A load or store class instruction that follows an embedded floating-point

Table 7-1. Instruction Cycle Counts

Instruction Latency Throughput Notes

Integer: add, sub, shift, rotate,
logical, cntlzw

1 1

Integer: compare 1 1

Integer multiply 3 1

Integer divide 6–16 6–16 Timing depends on operand size

Branch 3/1 3/1 Correct branch look ahead allows single-cycle
execution

CR logical 1 1

Loads (non-multiple) 3 1

Load multiple 3 + n/2 (max) 1 + n/2 (max) Actual timing depends on n and address alignment.

Stores (non-multiple) 3 1

Store multiple 3 + n/2 (max) 1 + n/2 (max) Actual timing depends on n and address alignment.

mtmsr, wrtee, wrteei 4& 4

mcrf 1 1

mfspr, mtspr 3& 3& Applies to debug SPRs, optional unit SPRs

mfspr, mfmsr 1 1 Applies to internal, non debug SPRs

mfcr, mtcr 1 1

rfi, rfci, rfdi 4 —

sc 4 —

tw, twi 4 — Trap taken timing

7-24 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Timings

instruction stalls until it can be ensured that no previous instruction can generate a
floating-point exception. This is determined by which floating-point exception enable bits
are set (FINVE, FOVFE, FUNFE, FDBZE, and FINXE) in the SPEFSCR and at what point
in the FPU pipeline an exception can be guaranteed not to occur. Invalid input operands are
detected in the first stage of the pipeline, while underflow, overflow, and inexactness are
determined later in the pipeline. Best overall performance occurs when either floating-point
exceptions are disabled, or when load and store class instructions are scheduled such that
previous floating-point instructions have already resolved the possibility of exceptional
results.

7.7.1.1 SPE Integer Simple Instruction Timing

Instruction timing for SPE integer simple instructions is shown in Table 7-2. The table is
sorted by opcode. These instructions are dispatched as a pair of operations. Note that here,
latency is defined as the time required for results to be made available to subsequent
instructions. Instructions with single-cycle latency finish calculations in the first of the
three execution pipeline stages, and although they make their results available to
subsequent instructions, they must pass through remaining two execution pipeline stages.

Table 7-2. Timing for SPE Integer Simple Instructions

Instruction Latency Throughput Comments

brinc 1 1

evabs 1 1

evaddiw 1 1

evaddw 1 1

evand 1 1

evandc 1 1

evcmpeq 1 1

evcmpgts 1 1

evcmpgtu 1 1

evcmplts 1 1

evcmpltu 1 1

evcntlsw 1 1

evcntlzw 1 1

eveqv 1 1

evextsb 1 1

evextsh 1 1

evmergehi 1 1

evmergehilo 1 1

Chapter 7. Instruction Pipeline and Execution Timing 7-25
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Timings

7.7.1.2 SPE Load and Store Instruction Timing

Instruction timing for SPE load and store instructions is shown in Table 7-2. The table is
sorted by opcode. Actual timing depends on alignment; the table indicates timing for
aligned operands.

evmergelo 1 1

evmergelohi 1 1

evnand 1 1

evneg 1 1

evnor 1 1

evor 1 1

evorc 1 1

evrlw 1 1

evrlwi 1 1

evrndw 1 1

evsel 1 1

evslw 1 1

evslwi 1 1

evsplatfi 1 1

evsplati 1 1

evsrwis 1 1

evsrwiu 1 1

evsrws 1 1

evsrwu 1 1

evsubfw 1 1

evsubifw 1 1

evxor 1 1

Table 7-2. Timing for SPE Integer Simple Instructions (continued)

Instruction Latency Throughput Comments

7-26 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Timings

Table 7-3. SPE Load and Store Instruction Timing

Instruction Latency Throughput Comments

evldd 3 1

evlddx 3 1

evldh 3 1

evldhx 3 1

evldw 3 1

evldwx 3 1

evlhhesplat 3 1

evlhhesplatx 3 1

evlhhossplat 3 1

evlhhossplatx 3 1

evlhhousplat 3 1

evlhhousplatx 3 1

evlwhe 3 1

evlwhex 3 1

evlwhos 3 1

evlwhosx 3 1

evlwhou 3 1

evlwhoux 3 1

evlwhsplat 3 1

evlwhsplatx 3 1

evlwwsplat 3 1

evlwwsplatx 3 1

evstdd 3 1

evstddx 3 1

evstdh 3 1

evstdhx 3 1

evstdw 3 1

evstdwx 3 1

Chapter 7. Instruction Pipeline and Execution Timing 7-27
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Timings

7.7.1.3 SPE Complex Integer Instruction Timing

Instruction timing for SPE complex integer instructions is shown in Table 7-4. The table is
sorted by opcode. For the divide instructions, the number of stall cycles is (latency) for
following instructions.

evstwhe 3 1

evstwhex 3 1

evstwho 3 1

evstwhox 3 1

evstwwe 3 1

evstwwex 3 1

evstwwo 3 1

evstwwox 3 1

Table 7-4. SPE Complex Integer Instruction Timing

Instruction Latency Throughput Comments

evaddsmiaaw 1 1

evaddssiaaw 1 1

evaddumiaaw 1 1

evaddusiaaw 1 1

evdivws 12-32 1 12-321

evdivwu 12-321 12-321

evmhegsmfaa 3 1

evmhegsmfan 3 1

evmhegsmiaa 3 1

evmhegsmian 3 1

evmhegumiaa 3 1

evmhegumian 3 1

evmhesmf 3 1

evmhesmfa 3 1

evmhesmfaaw 3 1

evmhesmfanw 3 1

evmhesmi 3 1

evmhesmia 3 1

Table 7-3. SPE Load and Store Instruction Timing (continued)

Instruction Latency Throughput Comments

7-28 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Timings

evmhesmiaaw 3 1

evmhesmianw 3 1

evmhessf 3 1

evmhessfa 3 1

evmhessfaaw 3 1

evmhessfanw 3 1

evmhessiaaw 3 1

evmhessianw 3 1

evmheumi 3 1

evmheumia 3 1

evmheumiaaw 3 1

evmheumianw 3 1

evmheusiaaw 3 1

evmheusianw 3 1

evmhogsmfaa 3 1

evmhogsmfan 3 1

evmhogsmiaa 3 1

evmhogsmian 3 1

evmhogumiaa 3 1

evmhogumian 3 1

evmhosmf 3 1

evmhosmfa 3 1

evmhosmfaaw 3 1

evmhosmfanw 3 1

evmhosmi 3 1

evmhosmia 3 1

evmhosmiaaw 3 1

evmhosmianw 3 1

evmhossf 3 1

evmhossfa 3 1

evmhossfaaw 3 1

evmhossfanw 3 1

evmhossiaaw 3 1

Table 7-4. SPE Complex Integer Instruction Timing (continued)

Instruction Latency Throughput Comments

Chapter 7. Instruction Pipeline and Execution Timing 7-29
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Timings

evmhossianw 3 1

evmhoumi 3 1

evmhoumia 3 1

evmhoumiaaw 3 1

evmhoumianw 3 1

evmhousiaaw 3 1

evmhousianw 3 1

evmra 1 1

evmwhsmf 3 1

evmwhsmfa 3 1

evmwhsmi 3 1

evmwhsmia 3 1

evmwhssf 3 1

evmwhssfa 3 1

evmwhumi 3 1

evmwhumia 3 1

evmwlsmf 3 1

evmwlsmfa 3 1

evmwlsmfaaw 3 1

evmwlsmfanw 3 1

evmwlsmiaaw 3 1

evmwlsmianw 3 1

evmwlssf 3 1

evmwlssfa 3 1

evmwlssfaaw 3 1

evmwlssfanw 3 1

evmwlssiaaw 3 1

evmwlssianw 3 1

evmwlumi 3 1

evmwlumia 3 1

evmwlumiaaw 3 1

evmwlumianw 3 1

evmwlusiaaw 3 1

Table 7-4. SPE Complex Integer Instruction Timing (continued)

Instruction Latency Throughput Comments

7-30 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Timings

7.7.1.4 SPE Vector Floating-Point Instruction Timing

Instruction timing for SPE vector floating-point instructions is shown in Table 7-2. The
table is sorted by opcode. The number of stall cycles for evfsdiv is (latency) cycles.

evmwlusianw 3 1

evmwsmf 3 1

evmwsmfa 3 1

evmwsmfaa 3 1

evmwsmfan 3 1

evmwsmi 3 1

evmwsmia 3 1

evmwsmiaa 3 1

evmwsmian 3 1

evmwssf 3 1

evmwssfa 3 1

evmwssfaa 3 1

evmwssfan 3 1

evmwumi 3 1

evmwumia 3 1

evmwumiaa 3 1

evmwumian 3 1

evsubfsmiaaw 1 1

evsubfssiaaw 1 1

evsubfumiaaw 1 1

evsubfusiaaw 1 1

1 Timing is data dependent

Table 7-4. SPE Complex Integer Instruction Timing (continued)

Instruction Latency Throughput Comments

Chapter 7. Instruction Pipeline and Execution Timing 7-31
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Timings

7.7.1.5 Embedded Scalar Floating-Point Instruction Timing

Instruction timing for SPE scalar floating-point instructions is shown in Table 7-6. The
table is sorted by opcode.

Table 7-5. SPE Vector Floating-Point Instruction Timing

Instruction Latency Throughput Comments

evfsabs 3 1

evfsadd 3 1

evfscfsf 3 1

evfscfsi 3 1

evfscfuf 3 1

evfscfui 3 1

evfscmpeq 3 1

evfscmpgt 3 1

evfscmplt 3 1

evfsctsf 3 1

evfsctsi 3 1

evfsctsiz 3 1

evfsctuf 3 1

evfsctui 3 1

evfsctuiz 3 1

evfsdiv 12 12 Blocking, no pipelining with next instruction

evfsmul 3 1

evfsnabs 3 1

evfsneg 3 1

evfssub 3 1

evfststeq 3 1

evfststgt 3 1

evfststlt 3 1

7-32 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Timings

Detailed timing for each instruction mnemonic along with serialization requirements is
shown in Table 7-7.

Table 7-6. Scalar SPE Floating-Point Instruction Timing

Instruction Latency Throughput Comments

efsabs 3 1

efsadd 3 1

efscfsf 3 1

efscfsi 3 1

efscfuf 3 1

efscfui 3 1

efscmpeq 3 1

efscmpgt 3 1

efscmplt 3 1

efsctsf 3 1

efsctsi 3 1

efsctsiz 3 1

efsctuf 3 1

efsctui 3 1

efsctuiz 3 1

efsdiv 12 12 Blocking, no execution overlap with next instruction

efsmul 3 1

efsnabs 3 1

efsneg 3 1

efssub 3 1

efststeq 3 1

efststgt 3 1

efststlt 3 1

Chapter 7. Instruction Pipeline and Execution Timing 7-33
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Timings

Table 7-7. Instruction Timing by Mnemonic

Mnemonic Latency Serialization

add[o][.] 1 None

addc[o][.] 1 None

adde[o][.] 1 None

addi 1 None

addic[.] 1 None

addis 1 None

addme[o][.] 1 None

addze[o][.] 1 None

and[.] 1 None

andc[.] 1 None

andi. 1 None

andis. 1 None

b[l][a] 3 None

bc[l][a] 3 None

bcctr[l] 3 None

bclr[l] 3 None

cmp 1 None

cmpi 1 None

cmpl 1 None

cmpli 1 None

cntlzw[.] 1 None

crand 1 None

crandc 1 None

creqv 1 None

crnand 1 None

crnor 1 None

cror 1 None

crorc 1 None

crxor 1 None

divw[o][.] 6–16 1 None

divwu[o][.] 6–161 None

eqv[.] 1 None

extsb[.] 1 None

7-34 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Timings

extsh[.] 1 None

isel 1 None

isync 3 2 Refetch

lbz 3 3 None

lbzu 33 None

lbzux 33 None

lbzx 33 None

lha 33 None

lhau 33 None

lhaux 33 None

lhax 33 None

lhbrx 33 None

lhz 33 None

lhzu 33 None

lhzux 33 None

lhzx 33 None

lmw 3 +(n/2) None

lwarx 3 None

lwbrx 33 None

lwz 33 None

lwzu 33 None

lwzux 33 None

lwzx 33 None

mbar 12 Dispatch, completion

mcrf 1 None

mcrxr 1 Completion

mfcr 1 None

mfmsr 1 None

mfspr (debug) 32 Completion

mfspr (except debug) 1 Completion

msync 12 Dispatch, completion

mtcrf 2 None

mtmsr 42 Completion

Table 7-7. Instruction Timing by Mnemonic (continued)

Mnemonic Latency Serialization

Chapter 7. Instruction Pipeline and Execution Timing 7-35
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Instruction Timings

mtspr (debug) 32 Completion

mtspr (except debug) 1 Completion

mulhw[.] 3 None

mulhwu[.] 3 None

mulli 3 None

mullw[o][.] 3 None

nand[.] 1 None

neg[o][.] 1 None

nop (ori r0,r0,0) 1 None

nor[.] 1 None

or[.] 1 None

orc[.] 1 None

ori 1 None

oris 1 None

rfci 4 Dispatch, refetch, completion

rfdi 4 Dispatch, refetch, completion

rfi 4 Dispatch, refetch, completion

rlwimi[.] 1 None

rlwinm[.] 1 None

rlwnm[.] 1 None

sc 4 Dispatch, refetch

slw[.] 1 None

sraw[.] 1 None

srawi[.] 1 None

srw[.] 1 None

stb 33 None

stbu 33 None

stbux 33 None

stbx 33 None

sth 33 None

sthbrx 33 None

sthu 33 None

sthux 33 None

Table 7-7. Instruction Timing by Mnemonic (continued)

Mnemonic Latency Serialization

7-36 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Effects of Operand Placement on Performance

7.8 Effects of Operand Placement on Performance
The placement (location and alignment) of operands in memory affects relative
performance of memory accesses, and in some cases, affects it significantly. Table 7-8
indicates the effects for the e200z6 core.

In Table 7-8, optimal means that one effective address (EA) calculation occurs during the
memory operation. Good means that multiple EA calculations occur during a memory
operation that may cause additional bus activities with multiple bus transfers. Poor means
that an alignment interrupt is generated by the storage operation.

sthx 33 None

stmw 3 + (n/2) None

stw 33 None

stwbrx 33 None

stwcx. 3 None

stwu 33 None

stwux 33 None

stwx 33 None

subf[o][.] 1 None

subfc[o][.] 1 None

subfe[o][.] 1 None

subfic 1 None

subfme[o][.] 1 None

subfze[o][.] 1 None

tw 4 None

twi 4 None

wrtee 4 Completion

wrteei 4 Completion

xor[.] 1 None

xori 1 None

xoris 1 None

1 With early-out capability, timing is data dependent
2 Plus additional synchronization time
3 Aligned

Table 7-7. Instruction Timing by Mnemonic (continued)

Mnemonic Latency Serialization

Chapter 7. Instruction Pipeline and Execution Timing 7-37
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Effects of Operand Placement on Performance

Table 7-8. Performance Effects of Operand Placement

Operand Boundary Crossing*

Size Byte Alignment None Cache Line Protection Boundary

4 byte 4 Optimal: One EA calculation — —

<4 Good: Multiple EA calculations; may cause multiple bus transfers.

2 byte 2 Optimal: One EA calculation — —

<2 Good: Multiple EA calculations; may cause multiple bus transfers.

1 byte 1 Optimal: One EA calculation — —

lmw,
stmw

4 Good: Multiple EA calculations; may cause multiple bus transfers.

<4 Poor: Alignment interrupt occurs.

7-38 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Effects of Operand Placement on Performance

Chapter 8. External Core Complex Interfaces 8-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Chapter 8
External Core Complex Interfaces
This chapter describes the external interfaces of the e200z6 core complex. Signal
descriptions as well as data transfer protocols are documented in the following subsections.

Section 8.4, “Internal Signals,” describes a number of internal signals that are not directly
accessible to users, but they are mentioned in various chapters in this manual and aid in
understanding the behavior of the e200z6 core.

8.1 Overview
The external interfaces encompass the following:

• Control and data signals supporting instruction and data transfers

• Support for interrupts, including vectored interrupt logic

• Reset support

• Power management interface signals

• Debug event signals

• Time base control and status information

• Processor state information

• Nexus 1/3/OnCE/JTAG interface signals

• A test interface

The memory interface that the BIU supports is based on the AMBA AHB-Lite subset of the
AMBA 2.0 AHB, with V6 AMBA extensions. (Ref. documents ARM IHI 0011A, ARM
DVI 0044A, and ARM PR022-GENC-001011 0.4). Sideband signals, described in this
chapter, support additional control functions. A 64-bit data bus is implemented. The
pipelined memory interface supports read and write transfers of 8, 16, 24, 32, and 64 bits,
misaligned transfers, burst transfers of four double words, and true big- and little-endian
operating modes.

8-2 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Index

NOTE
The AMBA AHB bit and byte ordering reflect a natural
little-endian ordering that AMBA documentation uses. The
e200z6 BIU automatically performs byte lane conversions to
support big-endian transfers. Memories and peripheral
devices/interfaces should be wired according to byte lane
addresses defined in Table 8-6.

Single-beat and misaligned transfers are supported for cache-inhibited read and write
cycles, and write-buffer writes. Burst transfers (double-word–aligned) of 4 double words
are supported for cache line-fill and copyback operations.

Misaligned accesses are supported with one or more transfers to the core interface. If an
access is misaligned but is contained within an aligned 64-bit double word, the core
performs a single transfer. The memory interface is responsible for delivering (reads) or
accepting (writes) the data that corresponds to the size- and byte-enable signals aligned
according to the low order three address bits. If an access is misaligned and crosses a 64-bit
boundary, the e200z6 BIU performs a pair of transfers beginning at the effective address,
requesting the original data size (either half word or word) for the first transfer, along with
appropriate byte enables. For the second transfer, the address is incremented to the next
64-bit boundary, and the size and byte enable signals are driven to correspond to the number
of remaining bytes to be transferred.

8.2 Signal Index
This section contains an index of the e200z6 signals.

The following prefixes are used for e200z6 signal mnemonics:

• 'm_' denotes master clock and reset signals.

• 'p_' denotes processor or core-related signals.

• 'j_' denotes JTAG mode signals.

• 'jd_' denotes JTAG and debug mode signals.

• 'ipt_' denotes scan and test mode signals.

• 'nex_' denotes Nexus3 signals.

NOTE
The “_b” suffix denotes an active low signal. Signals without
the active-low suffix are active high.

Figure 8-1 groups core bus and control signals by function.

Chapter 8. External Core Complex Interfaces 8-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Index

Figure 8-1. e200z6 Signal Groups

Transfer

Transfer Control

Attributes

p_htrans[1:0]
p_hburst[2:0]
p_hbstrb[7:0]

Data Bus

p_doze, p_nap, p_sleep

p_reset_b

Reset-

Power
Address Bus

p_wakeup

p_haddr[31:0]

Management

* These signals are internal to the core.
Note:

e200z6
CPU

p_pstat[0:4], p_brstat[0:1]
Processor Status

p_devt2
p_devt1

p_ude

p_halt, p_stop

p_halted, p_stopped

p_hwrite
p_hprot[5:0]
p_hsize[1:0]
p_hunalign

Reservation
Signals

p_rsrv
p_rsrv_clr

p_tbint
p_tbclkTime Base
p_tbdisable

Signals

Debug
Support

e200z6

Module

jd_debug_b

dbg_dbgrq*

cpu_dbgack*

OnCE Control*

JTAG Interface

jd_de_b

Test Interface

jd_de_en

jd_en_once

jd_watchpt[0:n]

p_wayrep[2:0]

jd_mclk_on

j_en_once_regsel

m_por
p_resetout_b
p_rstbase[0:19]

related
Signals

(OnCE/Debug)

p_hwdata[63:0]
p_hrdata[63:0]

p_cpuid[0:7]

Miscellaneous p_sysvers[0:31]
p_pvrin[16:31]

Signals
Processor

p_hresp[2:0]Transfer
p_hready

Status
Termination/

p_mcp_b

p_chkstopMachine Check

Interrupt

p_extint_b
 p_critint_b
p_avec_b
p_voffset[0:15]
p_iack

 Signals

p_ipend

Dev
Support

e200z6

Module
nex_mseo_b[1:0]

nex_evti_b

nex_mdo[n:0]

nex_mcko

nex_rdy_b

nex_evto_b

Clock m_clk

p_rst_endmode

p_hmaster[3:0]

MasterID nex_masterid[3:0]

p_masterid[3:0]

Config

p_mcp_out

Nexus3

Nexus1

8-4 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Index

Table 8-1 shows e200z6 signal function and type, signal definition, and reset value. Signals
are presented in functional groups.

Table 8-1. Interface Signal Definitions

Signal Name I/O Reset Definition

Clock and Signals Related to Reset

m_clk I Global system clock

m_por I Power-on reset

p_reset_b I Processor reset input

p_resetout_b O Processor reset output

p_rstbase[0:19] I Reset exception handler base address

p_rst_endmode I Reset endian mode select

Memory Interface Signals

p_hmaster[3:0] O — Master ID

p_haddr[31:0] O — Address bus

p_hwrite O 0 Write signal

p_hprot[5:0] O — Protection codes

p_htrans[1:0] O — Transfer type

p_hburst[2:0] O — Burst type

p_hsize[1:0] O — Transfer size

p_hunalign O — Indicates that current data access is a misaligned access

p_hbstrb[7:0] O 0 Byte strobes

p_hrdata[63:0] I Read data bus

p_hwdata[63:0] O — Write data bus

p_hready I Transfer ready

p_hresp[2:0] I Transfer response

p_wayrep[2:0] O Way replacement. Indicates the cache way being replaced by a burst read line
fill.

Master ID Configuration Signals

p_masterid[3:0] I — CPU master ID configuration

nex_masterid[3:0] I — Nexus3 master ID configuration

Interrupt Interface Signals

p_extint_b I External input interrupt request

p_critint_b I Critical input interrupt request

p_avec_b I Autovector request. Use internal interrupt vector offset.

p_voffset[0:15] I Interrupt vector offset for vectored interrupts

Chapter 8. External Core Complex Interfaces 8-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Index

p_iack O 0 Interrupt acknowledge. Indicates an interrupt is being acknowledged.

p_ipend O 0 Interrupt pending. Indicates an interrupt is pending internally.

p_mcp_b I Machine check input request

Time Base Signals

p_tbint O 0 Time base interrupt

p_tbdisable I — Time base disable input

p_tbclk I — Time base clock input

Misc. CPU Signals

p_cpuid[0:7] I CPU ID input

p_sysvers[0:31] I System version inputs (for SVR)

p_pvrin[16:31] I Inputs for PVR

p_pid0[0:7] O 0 PID0[24:31] outputs

p_pid0_updt O 0 PID0 update status

 CPU Reservation Signals

p_rsrv O 0 Reservation status

p_rsrv_clr I Clear reservation flag

CPU State Signals

p_pstat[0:4] O 0 Processor status

p_brstat[0:1] O 0 Branch prediction status

p_mcp_out O 0 Machine check occurred

p_chkstop O 0 Checkstop occurred

p_doze O 0 Low-power doze mode of operation

p_nap O 0 Low-power nap mode of operation

p_sleep O 0 Low-power sleep mode of operation

p_wakeup O 0 Indicates to external clock control module to enable clocks and exit from
low-power mode

p_halt I CPU halt request

p_halted O 0 CPU halted

p_stop I CPU stop request

p_stopped O 0 CPU stopped

CPU Debug Event Signals

p_ude I Unconditional debug event

p_devt1 I Debug event 1 input

Table 8-1. Interface Signal Definitions (continued)

Signal Name I/O Reset Definition

8-6 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Index

p_devt2 I Debug event 2 input

Debug/Emulation Support Signals (Nexus 1/OnCE)

jd_en_once I Enable full OnCE operation

jd_debug_b O 1 Processor entered debug session

jd_de_b I Debug request

jd_de_en O 0 Active -high output enable for DE_b open-drain IO cell

jd_mclk_on I System clock controller actively toggling m_clk

jd_watchpt[0:7] O 0 Address watchpoint occurred

Development Support Signals (Nexus 3)

nex_mcko O Nexus3 clock output

nex_rdy_b O Nexus3 ready output

nex_evto_b O Nexus3 event-out output

nex_evti_b I Nexus3 event-in input

nex_mdo[n:0] O Nexus3 message data output

nex_mseo_b[1:0] O Nexus3 message start/end output

JTAG-Related Signals

j_trst_b I JTAG test reset from pad

j_tclk I JTAG test clock from pad

j_tms I JTAG test mode select from pad

j_tdi I JTAG test data input from pad

j_tdo O 0 JTAG test data out to master controller or pad

j_tdo_en O 0 Enables TDO output buffer

j_tst_log_rst O 0 Test-logic-reset state of JTAG controller

j_capture_ir O 0 Capture_IR state of JTAG controller

j_update_ir O 0 Update_IR state of JTAG controller

j_shift_ir O 0 Shift_IR state of JTAG controller

j_capture_dr O 0 Parallel test data register load state of JTAG controller

j_shift_dr O 0 TAP controller in shift DR state

j_update_gp_reg O 0 Updates JTAG controller test data register

j_rti O 0 JTAG controller run-test-idle state

j_key_in I Input for providing data to be shifted out during shift_IR state when jd_en_once
is negated

j_en_once_regsel O 0 External enable OnCE register select

Table 8-1. Interface Signal Definitions (continued)

Signal Name I/O Reset Definition

Chapter 8. External Core Complex Interfaces 8-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Descriptions

8.3 Signal Descriptions
Table 8-2 describes the e200z6 processor clock, m_clk.

Table 8-3 describes signals that are related to reset. The e200z6 supports several reset input
signals for the CPU and JTAG/OnCE control logic: m_por, p_reset_b, and j_trst_b. The
reset domains are partitioned such that the CPU p_reset_b signal does not affect
JTAG/OnCE logic and j_trst_b does not affect processor logic. It is possible and desirable
to access OnCE registers while the processor is running or in reset. It is also possible and
desirable to assert j_trst_b and clear the JTAG/OnCE logic without affecting the processor
state.

The synchronization logic between the processor and debug module requires an assertion
of either j_trst_b or m_por during initial processor power-on reset to ensure proper
operation. If the pin associated with j_trst_b is designed with a pull-up resistor and left
floating, assertion of m_por is required during the initial power-on processor reset.
Similarly, for those systems that do not have a power-on reset circuit and choose to tie
m_por low, it is required to assert j_trst_b during processor power-up reset. When a
power-up reset is achieved, the two resets can be asserted independently.

A reset output signal, p_resetout_b, is also provided.

A set of input signals (p_rstbase[0:19], p_rst_endmode) are provided to relocate the reset
exception handler to allow for flexible placement of boot code and to select the default
endian mode of the CPU out of reset.

j_nexus_regsel O 0 External Nexus register select

j_lsrl_regsel O 0 External LSRL register select

j_gp_regsel[0:11] O 0 General-purpose external JTAG register select

j_id_sequence[0:1] I JTAG ID register (2 msbs of sequence field)

j_id_version[0:3] I JTAG ID register version field

j_serial_data I Serial data from external JTAG registers

Table 8-2. Processor Clock Signal Description

Signal I/O Signal Description

m_clk I e200z6 processor clock. The synchronous clock source for the e200z6 processor core. Because the
e200z6 is designed for static operation, m_clk can be gated off to lower power dissipation (for example,
during low-power stopped states).

Table 8-1. Interface Signal Definitions (continued)

Signal Name I/O Reset Definition

8-8 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Descriptions

Table 8-4 describes signals for the address and data buses. These outputs provide the
address for a bus transfer. According to the AHB definition, p_haddr31 is the msb and
p_haddr0 is the lsb.

Table 8-3. Descriptions of Signals Related to Reset

Signal I/O Signal Description

m_por I Power-on reset. Serves the following purposes:
 • m_por is ORed with j_trst_b and the resulting signal clears the JTAG TAP controller and

associated registers as well as the OnCE state machine. This signal is an asynchronous clear
with a short assertion time requirement.

 • m_por is ORed with the p_reset_b function, and the resulting signal clears certain CPU
registers. This is an asynchronous clear with a short assertion time requirement.

Reset values for other registers are listed in Section 2.16.4, “Reset Settings.”

State
Meaning

Asserted—Power-on reset is requested.
Negated—Power-on reset is not requested.

p_reset_b I Reset. Treated as an asynchronous input and is sampled by the clock control logic in the e200z6
debug module.

State
Meaning

Asserted—Reset is requested.
Negated—Reset is not requested.

p_resetout_b O Reset out. Conditionally asserted by either the watchdog timer (Section 2.9.1, “Timer Control
Register (TCR)”) or debug control logic. p_resetout_b is not asserted by p_reset_b.

p_rstbase[0:19] I Reset base. Allows system integrators to specify or relocate the base address of the reset
exception handler.

State
Meaning

Forms the upper 20 bits of the instruction access following negation of reset, which
is used to fetch the initial instruction of the reset exception handler. These bits should
be driven to a value corresponding to the desired boot memory device in the system.
These inputs are also used by the MMU during reset to form a default TLB entry 0 for
translation of the reset vector fetch.The initial instruction fetch occurs to the location
[p_rstbase[0:19]] || 0xFFC.

Timing Must remain stable in a window beginning 2 clocks before the negation of reset and
extending into the cycle in which the reset vector fetch is initiated.

p_rst_endmode I Reset endian mode. Used by the MMU during reset to form the E bit of the default TLB entry 0 for
translation of the reset vector fetch.

State
Meaning

High—Causes the resultant entry E bit to be set, indicating a little-endian page.
Low—causes the resultant entry E bit to be cleared, indicating a big-endian page.

j_trst_b I JTAG/OnCE reset (IEEE 1149.1 JTAG specification TRST).

State
Meaning

Asynchronous reset with a short assertion time requirement. It is ORed with the
m_por function, and the resulting signal clears the OnCE TAP controller and
associated registers and the OnCE state machine.

Chapter 8. External Core Complex Interfaces 8-9
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Descriptions

Table 8-5 describes transfer attribute signals, which provide additional information about
the bus transfer cycle. Attributes are driven with the address at the start of a transfer.

Table 8-4. Descriptions of Signals for the Address and Data Buses

Signal I/O Signal Description

p_haddr[31:0] O Address bus. Provides the address for a bus transfer. According to the AHB definition, p_haddr[31]
is the msb and p_haddr[0] is the lsb.

p_hrdata[63:0] I Read data bus. Provides data to the e200z6 on read transfers. The read data bus can transfer 8,
16, 24, 32, or 64 bits of data per transfer. According to the AHB definition, p_hrdata63 is the msb
and p_hrdata0 is the lsb.
Memory Byte Address Wired to p_hrdata Bits

000 7:0
001 15:8
010 23:16
011 31:24
100 39:32
101 47:40
110 55:48
111 63:56

p_hwdata[63:0] O Write data bus. Transfers data from the e200z6 on write transfers. The write data bus can transfer
8, 16, 24, 32, or 64 bits of data per bus transfer. According to the AHB definition, p_hwdata[63] is
the msb and p_hwdata[0] is the lsb.
Memory Byte Address Wired to p_hwdata Bits

000 7:0
001 15:8
010 23:16
011 31:24
100 39:32
101 47:40
110 55:48
111 63:56

Table 8-5. Descriptions of Transfer Attribute Signals

Signal I/O Signal Description

p_htrans[1:0] O Transfer type. The processor drives these signals to indicate the current transfer type, as follows:
p_htrans1 p_htrans0 Access type

0 0 IDLE—No data transfer is required. Slaves must terminate IDLE transfers
with a zero wait-state OKAY response and ignore the (non-existent)
transfer.

0 1 BUSY—(The e200z6 does not use the BUSY encoding and does not
present this type of transfer to a bus slave.) Master is busy, burst transfer
continues.

1 0 NONSEQ—Indicates the first transfer of a burst, or a single transfer.
Address and control signals are unrelated to the previous transfer.

1 1 SEQ—Indicates the continuation of a burst. Address and control signals
are related to the previous transfer. Control signals are the same.
Address was incremented by the size of the data transferred (optionally
wrapped).

If the p_htrans[1:0] encoding is not IDLE or BUSY, a transfer is being requested.

8-10 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Descriptions

p_hwrite O Write. Defines the data transfer direction for the current bus cycle.

State
Meaning

Asserted—The current bus cycle is a write.
Negated—The current bus cycle is a read.

p_hsize[1:0] O Transfer size. For misaligned transfers, size may exceed the requested size to ensure that all
asserted byte strobes are within the container defined by p_hsize[1:0]. Table 8-7 and Table 8-8
show p_hsize encodings for aligned and misaligned transfers.
p_hsize[1:0] Transfer Size
00 Byte
01 Half word (2 bytes)
10 Word (4 bytes)
11 Double word (8 bytes)

p_hburst[2:0]] O Burst type. The e200z6 uses only SINGLE and WRAP4 burst types.
p_hburst[2:0] Burst Type
000 SINGLE—No burst, single beat only
001 INCR—Incrementing burst of unspecified length. Not used by the e200z6.
010 WRAP4—4-beat wrapping burst
011 INCR4—4-beat incrementing burst. Not used by the e200z6.
100 WRAP8—8-beat wrapping burst. Not used by the e200z6.
101 INCR8—8-beat incrementing burst. Not used by the e200z6.
110 WRAP16 —16-beat wrapping burst. Not used by the e200z6.
111 INCR16—16-beat incrementing burst. Not used by the e200z6.

Table 8-5. Descriptions of Transfer Attribute Signals (continued)

Signal I/O Signal Description

Chapter 8. External Core Complex Interfaces 8-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Descriptions

Table 8-6 describes signals for byte lane specification. Read transactions transfer from 1–8
bytes of data on the p_hrdata[63:0] bus. The lanes involved in the transfer are determined
by the starting byte number specified by the lower address bits with the transfer size and
byte strobes. Byte lane addressing is shown big-endian (left to right) regardless of the core’s
endian mode. The byte in memory corresponding to address 0 is connected to B0
(p_h{r,w}data[7:0]) and the byte corresponding to address 7 is connected to B7
(p_h{r,w}data[63:56]). The CPU internally permutes read data as required for the endian

p_hprot[5:0] O Protection control. The e200z6 drives the p_hprot[5:0] signals to indicate the type of access for the
current bus cycle. p_hprot[0] indicates instruction/data, p_hprot[1] indicates user/supervisor.
p_hprot[5] indicates whether the access is exclusive (that is, for a lwarx or stwcx.). p_hprot[4:2]
(allocate, cacheable, bufferable) indicate particular cache attributes for the access. The following
table shows the definitions of the p_hprot[5:0] signals.
p_hprot5 p_hprot4 p_hprot3 p_hprot2 p_hprot1 p_hprot0 Transfer Type

— — — — — 0 Instruction access
— — — — — 1 Data access
— — — — 0 — User mode access
— — — — 1 — Supervisor mode access
— 0 0 0 — — Cache-inhibited
— 0 0 1 — — Guarded, not cache-inhibited
— 0 1 0 — — Reserved
— 0 1 1 — — Reserved
— 1 0 0 — — Reserved
— 1 0 1 — — Reserved
— 1 1 0 — — Cacheable, writethrough
— 1 1 1 — — Cacheable, writeback
0 — — — — — Not exclusive
1 — — — — — Exclusive access

The e200z6 maps Book E storage attributes to the AHB hprot signals as described in the following.
For buffered stores, p_hprot[1] is driven with the user/supervisor mode attribute associated with the
store at the time it was buffered. For cache line pushes/copybacks, p_hprot[1] indicates supervisor
access. In both of these cases, p_hprot0 indicates a data access.
TLB[I] TLB[G] TLB[W]||!L1CSR0[CWM] p_hprot[4:2] Transfer Type
0 0 0 111 Cacheable, writeback
0 0 1 110 Cacheable, writethrough
0 1 — 001 Guarded, not cache-inhibited
1 — — 000 Cache-inhibited
— — — 001 Buffered store, page marked guarded
— — — 110 Buffered store and page marked

writethrough or L1CSR0[CWM]=0, and
non-guarded

— — — 111 Buffered store and page marked
copyback and L1CSR0[CWM]=1, and
non-guarded

— — — 111 Dirty line push

p_wayrep[2:0] O Cache way replacement.

State
Meaning

 Driven valid during cache line fills to indicate which way of the cache is being replaced.
These signals are undefined on all other transfer types.

Timing Driven valid with address and attribute timing; remain valid for all beats of the burst read.

Table 8-5. Descriptions of Transfer Attribute Signals (continued)

Signal I/O Signal Description

8-12 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Descriptions

mode of the current access. Assertion of p_hunalign indicates misaligned transfers and that
byte strobes do not correspond exactly to size and low-order address bits.

Table 8-7 lists all data transfer permutations. Note that misaligned data requests that cross
a 64-bit boundary are broken into two bus transactions, and the address value and size
encoding for the first transfer are not modified. The table is arranged in a big-endian
fashion, but the active lanes are the same regardless of the endian-mode of the access. The
e200z6 performs the proper byte routing internally based on endianness.

Table 8-6. Descriptions of Signals for Byte Lane Specification

Signal I/O Signal Description

p_hunalign O Unaligned access. Indicates whether the current access is misaligned.

State
Meaning

Asserted—The current data access is misaligned. Indicates whether the selected bytes
involved in the current portion of the misaligned access, which may not include all
bytes defined by the size and low-order address signals. Aligned transfers also
assert the byte strobes, but in a manner corresponding to size and low order
address bits.
Asserted only for misaligned data accesses; all instruction accesses are aligned.

Negated—No misaligned data access is occurring.

Timing The timing of this signal is approximately the same as address timing.

p_hbstrb[7:0] O Byte strobes. Indicate the bytes selected for the current transfer. For a misaligned access, the
current transfer may not include all bytes defined by the size and low-order address signals. For
aligned transfers, the byte strobe signals correspond to the bytes that size and low-order address
signals define. The relationships of byte addresses to the byte strobe signals are as follows.
Memory byte address Wired to p_h{r,w}data bits Corresponding byte strobe signal

000 7:0 p_hbstrb[0]
001 15:8 p_hbstrb[1]
010 23:16 p_hbstrb[2]
011 31:24 p_hbstrb[3]
100 39:32 p_hbstrb[4]
101 47:40 p_hbstrb[5]
110 55:48 p_hbstrb[6]
111 63:56 p_hbstrb[7]

Table 8-7. Byte Strobe Assertion for Transfers

Program Size
and Byte Offset

A(2:0)
HSIZE
[1:0]

Data Bus Byte Strobes 1

HUNALIGN
B0 B1 B2 B3 B4 B5 B6 B7

Byte @000 0 0 0 0 0 X — — — — — — — 0

Byte @001 0 0 1 0 0 — X — — — — — — 0

Byte @010 0 1 0 0 0 — — X — — — — — 0

Byte @011 0 1 1 0 0 — — — X — — — — 0

Byte @100 1 0 0 0 0 — — — — X — — — 0

Byte @101 1 0 1 0 0 — — — — — X — — 0

Byte @110 1 1 0 0 0 — — — — — — X — 0

Byte @111 1 1 1 0 0 — — — — — — — X 0

Chapter 8. External Core Complex Interfaces 8-13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Descriptions

Table 8-8 shows the final layout in memory for data transferred from a 64-bit GPR
containing the bytes ‘A B C D E F G H’ to memory. The core breaks misaligned accesses
that cross a double-word boundary into a pair of accesses. Double-word transfers are
always double-word–aligned.

Half @000 0 0 0 0 1 X X — — — — — — 0

Half @001 0 0 1 1 0 2 — X X — — — — — 1

Half @010 0 1 0 0 1 — — X X — — — — 0

Half @011 0 1 1 1 1 2 — — — X X — — — 1

Half @100 1 0 0 0 1 — — — — X X — — 0

Half @101 1 0 1 1 0 2 — — — — — X X — 1

Half @110 1 1 0 0 1 — — — — — — X X 0

Half @111
(Two bus transfers)

1 1 1
0 0 0

0 1 3

0 0
—
X

—
—

—
—

—
—

—
—

—
—

—
—

X
—

1
0

Word @000 0 0 0 1 0 X X X X — — — — 0

Word @001 0 0 1 1 1 2 — X X X X — — — 1

Word @010 0 1 0 1 1 2 — — X X X X — — 1

Word @011 0 1 1 1 1 2 — — — X X X X — 1

Word @100 1 0 0 1 0 — — — — X X X X 0

Word @101
(Two bus transfers)

1 0 1
0 0 0

1 0
0 0

—
X

—
—

—
—

—
—

—
—

X
—

X
—

X
—

1
0

Word @110
(Two bus transfers)

1 1 0
0 0 0

1 0 3

0 1
—
X

—
X

—
—

—
—

—
—

—
—

X
—

X
—

1
0

Word @111
(Two bus transfers)

1 1 1
0 0 0

1 0 3

1 0
—
X

—
X

—
X

—
—

—
—

—
—

—
—

X
—

1
1

Double word 0 0 0 1 1 X X X X X X X X 0

1 X indicates byte lanes involved in the transfer. Other lanes contain driven but unused data.
2 These misaligned transfers drive size according to the size of the power of two aligned containers in which the

byte strobes are asserted.
3 These misaligned cases drive request size according to the size specified by the load or store instruction.

Table 8-7. Byte Strobe Assertion for Transfers (continued)

Program Size
and Byte Offset

A(2:0)
HSIZE
[1:0]

Data Bus Byte Strobes 1

HUNALIGN
B0 B1 B2 B3 B4 B5 B6 B7

8-14 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Descriptions

Table 8-8. Big-and Little-Endian Storage (64-bit GPR contains ‘A B C D E F G H’.)

Program Size
and Byte Offset

A(3:0)
HSIZE
(1:0)

Even Double Word— 0 0dd Double Word—1

B0 B1 B2 B3 B4 B5 B6 B7 B0 B1 B2 B3 B4 B5 B6 B7

Byte @0000 0 0 0 0 0 0 H — — — — — — — — — — — — — — —

Byte @0001 0 0 0 1 0 0 — H — — — — — — — — — — — — — —

Byte @0010 0 0 1 0 0 0 — — H — — — — — — — — — — — — —

Byte @0011 0 0 1 1 0 0 — — — H — — — — — — — — — — — —

Byte @0100 0 1 0 0 0 0 — — — — H — — — — — — — — — — —

Byte @0101 0 1 0 1 0 0 — — — — — H — — — — — — — — — —

Byte @0110 0 1 1 0 0 0 — — — — — — H — — — — — — — — —

Byte @0111 0 1 1 1 0 0 — — — — — — — H — — — — — — — —

Byte @1000 1 0 0 0 0 0 — — — — — — — — H — — — — — — —

Byte @1001 1 0 0 1 0 0 — — — — — — — — — H — — — — — —

Byte @1010 1 0 1 0 0 0 — — — — — — — — — — H — — — — —

Byte @1011 1 0 1 1 0 0 — — — — — — — — — — — H — — — —

Byte @1100 1 1 0 0 0 0 — — — — — — — — — — — — H — — —

Byte @1101 1 1 0 1 0 0 — — — — — — — — — — — — — H — —

Byte @1110 1 1 1 0 0 0 — — — — — — — — — — — — — — H —

Byte @1111 1 1 1 1 0 0 — — — — — — — — — — — — — — — H

B. E. Half @0000 0 0 0 0 0 1 G H — — — — — — — — — — — — — —

B. E. Half @0001 0 0 0 1 1 0 1 — G H — — — — — — — — — — — — —

B. E. Half @0010 0 0 1 0 0 1 — — G H — — — — — — — — — — — —

B. E. Half @0011 0 0 1 1 1 1 1 — — — G H — — — — — — — — — — —

B. E. Half @0100 0 1 0 0 0 1 — — — — G H — — — — — — — — — —

B. E. Half @0101 0 1 0 1 1 0 1 — — — — — G H — — — — — — — — —

B. E. Half @0110 0 1 1 0 0 1 — — — — — — G H — — — — — — — —

B. E. Half @0111 0 1 1 1 0 1 — — — — — — — G — — — — — — — —

1 0 0 0 0 0 — — — — — — — — H — — — — — — —

B. E. Half @1000 1 0 0 0 0 1 — — — — — — — — G H — — — — — —

B. E. Half @1001 1 0 0 1 1 0 1 — — — — — — — — — G H — — — — —

B. E. Half @1010 1 0 1 0 0 1 — — — — — — — — — — G H — — — —

B. E. Half @1011 1 0 1 1 1 1 1 — — — — — — — — — — — G H — — —

B. E. Half @1100 1 1 0 0 0 1 — — — — — — — — — — — — G H — —

B. E. Half @1101 1 1 0 1 1 0 1 — — — — — — — — — — — — — G H —

B. E. Half @1110 1 1 1 0 0 1 — — — — — — — — — — — — — — G H

Chapter 8. External Core Complex Interfaces 8-15
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Descriptions

B. E. Half @1111 1 1 1 1 0 1 — — — — — — — — — — — — — — — G

0 0 0 0
(next dword) 0 0

H — — — — — — — — — — — — — — —

L E. Half @0000 0 0 0 0 0 1 H G — — — — — — — — — — — — — —

L. E. Half @0001 0 0 0 1 1 0 1 — H G — — — — — — — — — — — — —

L. E. Half @0010 0 0 1 0 0 1 — — H G — — — — — — — — — — — —

L. E. Half @0011 0 0 1 1 1 1 1 — — — H G — — — — — — — — — — —

L. E. Half @0100 0 1 0 0 0 1 — — — — H G — — — — — — — — — —

L. E. Half @0101 0 1 0 1 1 0 1 — — — — — H G — — — — — — — — —

L. E. Half @0110 0 1 1 0 0 1 — — — — — — H G — — — — — — — —

L. E. Half @0111 0 1 1 1 0 1 — — — — — — — H — — — — — — — —

1 0 0 0 0 0 — — — — — — — — G — — — — — — —

L. E. Half @1000 1 0 0 0 0 1 — — — — — — — — H G — — — — — —

L. E. Half @1001 1 0 0 1 1 0 1 — — — — — — — — — H G — — — — —

L. E. Half @1010 1 0 1 0 0 1 — — — — — — — — — — H G — — — —

L. E. Half @1011 1 0 1 1 1 1 1 — — — — — — — — — — — H G — — —

L. E. Half @1100 1 1 0 0 0 1 — — — — — — — — — — — — H G — —

L. E. Half @1101 1 1 0 1 1 0 1 — — — — — — — — — — — — — H G —

L. E. Half @1110 1 1 1 0 0 1 — — — — — — — — — — — — — — H G

L. E. Half @1111 1 1 1 1 0 1 — — — — — — — — — — — — — — — H

+ 0 0 0 0
(next dword)

0 0 G — — — — — — — — — — — — — — —

B. E. Word @0000 0 0 0 0 1 0 E F G H — — — — — — — — — — — —

B. E. Word @0001 0 0 0 1 1 1 1 — E F G H — — — — — — — — — — —

B. E. Word @0010 0 0 1 0 1 1 1 — — E F G H — — — — — — — — — —

B. E. Word @0011 0 0 1 1 1 1 1 — — — E F G H — — — — — — — — —

B. E. Word @0100 0 1 0 0 1 0 — — — — E F G H — — — — — — — —

B. E. Word @0101 0 1 0 1 1 0 — — — — — E F G — — — — — — — —

1 0 0 0 0 0 — — — — — — — — H — — — — — — —

B. E. Word @0110 0 1 1 0 1 0 — — — — — — E F — — — — — — — —

1 0 0 0 0 1 — — — — — — — — G H — — — — — —

B. E. Word @0111 0 1 1 1 1 0 — — — — — — — E — — — — — — — —

1 0 0 0 1 0 — — — — — — — — F G H — — — — —

Table 8-8. Big-and Little-Endian Storage (64-bit GPR contains ‘A B C D E F G H’.)

Program Size
and Byte Offset

A(3:0)
HSIZE
(1:0)

Even Double Word— 0 0dd Double Word—1

B0 B1 B2 B3 B4 B5 B6 B7 B0 B1 B2 B3 B4 B5 B6 B7

8-16 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Descriptions

B. E. Word @1000 1 0 0 0 1 0 — — — — — — — — E F G H — — — —

B. E. Word @1001 1 0 0 1 1 1 1 — — — — — — — — — E F G H — — —

B. E. Word @1010 1 0 1 0 1 1 1 — — — — — — — — — — E F G H — —

B. E. Word @1011 1 0 1 1 1 1 1 — — — — — — — — — — — E F G H —

B. E. Word @1100 1 1 0 0 1 0 — — — — — — — — — — — — E F G H

B. E. Word @1101 1 1 0 1 1 0 — — — — — — — — — — — — — E F G

+ 0 0 0 0
(next dword)

0 0 H — — — — — — — — — — — — — — —

B. E. Word @1110 1 1 1 0 1 0 — — — — — — — — — — — — — — E F

+ 0 0 0 0
(next dword)

0 1 G H — — — — — — — — — — — — — —

B. E. Word @1111 1 1 1 1 1 0 — — — — — — — — — — — — — — — E

+ 0 0 0 0
(next dword)

1 0 F G H — — — — — — — — — — — — —

L. E. Word @0000 0 0 0 0 1 0 H G F E — — — — — — — — — — — —

L. E. Word @0001 0 0 0 1 1 1 1 — H G F E — — — — — — — — — — —

L. E. Word @0010 0 0 1 0 1 1 1 — — H G F E — — — — — — — — — —

L. E. Word @0011 0 0 1 1 1 1 1 — — — H G F E — — — — — — — — —

L. E. Word @0100 0 1 0 0 1 0 — — — — H G F E — — — — — — — —

L. E. Word @0101 0 1 0 1 1 0 — — — — — H G F — — — — — — — —

1 0 0 0 0 0 — — — — — — — — E — — — — — — —

L. E. Word @0110 0 1 1 0 1 0 — — — — — — H G — — — — — — — —

1 0 0 0 0 1 — — — — — — — — F E — — — — — —

L. E. Word @0111 0 1 1 1 1 0 — — — — — — — H — — — — — — — —

1 0 0 0 1 0 — — — — — — — — G F E — — — — —

L. E. Word @1000 1 0 0 0 1 0 — — — — — — — — H G F E — — — —

L. E. Word @1001 1 0 0 1 1 1 1 — — — — — — — — — H G F E — — —

L. E. Word @1010 1 0 1 0 1 1 1 — — — — — — — — — — H G F E — —

L. E. Word @1011 1 0 1 1 1 1 1 — — — — — — — — — — — H G F E —

L. E. Word @1100 1 1 0 0 1 0 — — — — — — — — — — — — H G F E

L. E. Word @1101 1 1 0 1 1 0 — — — — — — — — — — — — — H G F

+ 0 0 0 0
(next dword)

0 0 E — — — — — — — — — — — — — — —

Table 8-8. Big-and Little-Endian Storage (64-bit GPR contains ‘A B C D E F G H’.)

Program Size
and Byte Offset

A(3:0)
HSIZE
(1:0)

Even Double Word— 0 0dd Double Word—1

B0 B1 B2 B3 B4 B5 B6 B7 B0 B1 B2 B3 B4 B5 B6 B7

Chapter 8. External Core Complex Interfaces 8-17
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Descriptions

Table 8-9 describes the transfer control signals.

Table 8-10 describes the master ID configuration signals. These inputs drive the
p_hmaster[3:0] outputs when a bus cycle is active.

L. E. Word @1110 1 1 1 0 1 0 — — — — — — — — — — — — — — H G

+ 0 0 0 0
(next dword)

0 1 F E — — — — — — — — — — — — — —

L. E. Word @1111 1 1 1 1 1 0 — — — — — — — — — — — — — — — H

+ 0 0 0 0
(next dword)

1 0 G F E — — — — — — — — — — — — —

B.E. Double word - 0 0 0 1 1 A B C D E F G H — — — — — — — —

L.E. Double word - 0 0 0 1 1 H G F E D C B A — — — — — — — —

1 These misaligned transfers drive size according to the size of the power of two aligned containers in which the byte
strobes are asserted.

Table 8-9. Descriptions of Signals for Transfer Control Signals

Signal I/O Signal Description

p_hready I Transfer ready. Indicates whether a requested transfer operation has completed. An external device
asserts p_hready to terminate the transfer. p_hresp[2:0] indicate the transfer status.

State
Meaning

Asserted—A requested transfer operation has completed. An external device asserts
p_hready to terminate the transfer.

Negated—A requested transfer operation has not completed.

p_hresp[2:0] I Transfer response. Indicate status of a terminating transfer.
p_hresp[2:0] Response Type
000 OKAY—Transfer terminated normally.
001 ERROR—Transfer terminated abnormally. See note for assertion.
010 Reserved (RETRY not supported in AHB-Lite protocol)
011 Reserved (SPLIT not supported in AHB-Lite protocol)
100 XFAIL—Exclusive store failed (stwcx. did not completed successfully). See note for

assertion. (Signaled to the CPU using the p_xfail_b internal signal. See Table 8-26.)
101–111 Reserved

Timing Assertion—ERROR and XFAIL are required to be 2-cycle responses that must be
signaled one cycle before assertion of p_hready and must remain unchanged
during the cycle p_hready is asserted. The XFAIL response is signaled to the CPU
using the p_xfail_b internal signal.

Table 8-8. Big-and Little-Endian Storage (64-bit GPR contains ‘A B C D E F G H’.)

Program Size
and Byte Offset

A(3:0)
HSIZE
(1:0)

Even Double Word— 0 0dd Double Word—1

B0 B1 B2 B3 B4 B5 B6 B7 B0 B1 B2 B3 B4 B5 B6 B7

8-18 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Descriptions

Table 8-11 describes interrupt control signals. Interrupt request inputs (p_extint_b,
p_critint_b, and p_mcp_b) to the core are level-sensitive. The interrupt controller must
keep the interrupt request and any p_voffset or p_avec_b inputs (as appropriate) asserted
until the interrupt is serviced to guarantee that the core recognizes the request. On the other
hand, when a request is generated, the core may still not recognize the interrupt request,
even if it is removed later. Requests must be held stable to avoid spurious responses.

Table 8-10. Descriptions of Master ID Configuration Signals

Signal I/O Signal Description

p_masterid[3:0] I CPU master. Configures the master ID for the CPU. Driven on p_hmaster[3:0] for a CPU-initiated
bus cycle.

nex_masterid[3:0] I Nexus3 master. Configure the master ID for the Nexus3 unit. Driven on p_hmaster[3:0] for a
Nexus3-initiated bus cycle.

Table 8-11. Descriptions of Interrupt Signals

Signal I/O Signal Description

p_extint_b I External input interrupt request. Provides the external input interrupt request to the core.
p_extint_b is masked by MSR[EE].

State
Meaning

Asserted—An external input interrupt request has been signalled.
Negated—An external input interrupt request has not been signalled.

Timing Not internally synchronized by the core. It must meet setup and hold time constraints
relative to m_clk when the core clock is running.
Assertion—Level-sensitive, must remain asserted to be guaranteed recognition.

p_critint_b I Critical input interrupt request. Critical input interrupt request to the core. Masked by MSR[CE].

State
Meaning

Asserted—Critical input interrupt is being requested.
Negated—No critical input interrupt is requested.

Timing Not internally synchronized by the e200z6 core. Must meet setup and hold times
relative to m_clk when the core clock is running. See Section 8.5.3, “Interrupt
Interface.”
Assertion—Level-sensitive, must remain asserted to be guaranteed to be recognized.

p_ipend I Interrupt pending. Indicates whether a p_extint_b or p_critint_b interrupt request or an enabled
timer facility interrupt was recognized internally by the core, is enabled by the appropriate bit in
the MSR, and is asserted combinationally from the interrupt request inputs.
p_ipend can signal other bus masters or a bus arbiter that an interrupt is pending. External power
management logic can use p_ipend to control operation of the core and other logic or may use
p_wakeup similarly. Higher priority exceptions may delay handling of the interrupt.

State
Meaning

Asserted—A p_extint_b or p_critint_b interrupt request or an enabled timer facility
interrupt (watchdog, fixed-Interval, or decrementer) was recognized internally by
the core. Assertion of p_ipend does not mean that exception processing for the
interrupt has begun.

Negated—A p_extint_b or p_critint_b interrupt request or an enabled timer facility
interrupt has not been recognized.

Chapter 8. External Core Complex Interfaces 8-19
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Descriptions

Table 8-12 describes the timer facility signals, which are associated with the time base,
watchdog, fixed-interval, and decrementer facilities.

p_avec_b I Autovector. Determines how a vector is chosen for critical and external interrupt signals.

State
Meaning

Asserted—Asserted with either the p_extint_b or p_critint_b interrupt request to
request use of the IVOR4 or IVOR0 for obtaining an exception vector offset.

Negated—If negated when a p_extint_b or p_critint_b interrupt is requested, an
external vector offset and context selector is taken from p_voffset[0:15].

Timing Must be driven to a valid state during each clock cycle that either p_extint_b or
p_critint_b is asserted.
Assertion—Level-sensitive, must remain asserted to have guaranteed recognition.

p_voffset[0:15] I Interrupt vector offset. Vector offset and context selector used when processing begins for an
incoming interrupt request. Ignored if multiple hardware contexts are not implemented.

State
Meaning

Correspond to IVOR n[16–31]. p_voffset[0:11] are used in forming the exception
handler address; p_voffset[12:15] are used to select a new operating context when
multiple hardware contexts are implemented.

Timing Sampled with the p_extint_b and p_critint_b interrupt request inputs; must be driven
to a valid value when either signal is asserted unless p_avec_b is also asserted. If
p_avec_b is asserted, these inputs are not used.
Assertion—Level-sensitive; must remain asserted to guarantee correct recognition.

Must be asserted concurrently with p_extint_b and p_critint_b when used.

p_iack O Interrupt vector acknowledge. Interrupt vector acknowledge indicator to allow external interrupt
controllers to be informed when a critical input or external input interrupt is being processed.

State
Meaning

Asserted—An interrupt vector is being acknowledged.
Negated—An interrupt vector is not being acknowledged.

Timing Assertion—Asserted after the cycle in which p_avec_b and p_voffset[0:15] are
sampled in preparation for exception processing. See Figure 8-25 and
Figure 8-26 for timing diagrams.

p_mcp_b I Machine check. Machine check interrupt request to the e200z6 core. Masked by HID0[EMCP].

State
Meaning

Asserted—A machine check interrupt is being requested.
Negated—A machine check interrupt is not being requested.

Timing Because this signal is not internally synchronized by the e200z6 core, it must meet
setup and hold time constraints to m_clk when the e200z6 core clock is running.
p_mcp_b is not sampled while the core is in the halted or stopped power management
states.
Assertion—p_mcp_b is sampled on two consecutive m_clk periods to detect a

transition from the negated to the asserted state. It is internally qualified with this
transition, but must remain asserted to be guaranteed to be recognized.

Table 8-11. Descriptions of Interrupt Signals (continued)

Signal I/O Signal Description

8-20 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Descriptions

Table 8-13 describes the processor reservation signals associated with lwarx and stwcx..

Table 8-14 describes miscellaneous processor signals.

Table 8-12. Descriptions of Timer Facility Signals

Signal I/O Signal Description

p_tbdisable I Timer disable. Used to disable the internal time base and decrementer counters. Used to freeze the
state of the time base and decrementer during low power or debug operation.

State
Meaning

Asserted—Time base and decrementer updates are frozen.
Negated—Time base and decrementer updates are unaffected.

Timing Not internally synchronized by the e200z6 core; must meet setup and hold time
constraints relative to m_clk when the e200z6 core clock is running, as well as to
p_tbclk when selected as an alternate time base clock source.

p_tbclk I Timer external clock. Used as an alternate clock source for the time base and decrementer counters.
Selection of this clock is made using HID0[SEL_TBCLK] (see Section 2.11.1, “Hardware
Implementation-Dependent Register 0 (HID0)”).

Timing Must be synchronous to the m_clk input and cannot exceed 50% of the m_clk
frequency. Must be driven such that it changes state on the falling edge of m_clk.

p_tbint O Timer interrupt status. Indicates whether an internal timer facility unit is requesting an interrupt
(TSR[WIS]=1 and TCR[WIE]=1, or TSR[DIS]=1 and TCR[DIE]=1, or TSR[FIS]=1 and TCR[FIE]=1).
May be used to exit low power operation or for other system purposes.

State
Meaning

Asserted—An internal timer facility unit is generating an interrupt request
Negated—An internal timer facility unit is not generating an interrupt request

Table 8-13. Descriptions of Processor Reservation Signals

Signal I/O Signal Description

p_rsrv O CPU reservation status. Indicates whether a reservation was established by the execution of a lwarx.

State
Meaning

Asserted—A reservation was established by successful execution of a lwarx. Remains
asserted until the reservation is cleared.

Negated—No reservation is in effect.

Timing Assertion—Remains asserted until the reservation is cleared.

p_rsrv_clr I CPU reservation clear. Used to clear a reservation. External logic may use this signal to implement
reservation management policies outside the scope of the CPU. p_xfail_b indicates success/failure of
a stwcx. as part of bus transfer termination using the XFAIL p_hresp[2:0] encoding.

State
Meaning

Asserted—Signals that a reservation should be cleared. Asserted independently of any
bus transfer.

Timing Assertion—Asserted independently of any bus transfer.

Table 8-14. Descriptions of Miscellaneous Processor Signals

Signal I/O Signal Description

p_cpuid[0:7] I CPU ID. Reflected in the PIR. See Section 2.3.2, “Processor ID Register (PIR).”

Timing Intended to remain in a static condition and are not internally synchronized.

p_pid0[0:7] O PID0 outputs. Reflected to PID0[56–63]. See Section 2.14.5, “Process ID Register (PID0).”

Chapter 8. External Core Complex Interfaces 8-21
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Descriptions

8.3.1 Processor State Signals

Table 8-15 describes the processor state signals.

p_pid0_updt O PID0 update. Indicates that PID0 is being updated by an mtspr.

State
Meaning

Asserted—PID0 is being updated by an mtspr.
Negated—PID0 is not being updated by an mtspr.

Timing Assertion—asserts during the clock cycle the p_pid0[0:7] outputs are changing.
p_sysvers[0:31] I System version. e200z6 core version number reflected in the SVR. See Section 2.3.4, “System

Version Register (SVR).”

Timing Intended to remain in a static condition and not internally synchronized.

p_pvrin[16:31] I Processor version. Provide a portion of the version number for a particular e200z6 CPU.
Reflected in the processor version register. See Section 2.3.3, “Processor Version Register
(PVR).”

Timing Intended to remain in a static condition and are not internally synchronized.

Table 8-14. Descriptions of Miscellaneous Processor Signals (continued)

Signal I/O Signal Description

8-22 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Descriptions

Table 8-16 describes power management and other external control logic functions.

Table 8-15. Descriptions of Processor State Signals

Signal I/O Signal Description

p_pstat[0:4] O Processor status. Indicate the internal execution unit status.
p_pstat[0:4] Internal Processor Status
00000 Execution stalled
00001 Execute exception
00010 Instruction squashed
00011–00111 Reserved
01000 Processor in halted state
01001 Processor in stopped state
01010 Processor in debug mode (As reflected on the cpu_dbgack internal state signal)
01011 Processor in checkstop state
01100–01111 Reserved
10000 Complete instruction (Except rfi, rfci, rfdi, lmw, stmw, lwarx, stwcx., isync, isel,

evsel, and change-of-flow Instructions)
10001 Complete lmw, or stmw
10010 Complete isync
10011 Complete lwarx or stwcx.
10100 Complete evsel with condition false for both elements
10101 Complete evsel with condition false for high element and true for low element
10110 Complete evsel with condition true for high element and false for low element
10111 Complete evsel with condition true for both elements
11000 Complete branch instruction bc, bcl, bca, bcla, b, bl, ba, bla resolved as not taken
11001 Complete branch instruction bc, bcl, bca, bcla, b, bl, ba, bla resolved as taken
11010 Complete bclr, bclrl, bcctr, bcctrl resolved as not taken
11011 Complete bclr, bclrl, bcctr, bcctrl resolved as taken
11100 Complete isel with condition false
11101 Complete isel with condition true
11110 Reserved
11111 Complete rfi, rfci, or rfdi

Timing Synchronous with m_clk, so the indicated status may not apply to a current bus transfer.

p_brstat[0:1] O Branch prediction status. Indicates the status of a branch prediction prefetch. Such prefetches are
performed for branch target buffer (BTB) hits with predict taken status to accelerate branches.
p_s1stat[0:1] S1 prefetch status
0x Default (no branch predicted taken prefetch)
10 Branch predicted taken prefetch resolved as not taken
11 Branch predicted taken prefetch resolved as taken

Timing Synchronous with m_clk, so the indicated status may not apply to a current bus transfer.

p_mcp_out O Processor machine check. Indicates whether a machine check condition has caused a syndrome bit
to be set in the machine check syndrome register (MCSR).

State
Meaning

Asserted—A machine check condition caused an MCSR bit to be set.
Negated—No machine check condition exists that would set an MCSR bit.

p_chkstop O Processor checkstop. Asserted by the processor when a checkstop condition has occurred and the
CPU has entered the checkstop state.

State
Meaning

Asserted—The processor has indicated a checkstop condition.
Negated—The processor has not indicated a checkstop condition.

Chapter 8. External Core Complex Interfaces 8-23
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Descriptions

Table 8-17 describes signal debug events to the e200z6 core.

Table 8-16. Descriptions of Power Management Control Signals

Signal I/O Signal Description

p_halt I Processor halt request. Used to request that the processor enter the halted state.

State
Meaning

Asserted—Requests the processor to enter halted state.
Negated—No request is being made for the processor to enter halted state.

p_halted O Processor halted. The active-high p_halted output signal indicates that the processor entered the
halted state.

State
Meaning

Asserted—The processor is in halted state.
Negated—The processor is not in halted state.

p_stop I Processor stop request. The active-high p_stop input signal requests that the processor enter the
stopped state.

State
Meaning

Asserted—Requests the processor to enter stopped state.
Negated—No request is being made for the processor to enter stopped state.

p_stopped O Processor stopped. The active-high p_stopped output signal indicates that the processor entered
the stopped state.

State
Meaning

Asserted—The processor is in stopped state.
Negated—The processor is not in stopped state.

p_doze
p_nap

p_sleep

O Low-power mode. Asserted by the processor to reflect the settings of HID0[DOZE,NAP,SLEEP]
when MSR[WE] is set. The e200z6 core can be placed in a low-power state by forcing m_clk to a
quiescent state and brought out of low-power state by re-enabling m_clk. The time base facilities
may be separately enabled or disabled using combinations of the timer facility control signals.
External logic can detect the asserted edge or level of these signals to determine which low-power
mode has been requested and then place the e200z6 core and peripherals in a low-power
consumption state. p_wakeup can be monitored to determine when to end the low-power condition.

State
Meaning

Asserted—MSR[WE] and the respective HID0 bit are both set.
Negated—MSR[WE] and the respective HID0 bit are not both set.

Timing Assertion—May assert for 1 or more clock cycles.

p_wakeup O Wake up. Used by external logic to remove the e200z6 core and system logic from a low-power
state. It can also indicate to the system clock controller that m_clk should be re-enabled for debug
purposes.
p_wakeup (or other system state) should be monitored to determine when to release the processor
(and system if applicable) from a low-power state.

State
Meaning

Asserted—Asserts whenever one of the following occurs:
 • A valid pending interrupt is detected by the core.
 • A request to enter debug mode is made by setting the OCR[DR] or via the assertion

of jd_de_b or p_ude.
 • The processor is in a debug session and jd_debug_b is asserted.
 • A request to enable m_clk has been made by setting OCR[WKUP].

Timing See Section 8.5.2, “Power Management.” This signal is asynchronous to the system
clock and should be synchronized to the system clock domain to avoid hazards.

8-24 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Descriptions

Table 8-18 lists debug/emulation (Nexus 1/ OnCE) support signals. These signals assist in
implementing an on-chip emulation capability with a controller external to the e200z6 core.

Table 8-19 describes debug/emulation (Nexus 1/ OnCE) support signals.

Table 8-17. Descriptions of Debug Events Signals

Signal I/O Signal Description

p_ude I Unconditional debug event. Used to request an unconditional debug event.

State
Meaning

Asserted—An unconditional debug event has been requested. Only a transition from
negated to asserted state of p_ude causes an event to occur. However, the level on
this signal causes assertion of p_wakeup.

Negated—No unconditional debug event has been requested.

Timing Not internally synchronized by the e200z6 core, and must meet setup and hold time
constraints relative to m_clk when the core clock is running.
Assertion—Level-sensitive and must be held asserted until acknowledged by software, or,

when external debug mode is enabled, by assertion of jd_debug_b to be guaranteed
recognition. Only a transition from negated to asserted state of p_ude causes an
event to occur. However, the level on this signal causes assertion of p_wakeup.

p_devt1 I External debug event 1. Used to request an external debug event. If the e200z6 core clock is disabled,
this signal is not recognized. In addition, only a transition from negated to asserted state of p_devt1
causes an event to occur. It is intended to signal e200z6-related events generated while the CPU is
active.

State
Meaning

Asserted—An external debug event is requested. Only a transition from negated to
asserted state of p_devt1 causes an event to occur. It is intended to signal
e200z6-related events generated while the CPU is active.

Negated—No external debug event is requested.

Timing Not internally synchronized by the e200z6 core, and must meet setup and hold time
constraints relative to m_clk when the e200z6 core clock is running.

p_devt2 I External debug event 2. Used to request an external debug event. If the e200z6 core clock is disabled,
this signal is not recognized. In addition, only a transition from negated to asserted state of p_devt2
causes an event to occur. It is intended to signal e200z6-related events generated while the CPU is
active.

State
Meaning

Asserted—An external debug event is requested. Only a transition from negated to
asserted state of p_devt2 causes an event to occur.

Negated—No external debug event is requested.

Timing Not internally synchronized by the e200z6 core, and must meet setup and hold time
constraints relative to m_clk when the e200z6 core clock is running.

Table 8-18. e200z6 Debug / Emulation Support Signals

Signal Type Description

jd_en_once I Enable full OnCE operation

jd_debug_b O Debug session indicator

jd_de_b I Debug request

jd_de_en O DE_b active high output enable

jd_mclk_on I CPU clock is active indicator

Chapter 8. External Core Complex Interfaces 8-25
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Descriptions

Table 8-19. Descriptions of Debug/Emulation (Nexus 1/ OnCE) Support Signals

Signal I/O Signal Description

jd_en_once I OnCE enable. Enables the OnCE controller to allow certain instructions and operations to be
executed. Other systems should tie this signal asserted to enable full OnCE operation.
j_en_once_regsel and j_key_in are provided to assist external logic performing security checks.

State
Meaning

Asserted—Enables the full OnCE command set, as well as operation of control signals
and OnCE control register functions.

Negated—Only the bypass, ID, and Enable_OnCE commands are executed by the
OnCE unit; all other commands default to a bypass command. The OnCE status
register (OSR) is not visible when OnCE operation is disabled. In addition, OCR
functions and the operation of jd_de_b are disabled. Secure systems may leave
this signal negated until a security check is performed.

Timing Must change state only during the test-logic-reset, run-test/idle, or update_dr TAP
states. A new value takes effect after one additional j_tclk cycle of synchronization.

jd_debug_b O Debug session. A debug session includes single-step operations (Go+NoExit OnCE commands).
This signal is provided to inform system resources that access is occurring for debug purposes,
thus allowing certain resource side effects to be frozen or otherwise controlled. Examples may
include FIFO state change control and control of side-effects of register or memory accesses. See
Section 10.5.4, “OnCE Interface Signals.”.

State
Meaning

Asserted—Asserted when the processor enters debug mode. It remains asserted for
the duration of a debug session. that is, during OnCE single-step executions.

jd_de_b I Debug request. Normally the input from the top-level DE_b open-drain bidirectional I/O cell. See
Section 10.5.4, “OnCE Interface Signals.”

State
Meaning

Asserted—A debug request is pending.
Negated—No debug request is pending.

Timing Assertion—Not internally synchronized by the e200z6 core and must meet setup and
hold time constraints relative to j_tclk. To be recognized, it must be held asserted
for a minimum of two j_tclk periods, and jd_en_once must be in the asserted
state. jd_de_b is synchronized to m_clk in the debug module before being sent
to the processor (two clocks).

jd_de_en O DE_b active high output enable. Enable for the top-level DE_b open-drain bidirectional I/O cell.
See Section 10.5.4, “OnCE Interface Signals.”

State
Meaning

Asserted—the top-level DE_b open-drain bidirectional I/O cell is enabled.
Negated—the top-level DE_b open-drain bidirectional I/O cell is disabled.

Timing Assertion—Asserted for three j_tclk periods upon processor entry into debug mode.

jd_mclk_on I Processor clock on. Driven by system-level clock control logic to indicate the m_clk input state

State
Meaning

Asserted—The processor’s m_clk input is active.
Negated—The processor’s m_clk input is not active.

Timing Assertion—Synchronized to j_tclk and provided as an OSR status bit.

jd_watchpoint
[0:7]

O Watchpoint events. Indicate whether a watchpoint occurred. Each debug address compare
function (IAC1–IAC4, DAC1–DAC2), and debug counter event (DCNT1–DCNT2) is capable of
triggering a watchpoint output.

State
Meaning

Asserted—A watchpoint occurred
Negated—No watchpoint occurred

8-26 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Descriptions

Table 8-20 lists interface signals that assist in implementing a real-time development tool
capability with a controller that is external to the e200z6 core. These signals are described
in Section 11.11, “Nexus3 Pin Interface.”

Table 8-21 lists the primary JTAG interface signals. These signals are usually connected
directly to device pins (except for j_tdo, which needs tri-state and edge support logic),
unless JTAG TAP controllers are concatenated.

Table 8-22 describes JTAG interface signals.

Table 8-20. e200z6 Development Support (Nexus3) Signals

Signal Type Description

nex_mcko O Nexus3 clock output

nex_rdy_b O Nexus3 ready output

nex_evto_b O Nexus3 event-out output

nex_evti_b I Nexus3 event-in input

nex_mdo[n:0] O Nexus3 message data output

nex_mseo_b[1:0] O Nexus3 message start/end output

Table 8-21. JTAG Primary Interface Signals

Signal Name Type Description

j_trst_b I JTAG test reset

j_tclk I JTAG test clock

j_tms I JTAG test mode select

j_tdi I JTAG test data input

j_tdo O Test data out to master controller or pad

j_tdo_en O Enables TDO output buffer. j_tdo_en is asserted when the
TAP controller is in the shift_dr or shift_ir state.

Table 8-22. Descriptions of JTAG Interface Signals

Signal I/O Signal Description

j_tdi I JTAG/OnCE serial input. Provides data and commands to the OnCE controller. Data is
latched on the rising edge of j_tclk. Data is shifted into the OnCE serial port lsb first.

j_tclk I JTAG/OnCE serial clock. Supplies the serial clock to the OnCE control block. The serial clock
provides pulses required to shift data and commands into and out of the OnCE serial port.
(Data is clocked into the OnCE on the rising edge and is clocked out of the OnCE serial port
on the rising edge.) The debug serial clock frequency must not exceed 50% of the processor
clock frequency.

Chapter 8. External Core Complex Interfaces 8-27
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Descriptions

j_tdo O JTAG/OnCE serial output. Serial data is read from the OnCE block through j_tdo.

State
Meaning

Data is shifted out the OnCE serial port lsb first.

Timing When data is clocked out of the OnCE serial port, j_tdo changes on the rising edge
of j_tclk. j_tdo is always driven. An external system-level TDO pin may be
three-stateable and should be actively driven in the shift-IR and shift-DR controller
states. j_tdo_en indicates when an external TDO pin should be enabled, and is
asserted during the shift-IR and shift-DR controller states. In addition, for
IEEE1149 compliance, the system-level pin should change state on the falling
edge of TCLK.

j_tms I JTAG/OnCE test mode select. Used to cycle through states in the OnCE debug controller.
Toggling j_tms while clocking with j_tclk controls transitions through the TAP state controller.

j_trst_b I JTAG/OnCE test reset. Resets the OnCE controller externally by placing it in the
test-logic-reset state. The following information details additional signals that can support
external JTAG data registers using the e200z6 TAP controller.
Signal Name Type Description
j_tst_log_rst O Indicates the TAP controller is in the Test-Logic-Reset state
j_rti O JTAG controller run-test/idle state
j_capture_ir O Indicates the TAP controller is in the capture IR state
j_shift_ir O Indicates the TAP controller is in shift IR state
j_update_ir O Indicates the TAP controller is in update IR state
j_capture_dr O Indicates the TAP controller is in the capture DR state
j_shift_dr O Indicates the TAP controller is in shift DR state
j_update_gp_reg O Updates JTAG controller general-purpose data register
j_gp_regsel[0:11] O General-purpose external JTAG register select
j_en_once_regsel O External Enable OnCE register select
j_key_in I Serial data from external key logic
j_nexus_regsel O External Nexus register select
j_lsrl_regsel O External LSRL register select
j_serial_data I Serial data from external JTAG register(s)

j_tst_log_rst O Test-logic-reset. Indicates whether the TAP controller is in test-logic-reset state.

State
Meaning

Asserted—The TAP controller is in test-logic-reset state.
Negated—The TAP controller is not in test-logic-reset state.

j_rti O Run-test/idle. Indicates whether the TAP controller is in the run-test/idle state.

State
Meaning

Asserted—The TAP controller is in run-test/idle state.
Negated—The TAP controller is not in run-test/idle state.

j_capture_ir O Capture IR. Indicates whether the TAP controller is in the Capture_IR state.

State
Meaning

Asserted—The TAP controller is in Capture_IR state.
Negated—The TAP controller is not in Capture_IR state.

j_shift_ir O Shift IR. Indicates whether the TAP controller is in the Shift_IR state.

State
Meaning

Asserted—The TAP controller is in Shift_IR state.
Negated—The TAP controller is not in Shift_IR state.

j_update_ir O Update IR. Indicates the TAP controller is in the Update_IR state.

State
Meaning

Asserted—The TAP controller is in Update_IR state.
Negated—The TAP controller is not in Update_IR state.

Table 8-22. Descriptions of JTAG Interface Signals (continued)

Signal I/O Signal Description

8-28 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Descriptions

j_capture_dr O Capture DR. Indicates whether the TAP controller is in the Capture_DR state.

State
Meaning

Asserted—The TAP controller is in Capture_DR state.
Negated—The TAP controller is not in Capture_DR state.

j_shift_dr O Shift DR. Indicates whether the TAP controller is in the Shift_DR state.

State
Meaning

Asserted—The TAP controller is in Shift_DR state.
Negated—The TAP controller is not in Shift_DR state.

j_update_gp_reg O Update DR. Indicates whether the TAP controller is in the Update_DR state.

State
Meaning

Asserted—The TAP controller is in the Update_DR state, and OCMD[R/W] is low
(write command). j_gp_regsel[0:11] should be monitored to see which
register, if any, needs updating.

Negated—The TAP controller is not in the Update_DR state.

j_gp_regsel O Register select. Decoded from the OCMD[RS]. They are used to specify which external
general-purpose JTAG register to access using the e200z6 TAP controller.
Signal Name Type RS
j_gp_regsel[0] O 0x70
j_gp_regsel[1] O 0x71
j_gp_regsel[2] O 0x72
j_gp_regsel[3] O 0x73
j_gp_regsel[4] O 0x74
j_gp_regsel[5] O 0x75
j_gp_regsel[6] O 0x76
j_gp_regsel[7] O 0x77
j_gp_regsel[8] O 0x78
j_gp_regsel[9] O 0x79
j_gp_regsel[10] O 0x7A
j_gp_regsel[11] O 0x7B

j_en_once_regsel O Enable once register select. This control signal can be used by external security logic to help
control jd_enable_once. The external enable_OnCE register should be muxed onto the
j_serial_data input. During the Shift_DR state, j_serial_data is supplied to j_tdo.

State
Meaning

Asserted—A decode of OCMD[RS] indicates an external enable_OnCE register is
selected (0b1111110 encoding) for access using the e200z6 TAP controller.

j_nexus_regsel O External Nexus register select.

State
Meaning

Asserted—A decode of OCMD[RS] indicates an external Nexus register is
selected (0b1111100 encoding) for access using the e200z6 TAP controller.

Negated—No Nexus register is selected.

j_lsrl_regsel O LSRL register select.

State
Meaning

Asserted—A decode of OCMD[RS] indicates an external LSRL register is
selected (0b1111101 encoding) for access using the e200z6 TAP controller.

Table 8-22. Descriptions of JTAG Interface Signals (continued)

Signal I/O Signal Description

Chapter 8. External Core Complex Interfaces 8-29
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Descriptions

Figure 8-2 shows one example for designing an external JTAG register set (2) using the
inputs and outputs provided and by the JTAG primary inputs. The main components are a
clock generation unit, a JTAG shifter (load, shift, hold, clr), the registers (load, hold, clr),
and an input mux to the shifter for the serial output back to the e200z6 core.The shifter and
the registers may be as wide as the application warrants [0:x]. The length determines the
number of states the TAP controller is held in Shift_DR (x+1).

Figure 8-2. Example External JTAG Register Design

j_serial_data I Serial data. Receives serial data from external JTAG registers. All external registers share
this serial output back to the core. Therefore it must be muxed using j_gp_regsel[0:11],
j_lsrl_regsel, and j_en_once_regsel. The data is internally routed to j_tdo.

j_key_in I Key data in. Receives serial data from logic to indicate a key or other value to be scanned out
in the Shift_IR state when the current value in the IR is the Enable_OnCE instruction. This
input is provided to assist in implementing security logic outside of the e200z6 which
conditionally asserts jd_en_once. During the Shift_IR state, when jd_en_once is negated, this
input is sampled on the rising edge of j_tclk, and after a 2-clock delay the data is internally
routed to j_tdo. This allows provision of a key value via the j_tdo output following a transition
from Capture_IR to Shift_IR. The j_key_in input provides the key value.

Table 8-22. Descriptions of JTAG Interface Signals (continued)

Signal I/O Signal Description

Shifter

D

Data

Q

REG0
Q

D REG1
Q

j_gp_regsel[1:0] S

D

01

reg0_dat

reg1_dat

clk_reg02

clk_reg13

2. clk_reg0 = j_tclk & j_update_gp_reg & j_gp_regsel[0]
3. clk_reg1 = j_tclk & j_update_gp_reg & j_gp_regsel[1]

SI

SO

j_serial_data

j_tdi

clk_shfter1

1. clk_shfter = j_tclk & (j_shift_dr | j_capture_dr)

CLK
GEN

j_tclk

j_gp_regsel[1:0]

j_shift_dr

j_update_gp_reg

SHIFT
LOAD

j_capture_dr

j_shift_dr
j_capture_dr

j_trst_b

NOTES:

8-30 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Signal Descriptions

8.3.2 JTAG ID Signals

Table 8-23 shows the JTAG ID register unique to Motorola as specified by the IEEE 1149.1
JTAG Specification. Note that bit 31 is the msb of this register.

The e200z6 core shifts out a 1 as the first bit on j_tdo if the Shift_DR state is entered
directly from the test-logic-reset state, per the JTAG specification, and informs any JTAG
controller that an ID register exists on the part. The e200z6 JTAG ID register is accessed
by writing the OCMR (OnCE command register) with the value 0x02 in OCMD[RS].

The JTAG ID bit, manufacturer ID field, and design center number are fixed by the JTAG
Consortium or Motorola. The version numbers and the 2 msbs of the sequence number are
variable and brought out to external ports. The 8 lsbs of the sequence number are variable
and are strapped internally to track variations in processor deliverables.

Table 8-24 shows the inputs to the JTAG ID register that are input ports on the e200z6 core.
These bits can help a customer track revisions of a device using the e200z6 core.

Table 8-25 describes the JTAG ID signals.

Table 8-23. JTAG Register ID Fields

Bit Field Type Description Value

[31:28] Variable Version number Variable

[27:22] Fixed Design center number (e200z6) 01_1111

[21:12] Variable Sequence number Variable

[11:1] Fixed Motorola manufacturer ID 000_0000_1110

0 Fixed JTAG ID register identification bit 1

Table 8-24. JTAG ID Register Inputs

Signal Name Type Description

j_id_sequence[0:1] I JTAG ID register (2 msbs of sequence field)

j_id_version[0:3] I JTAG ID register version field

Table 8-25. Descriptions of JTAG ID Signals

Signal I/O Signal Description

j_id_sequence[0:1] I JTAG ID sequence. Corresponds to the two msbs of the 10-bit sequence number in the JTAG
ID register. These inputs are normally static and are provided for the integrator for further
component variation identification.

Chapter 8. External Core Complex Interfaces 8-31
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Internal Signals

8.4 Internal Signals
Table 8-26 lists internal signals that are mentioned in this manual. These signals are not
directly accessible to the user, but are used in this document to help describe the general
behavior of the e200z6 processor.

8.5 Timing Diagrams
The following sections discuss various types of timing diagrams.

8.5.1 Processor Instruction/Data Transfers

Transfer of data between the core and peripherals involves the address bus, data buses, and
control and attribute signals. The address and data buses are parallel, non-multiplexed
buses, supporting byte, half word, 3-byte, word, and double-word transfers. All bus inputs

j_id_sequence[2:9] I JTAG ID sequence. Internally strapped by EPS to track variations in processor and module
deliverables. Each e200z6 deliverable has a unique sequence number. Additionally, each
revision of these modules can be identified by unique sequence numbers. EPS maintains a
database of the sequence numbers.

j_id_version[0:3] I JTAG ID version. Corresponds to the 4-bit version number in the JTAG ID register. These
inputs are normally static. They are provided to the customer for strapping to facilitate easy
identification of component variants.

Table 8-26. Internal Signal Descriptions

Signal Name Description

p_addr[0:31] Address bus. Provides the address for a bus transfer.

p_ta_b Transfer acknowledge. Indicates completion of a requested data transfer operation. An external device
asserts p_ta_b to terminate the transfer. For the e200z6 core to accept the transfer as successful,
p_tea_b must remain high while p_ta_b is asserted.

p_tea_b Transfer error acknowledge. Indicates that a transfer error condition has occurred and causes the e200z6
core to immediately terminate the transfer. An external device asserts p_tea_b to terminate the transfer
with error. p_tea_b has higher priority than p_ta_b.

p_treq_b Transfer request. The e200z6 core drives this output to indicate that a new access has been requested.

p_xfail_b Store exclusive failure. An external agent causes assertion of p_xfail_b to indicate a failure of the store
portion of a stwcx. for the current transfer. p_xfail_b is ignored if p_tea_b is asserted, because the store
terminated with an error.
Assertion of p_xfail_b with p_ta_b does not cause an exception; it indicates that the store was not
performed due to a loss of reservation (determined by an external agent). The CPU updates the condition
code accordingly and clears any outstanding reservation. p_xfail_b may be asserted by reservation logic
or as a result of a system bus transfer with a failure response that is passed back to the CPU from the
BIU. The AMBA XFAIL response is signaled back to the CPU using this signal. See Section 3.3, “Memory
Synchronization and Reservation Instructions.” p_xfail_b is ignored for all transfers other than a stwcx..

Table 8-25. Descriptions of JTAG ID Signals (continued)

Signal I/O Signal Description

8-32 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timing Diagrams

and outputs are sampled and driven with respect to the rising edge of m_clk. The core
moves data on the bus by issuing control signals and using a handshake protocol to ensure
correct data movement.

The memory interface operates in a pipelined fashion to allow additional access time for
memory and peripherals. AHB transfers consist of an address phase that lasts only a single
cycle, followed by the data phase that may last for one or more cycles, depending on the
state of p_hready.

Read transfers consist of a request cycle, where address and attributes are driven along with
a transfer request, and one or more memory access cycles to perform accesses and return
data to the CPU for alignment, sign or zero extension, and forwarding.

Write transfers consist of a request cycle, where address and attributes are driven along with
a transfer request, and 1 or more data drive cycles where write data is driven and external
devices accept write data for the access.

Access requests are generated in an overlapped fashion to support sustained single cycle
transfers. Up to two access requests may be in progress at any 1 cycle—one access
outstanding and a second in the pending request phase.

Access requests are assumed to be accepted as long as no accesses are in progress, or if an
access in progress is terminated during the same cycle a new request is active (p_hready
asserted). When an access is accepted, the BIU is free to change the current request.

The local memory control logic is responsible for proper pipelining and latching of all
interface signals to initiate memory accesses.

The system hardware can use p_hresp[2:0] to signal that the current bus cycle has an error
when a fault is detected, using the ERROR response encoding. ERROR assertion requires
a 2-cycle response. In the first cycle of the response, p_hresp[2:0] are driven to indicate
ERROR and p_hready must be negated. During the following cycle, the ERROR response
must continue to be driven, and p_hready must be asserted. When the core recognizes a bus
error condition for an access at the end of the first cycle of the two cycle error response, a
subsequent pending access request may be removed by the BIU driving p_htrans[2:0] to
the IDLE state in the second cycle of the 2-cycle error response. Not all pending requests
are removed, however.

When a bus cycle is terminated with a bus error, the core can enter storage error exception
processing immediately following the bus cycle, or it can defer processing the exception.

The instruction prefetch mechanism requests instruction words from the instruction
memory unit before it is ready to execute them. If a bus error occurs on an instruction fetch,
the core does not take the exception until it attempts to use the instruction. Should an
intervening instruction cause a branch, or should a task switch occur, the storage error
exception for the unused access does not occur. A bus error termination for any write access

Chapter 8. External Core Complex Interfaces 8-33
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timing Diagrams

or read access that reference data specifically requested by the execution unit causes the
core to begin exception processing.

8.5.1.1 Basic Read Transfer Cycles

During a read transfer, the core receives data from a memory or peripheral device.
Figure 8-3 illustrates functional timing for basic read transfers, and clock-by-clock
descriptions of activity follow.

Figure 8-3. Basic Read Transfer—Single-cycle Reads, Full Pipelining

• Clock 1 (C1)—The first read transfer starts in clock cycle 1. During C1, the core
places valid values on the address bus and transfer attributes. The burst type
(p_hburst[2:0]), protection control (p_hprot[5:0]), and transfer type
(p_htrans[1:0]) attributes identify the specific access type. The transfer size
attributes (p_hsize[1:0]) indicate the size of the transfer. The byte strobes
(p_hbstrb[7:0]) are driven to indicate active byte lanes. The write (p_hwrite) signal
is driven low for a read cycle.

The core asserts a transfer request (p_htrans= NONSEQ) during C1 to indicate that
a transfer is being requested. Because the bus is currently idle, (0 transfers
outstanding), the first read request to addrx is considered taken at the end of C1. The
default slave drives an ready/OKAY response for the current idle cycle.

• Clock 2 (C2)—During C2, the addrx memory access takes place, using the address
and attribute values that were driven during C1 to enable reading of 1 or more bytes

nonseq nonseq nonseq idle

addr x addr y addr z

single single single

data x data y data z

okay okay okay okay

1 2 3 4 5
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

8-34 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timing Diagrams

of memory. Read data from the slave device is provided on the p_hrdata inputs. The
slave device responds by asserting p_hready to indicate that the cycle is completing,
and drives an OKAY response.

Another read transfer request is made during C2 to addry (p_htrans = NONSEQ),
and because the access to addrx is completing, it is considered taken at the end of C2.

• Clock 3 (C3)—During C3, the addry memory access takes place, using the address
and attribute values that were driven during C2 to enable reading of one or more
bytes of memory. Read data from the slave device for addry is provided on the
p_hrdata inputs. The slave device responds by asserting p_hready to indicate the
cycle is completing, and drives an OKAY response.

Another read transfer request is made during C3 to addrz (p_htrans = NONSEQ),
and because the access to addry is completing, it is considered taken at the end of C3.

• Clock 4 (C4)—During C4, the addrz memory access takes place, using the address
and attribute values that were driven during C3 to enable reading of one or more
bytes of memory. Read data from the slave device for addrz is provided on the
p_hrdata inputs. The slave device responds by asserting p_hready to indicate the
cycle is completing, and drives an OKAY response.

Because the CPU has no additional outstanding requests, p_htrans indicates IDLE
and the address and attribute signals are undefined.

8.5.1.2 Read Transfer with Wait State

Figure 8-4 shows an example of wait state operation. Because signal p_hready for the first
request (addrx) is not asserted during C2, a wait state is inserted until p_hready is
recognized (during C3).

Meanwhile, a subsequent request was generated by the CPU for addry which is not taken in
C2, because the previous transaction is still outstanding. The address and transfer attributes
remain driven in cycle C3 and are taken at the end of C3 because the previous access is
completing. Data for addrx and a ready/OKAY response is driven back by the slave device.
In cycle C4, a request for addrz is made. The request for access to addrz is taken at the end
of C4, and during C5, the slave device provides the data and a ready/OKAY response. In
cycle C5, no further accesses are requested.

Chapter 8. External Core Complex Interfaces 8-35
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timing Diagrams

Figure 8-4. Read with Wait-State, Single-Cycle Reads, Full Pipelining

8.5.1.3 Basic Write Transfer Cycles

During a write transfer, the core provides write data to a memory or peripheral device.
Figure 8-5 illustrates functional timing for basic write transfers. Clock-by-clock
descriptions of activity in Figure 8-5 follow.

nonseq nonseq nonseq idle

addr x addr y addr z

single single single

data x data y data z

okay okay okay okay okay

1 2 3 4 5 6
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

8-36 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timing Diagrams

Figure 8-5. Basic Write Transfers—Single-Cycle Writes, Full Pipelining

• Clock 1 (C1)—The first write transfer starts in clock cycle 1. During C1, the core
places valid values on the address bus and transfer attributes. The burst type
(p_hburst[2:0]), protection control (p_hprot[5:0]), and transfer type
(p_htrans[1:0]) attributes identify the specific access type. The transfer size
attributes (p_hsize[1:0]) indicates the size of the transfer. The byte strobes
(p_hbstrb[7:0]) are driven to indicate active byte lanes. The write (p_hwrite) signal
is driven high for a write cycle.

The core asserts transfer request (p_htrans= NONSEQ) during C1 to indicate that a
transfer is being requested. Because the bus is idle, (0 transfers outstanding), the first
read request to addrx is considered taken at the end of C1. The default slave drives
an ready/OKAY response for the current idle cycle.

• Clock 2 (C2)—During C2, the write data for the access is driven and the addrx
memory access occurs using the address and attribute values (driven during C1) to
enable writing of one or more bytes of memory. The slave device responds by
asserting p_hready to indicate the cycle is completing and drives an OKAY
response.

Another write transfer request is made during C2 to addry (p_htrans = NONSEQ),
and because the access to addrx is completing, it is considered taken at the end of C2.

• Clock 3 (C3)—During C3, write data for addry is driven, and the addry memory
access takes place using the address and attribute values (driven during C2) to enable

nonseq nonseq nonseq idle

addr x addr y addr z

single single single

data x data y data z

okay okay okay okay

1 2 3 4 5
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

Chapter 8. External Core Complex Interfaces 8-37
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timing Diagrams

writing of one or more bytes of memory. The slave device responds by asserting
p_hready to indicate the cycle is completing and drives an OKAY response.

Another write transfer request is made during C3 to addrz (p_htrans = NONSEQ),
and because the access to addry is completing, it is considered taken at the end of C3.

• Clock 4 (C4)—During C4, write data for addrz is driven, and the addrz memory
access takes place using the address and attribute values (driven during C3) to enable
reading of one or more bytes of memory. The slave device responds by asserting
p_hready to indicate the cycle is completing and drives an OKAY response.

Because the CPU has no more outstanding requests, p_htrans indicates IDLE and
the address and attribute signals are undefined.

8.5.1.4 Write Transfer with Wait States

Figure 8-6 shows an example write wait state operation. Because p_hready for the first
request (addrx) is not asserted during C2, a wait state is inserted until p_hready is
recognized (during C3).

Figure 8-6. Write with Wait-state, Single-Cycle Writes, Full Pipelining

Meanwhile, the core generates a subsequent request for addry which is not taken in C2,
because the previous transaction is outstanding. The address, transfer attributes, and write
data remain driven in cycle C3 and are taken at the end of C3 because a ready/OKAY
response is driven back by the slave device for the previous access. In cycle C4, a request

nonseq nonseq nonseq idle

addr x addr y addr z

single single single

data x data y data z

okay okay okay okay okay

1 2 3 4 5 6
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

8-38 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timing Diagrams

for addrz is made. The request for access to addrz is taken at the end of C4, and during C5,
the slave device provides a ready/OKAY response. In C5, no further accesses are requested.

8.5.1.5 Read and Write Transfers

Figure 8-7 shows a sequence of read and write cycles.

Figure 8-7. Single-Cycle Reads, Single-Cycle Write, Full Pipelining

The first read request (addrx) is taken at the end of cycle C1 because the bus is idle. The
second read request (addry) is taken at the end of C2 because a ready/OKAY response is
asserted during C2 for the first read access (addrx). During C3, a request is generated for a
write to addry which is taken at the end of C3 because the second access is terminating.

Data for the addrz write cycle is driven in C4, the cycle after the access is taken, and a
ready/OKAY response is signaled to complete the write cycle to addrz.

Figure 8-8 shows another sequence of read and write cycles. This example shows an
interleaved write access between two reads.

nonseq nonseq nonseq idle

addr x addr y addr z

single single single

data x data y

data z

okay okay okay okay

1 2 3 4 5
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

Chapter 8. External Core Complex Interfaces 8-39
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timing Diagrams

Figure 8-8. Single-Cycle Read, Write, Read—Full Pipelining

The first read request (addrx) is taken at the end of cycle C1 because the bus is idle. The first
write request (addry) is taken at the end of C2 because the first access is terminating (addrx).
Data for the addry write cycle is driven in C3, the cycle after the access is taken. Also during
C3, a request is generated for a read to addrz, which is taken at the end of C3 because the
write access is terminating.

During C4, the addry write access is terminated, and no further access is requested.

Figure 8-9 shows another sequence of read and write cycles. In this example, reads incur a
single wait state.

nonseq nonseq nonseq idle

addr x addr y addr z

single single single

data x data z

data y

okay okay okay okay

1 2 3 4 5
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

8-40 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timing Diagrams

Figure 8-9. Multiple-Cycle Reads with Wait-State, Single-Cycle Writes, Full
Pipelining

The first read request (addrx) is taken at the end of cycle C1 because the bus is idle. The
second read request (addry) is not taken at the end of cycle C2 because no ready response
is signaled and only one access can be outstanding (addrx). It is taken at the end of C3 once
the first read request has signaled a ready/OKAY response.

The first write request (addrz) is not taken during C4 because a ready response is not
asserted during C4 for the second read access (addry). During C5, the request for a write to
addrz is taken because the second access is terminating.

Data for the addrz write cycle is driven in C6, the cycle after the access is taken. During C6,
the addrz write access is terminated and the addrw write request is taken.

During C7, data for the addrw write access is driven, and a ready/OKAY response is
asserted to complete the write cycle to addrw.

Figure 8-10 shows another sequence of read and write cycles. In this example, reads incur
a single wait state

nonseq nonseq nonseq nonseq idle

addr x addr y addr z addr w

single single single single

data x data y

data z data w

okay okay okay okay okay okay okay

1 2 3 4 5 6 7 8
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

Chapter 8. External Core Complex Interfaces 8-41
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timing Diagrams

Figure 8-10. Multi-Cycle Read with Wait-State, Single-cycle write, Read with
Wait-State, Single-Cycle Write, Full Pipelining

The first read request (addrx) is taken at the end of cycle C1 because the bus is idle.

The first write request (addry) is not taken at the end of cycle C2 because no ready response
is signaled and only one access can be outstanding (addrx). It is taken at the end of C3 once
the first read request has signaled a ready/OKAY response.

Data for the addry write cycle is driven in C4, the cycle after the access is taken. The second
read request (addrz) is taken during C4 because the addry write is terminating.

A second write request (addrw) is not taken at the end of C5 because the second read access
is not terminating, and it continues to drive the address and attributes into cycle C6. During
C6, the addrz read access is terminated and the addrw write access is taken.

In cycle C7, data for the addrw write access is driven. During C7, a ready/OKAY response
is asserted to complete the write cycle to addrw. No further accesses are requested, so
p_htrans signals IDLE.

8.5.1.6 Misaligned Accesses

Figure 8-11 illustrates functional timing for a misaligned read transfer. The read to addrx is
misaligned across a 64-bit boundary. Note that only half word and word transfers may be
misaligned; double-word transfers are always aligned.

nonseq nonseq nonseq nonseq idle

addr x addr y addr z addr w

single single single single

data x data z

data y data w

okay okay okay okay okay okay okay

1 2 3 4 5 6 7 8
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

8-42 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timing Diagrams

Figure 8-11. Misaligned Read, Read, Full Pipelining

The first portion of the misaligned read transfer starts in C1. During C1, the core places
valid values on the address bus and transfer attributes. The p_hwrite signal is driven low
for a read cycle. The transfer size attributes (p_hsize) indicate the size of the transfer. Even
though the transfer is misaligned, the size value driven corresponds to the size of the entire
misaligned data item. p_hunalign is driven high to indicate that the access is misaligned.
The p_hbstrb outputs are asserted to indicate the active byte lanes for the read, which may
not correspond to size and low-order address outputs. p_htrans is driven to NONSEQ.

During C2, the addrx memory access takes place using the address and attribute values
which were driven during C1 to enable reading of one or more bytes of memory.

The second portion of the misaligned read transfer request is made during C2 to addrx+
(which is aligned to the next higher 64-bit boundary), and because the first portion of the
misaligned access is completing, it is taken at the end of C2. The p_htrans signals indicate
NONSEQ. The size value driven is the size of the remaining bytes of data in the misaligned
read, rounded up (for the 3-byte case) to the next higher power-of-2. The p_hbstrb signals
indicate the active byte lanes. For the second portion of a misaligned transfer, p_hunalign
is driven high for the 3-byte case (low for all others). The next read access is requested in
C3 and p_htrans indicates NONSEQ. p_hunalign is negated, because this access is aligned.

Figure 8-12 illustrates functional timing for a misaligned write transfer. The write to addrx
is misaligned across a 64-bit boundary. Note that only half word and word transfers may be
misaligned; double-word transfers are always aligned.

nonseq nonseq nonseq idle

addr x addr x+ addr y

single single single

 **

data x data x+ data y

okay okay okay okay

1 2 3 4 5
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

Chapter 8. External Core Complex Interfaces 8-43
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timing Diagrams

Figure 8-12. Misaligned Write, Write, Full Pipelining

The first portion of the misaligned write transfer starts in C1. During C1, the core places
valid values on the address bus and transfer attributes. The p_hwrite signal is driven high
for a write cycle. The transfer size attribute (p_hsize) indicate the size of the transfer. Even
though the transfer is misaligned, the size value driven corresponds to the size of the entire
misaligned data item. p_hunalign is driven high to indicate that the access is misaligned.
The p_hbstrb outputs are asserted to indicate the active byte lanes for the write, which may
not correspond to size and low-order address outputs. p_htrans is driven to NONSEQ.

During C2, data for addrx is driven, and the addrx memory access takes place using the
address and attribute values that were driven during C1 to enable writing of one or more
bytes of memory.

The second portion of the misaligned write transfer request is made during C2 to addrx+
(which is aligned to the next higher 64-bit boundary), and because the first portion of the
misaligned access is completing, it is taken at the end of C2. The p_htrans signals indicate
NONSEQ. The size value driven is the size of the remaining bytes of data in the misaligned
write, rounded up (for the 3-byte case) to the next higher power-of-2. The p_hbstrb signals
indicate the active byte lanes. For the second portion of a misaligned transfer, p_hunalign
is driven high for the 3-byte case (low for all others).

The next write access is requested in C3 and p_htrans indicates NONSEQ. p_hunalign is
negated, because this access is aligned.

nonseq nonseq nonseq idle

addr x addr x+ addr y

single single single

 **

data x data x+ data y

okay okay okay okay

1 2 3 4 5
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

8-44 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timing Diagrams

An example of a misaligned write cycle followed by an aligned read cycle is shown in
Figure 8-13. It is similar to the example in Figure 8-12.

Figure 8-13. Misaligned Write, Single Cycle Read Transfer, Full Pipelining

8.5.1.7 Burst Accesses

Figure 8-14 illustrates functional timing for a burst read transfer.

nonseq nonseq nonseq idle

addr x addr x+ addr y

single single single

 **

data y

data x data x+

okay okay okay okay

1 2 3 4 5
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

Chapter 8. External Core Complex Interfaces 8-45
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timing Diagrams

Figure 8-14. Burst Read Transfer

The p_hburst signals indicate WRAP4 for all burst transfers. The p_hunalign signal is
negated. p_hsize indicates 64-bits, and all eight p_hbstrb signals are asserted. The burst
address is aligned to a 64-bit boundary and wraps around modulo four double words. Note
that in this example the p_htrans signals indicate IDLE after the last portion of the burst is
taken, but this is not always the case.

NOTE
Bursts may be followed immediately by any type of transfer.
No idle cycle is required.

Figure 8-15 illustrates functional timing for a burst read with wait-state transfer.

nonseq seq seq seq idle

addr x addr x+8 addr x+16 addr x+24

wrap4

data x data x+8 data x+16 data x+24

okay okay okay okay okay

1 2 3 4 5 6
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

8-46 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timing Diagrams

Figure 8-15. Burst Read with Wait-State Transfer

The first cycle of the burst incurs a single wait-state.

Figure 8-16 illustrates functional timing for a burst write transfer.

nonseq seq seq seq idle

addr x addr x+8 addr x+16 addr x+24

wrap4

data x data x+8 data x+16 data x+24

okay okay okay okay okay okay

1 2 3 4 5 6 7
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

Chapter 8. External Core Complex Interfaces 8-47
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timing Diagrams

Figure 8-16. Burst Write Transfer

Figure 8-17 illustrates functional timing for a burst write with wait-state transfer.

Figure 8-17. Burst Write with Wait-State Transfer

nonseq seq seq seq idle

addr x addr x+8 addr x+16 addr x+24

wrap4

data x data x+8 data x+16 data x+24

okay okay okay okay okay

1 2 3 4 5 6
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

nonseq seq seq seq idle

addr x addr x+8 addr x+16 addr x+24

wrap4

data x data x+8 data x+16 data x+24

okay okay okay okay okay okay

1 2 3 4 5 6 7
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

8-48 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timing Diagrams

The first cycle of the burst incurs a single wait-state. Data for the second beat of the burst
is valid the cycle after the second beat is taken.

8.5.1.8 Error Termination Operation

The p_hresp[2:0] inputs signal an error termination for an access in progress. The ERROR
encoding is used with the assertion of p_hready to terminate a cycle with error. Error
termination is a two-cycle termination; the first cycle consists of signaling the ERROR
response on p_hresp[2:0] while holding p_hready negated, and during the second cycle,
asserting p_hready while continuing to drive the ERROR response on p_hresp[2:0]. This
2-cycle termination allows the BIU to retract a pending access if it desires to do so.
p_htrans may be driven to IDLE during the second cycle of the two-cycle error response,
or may change to any other value, and a new access unrelated to the pending access may be
requested. The cycle that may have been previously pending while waiting for a response
that terminates with error may be changed. It is not required to remain unchanged when an
error response is received.

Figure 8-18 shows an example of error termination.

Figure 8-18. Read and Write Transfers: Instruction Read with Error, Data Read,
Write, Full Pipelining

The first read request (addrx) is taken at the end of cycle C1 because the bus is idle. It is an
instruction prefetch.

nonseq nonseq nonseq idle

addr x addr y addr z

single single single

data x data y

data z

okay error error okay okay

1 2 3 4 5 6
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

Chapter 8. External Core Complex Interfaces 8-49
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timing Diagrams

The second read request (addry) is not taken at the end of C2 because the first access is still
outstanding (no p_hready assertion). An error response is signaled by the addressed slave
for addrx by driving ERROR onto the p_hresp[2:0] inputs. This is the first cycle of the two
cycle error response protocol.

p_hready is asserted during C3 for the first read access (addrx) while the ERROR encoding
remains driven on p_hresp[2:0], terminating the access. The read data bus is undefined.

In this example of error termination, the CPU continues to request an access to addry. It is
taken at the end of C3. During C4, read data is supplied for the addry read, and the access
is terminated normally during C4.

Also during C4, a request is generated for a write to addrz, which is taken at the end of C4
because the second access is terminating.

Data for the addrz write cycle is driven in C5, the cycle after the access is taken.

During C5, a ready/OKAY response is signaled to complete the write cycle to addrz.

In this example of error termination, a subsequent access remained requested. This does not
always occur when certain types of transfers are terminated with error. The following
figures outline cases where an error termination for a given cycle causes a pending request
to be aborted prior to initiation.

Figure 8-19 shows another example of error termination.

8-50 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timing Diagrams

Figure 8-19. Data Read with Error, Data Write Retracted, Instruction Read, Full
Pipelining

The first read request (addrx) is taken at the end of cycle C1 because the bus is idle. It is a
data read.

The second request (write to addry) is not taken at the end of C2 because the first access is
still outstanding (no p_hready assertion). An error response is signaled by the addressed
slave for addrx by driving ERROR onto the p_hresp[2:0] inputs. This is the first cycle of
the two cycle error response protocol.

p_hready is asserted during C3 for the first read access (addrx) while the ERROR encoding
remains driven on p_hresp[2:0], terminating the access. The read data bus is undefined.

In this example of error termination, the CPU retracts the requested access to addry by
driving p_htrans signals to the IDLE state during the second cycle of the two-cycle error
response.

A different access to addrz is requested during C4 and is taken at the end of C4. During C5,
read data is supplied for the addrz read, and the access is terminated normally.

In this example of error termination, a subsequent access was aborted.

Figure 8-20 shows another example of error termination, this time on the initial portion of
a misaligned write.

nonseq nonseq idle nonseq idle

addr x addr y addr z

single single single

data x data z

okay error error okay okay

1 2 3 4 5 6
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

Chapter 8. External Core Complex Interfaces 8-51
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timing Diagrams

Figure 8-20. Misaligned Write with Error, Data Write Retracted, Burst Read
Substituted, Full Pipelining

The first portion of the misaligned write request is terminated with error. The second
portion is aborted by the CPU during the second cycle of the two cycle error response, and
a subsequent burst read access to addrw becomes pending instead.

Figure 8-21 shows another example of error termination, this time on the initial portion of
a burst read. The aborted burst is followed by a burst write.

nonseq nonseq idle nonseq seq seq seq idle

addr x addr x+ addr w addr w+8 addr w+16 addr w+24

single single wrap 4

**

data w w+8 w+16 w +24

data x

okay error error okay okay okay okay okay

1 2 3 4 5 6 7 8
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

8-52 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timing Diagrams

Figure 8-21. Burst Read with Error Termination, Burst Write

The first portion of the burst read request is terminated with error. The second portion is
aborted by the CPU during the second cycle of the two cycle error response, and a
subsequent burst write access to addry becomes pending instead.

8.5.2 Power Management

Figure 8-22 shows the relationship of the wake-up control signal p_wakeup to the relevant
input signals.

Figure 8-22. Wakeup Control Signal (p_wakeup)

8.5.3 Interrupt Interface

Figure 8-23 shows the relationship of the interrupt input signals to the CPU clock. The
p_avec_b, p_extint_b, p_critint_b, and p_voffset[0:15] inputs must meet setup and hold
timing relative to the rising edge of the m_clk. In addition, during each clock cycle in which

nonseq seq idle nonseq seq seq seq idle

addr x addr x+8 addr y addr y+8 addr y+16 addr y+24

wrap4 wrap4

data x

data y y+8 y+16 y+24

okay error error okay okay okay okay okay

1 2 3 4 5 6 7 8
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

m_clk

p_extint_b

p_wakeup

p_critint_b
jd_de_b,

p_ude,
OCR[WKUP]

Chapter 8. External Core Complex Interfaces 8-53
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timing Diagrams

either p_extint_b or p_critint_b is asserted, p_avec_b and p_voffset[0:15] are required to
be in a valid state for the highest priority interrupt being requested.

Figure 8-23. Interrupt Interface Input Signals

Figure 8-24 shows the interrupt pending signal’s relationship to the interrupt request inputs.
Note that p_ipend is asserted combinationally from the p_extint_b and p_critint_b inputs.

Figure 8-24. Interrupt Pending Operation

Figure 8-25 shows the relationship of the interrupt acknowledge signal to the interrupt
request inputs and exception vector fetching.

p_extint_b

p_voffset[0:15]

p_critint_b
p_avec_b

m_clk

m_clk

p_extint_b

p_ipend

p_critint_b

Exception vector fetch

8-54 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timing Diagrams

Figure 8-25. Interrupt Acknowledge Operation

In this example, an external input interrupt is requested in cycle 1. The p_voffset[0:15]
inputs are driven with the vector offset for ‘A’, and p_avec_b is negated, indicating
vectoring is desired. For this example, the bus is idle at the time of assertion. The CPU may
sample a requested interrupt as early as the cycle it is initially requested, and does so in this
example. The interrupt request and the vector offset and autovector input are sampled at the
end of cycle 1. In cycle 3, the interrupt is acknowledged by the assertion of the p_iack
output, indicating that the values present on interrupt inputs at the beginning of cycle 2 have
been internally latched and committed to for servicing. Note that the interrupt vector lines
have changed to a value of ‘B’ during cycle 2, and the p_critint_b input has been asserted
by the interrupt controller. The vector number and autovector signals must be consistent
with the higher priority critical input request, thus must change at the same time the state
of the interrupt request inputs change. Because the p_iack output asserts in cycle 3, it is
indicating that the values present at the rise of cycle 2 (vector ‘A’) have been committed to.
During cycle 3, the CPU begins instruction fetching of the handler for vector ‘A’. The new

 pair

vec A vec B

A handler A +8 A +16

idle 1 outst. 2 outst.

1st inst pair

int A handlr A hand + 8

int A hand addr int A hand + 8

1 2 3 4 5
m_clk

p_critint_b

p_extint_b

p_voffset[0:15]

sample point

p_iack

p_avec_b

p_treq_b

p_addr

attributes

p_r/w

p_tbusy_b

p_data_in

p_ta_b

mmu access

cache access

cache miss

Chapter 8. External Core Complex Interfaces 8-55
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timing Diagrams

request for a subsequent critical interrupt ‘B’ was not received in time to be acted upon first.
It is acknowledged after the fetch for the external input interrupt handler has been
completed and has entered decode.

Note that the time between assertion of an interrupt request input and the acknowledgment
of an interrupt may be multiple cycles, and the interrupt inputs may change during that
interval. The CPU asserts the p_iack output to indicate the cycle at which an interrupt is
committed to. In the following example, because the CPU was unable to acknowledge the
external input interrupt during cycle 2 due to internal or external execution conditions, the
critical input request was sampled. This case is shown in Figure 8-26.

Figure 8-26. Interrupt Acknowledge Operation—2

vec A vec B

B handler B +8

idle 1 outst. 2 outst.

int B handlr B hand + 8

int B hand addr int B hand + 8

1 2 3 4 5
m_clk

p_critint_b

p_extint_b

p_voffset[0:15]

sample point

p_iack

p_avec_b

p_treq_b

p_addr

attributes

p_r/w

p_tbusy_b

p_data_in

p_ta_b

mmu access

cache access

cache miss

8-56 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Timing Diagrams

Chapter 9. Power Management 9-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Chapter 9
Power Management
This chapter describes the power management facilities as they are defined by Book E and
implemented in devices that contain the e200z6 core. The scope of this chapter is limited
to core complex features. Additional power management capabilities associated with a
device that integrates this core (referred to as an integrated device) are documented
separately.

9.1 Overview
e200z6 cores support power management to minimize overall system power consumption.
The core provides the ability to initiate power management from external sources as well
as through software techniques. Table 9-1 describes e200z6 core power states.

Table 9-1. Power States

State Description

Active
(default)

All internal units on the e200z6 core operate at full processor clock speed. The core provides dynamic
power management in which idle internal units may stop clocking automatically.

Halted Instruction execution and bus activity are suspended, and most internal clocks are gated off. The e200z6
core asserts p_halted to indicate it is in the halted state. Before entering halted state, all outstanding bus
transactions complete, and the cache’s store and push buffers are flushed. The m_clk input should remain
running to allow further transitions into the power-down state if requested and to keep the time base
operational if it is using m_clk as the clock source.

Power
down

(stopped)

All core functional units except the time base unit and clock control state machine logic are stopped. m_clk
may be kept running to keep the time base active and to allow quick recovery to full-on state. Clocks are
not running to functional units except to the time base. The core reaches power-down state after
transitioning through halted state with p_stop asserted; at this point p_stopped output is asserted.
Additional power may be saved by disabling the time base by asserting p_tbdisable or by integrated logic
stopping m_clk after the core is in power-down state and has asserted p_stopped.
To exit power-down state, integrated logic must first restart m_clk.
Because the time base is off during power-down state, if m_clk is the clock source and is stopped, or if time
base clocking is disabled by the assertion of p_tbdisable, system software must usually have to access an
external time base source after returning to the full-on state to reinitialize the time base unit. A time-base
related interrupt source (such as the decrementer) cannot be used to exit low power states.
The e200z6 core also provides the ability to clock the time base from an independent (but externally
synchronized) clock source, which allows the time base to be maintained during the power-down state, and
allows a time-base related interrupt to be generated to indicate an exit condition from the power-down state.

9-2 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Overview

Figure 9-1 is a power management state diagram.

Figure 9-1. Power Management State Diagram

9.1.1 Power Management Signals

Table 9-1 summarizes power management signals. More detailed information is provided
in Section 8.5.2, “Power Management.”

Table 9-2. Descriptions of Timer Facility and Power Management Signals

Signal I/O Signal Description

p_halt I Processor halt request. The active-high p_halt input requests that the core enter the halted state.

p_halted O Processor halted. The active-high p_halted output indicates that the core entered the halted state.

p_stop I Processor stop request. The active-high p_stop input requests that the core enter the stopped state.

p_stopped O Processor stopped. The active-high p_stopped output indicates that the core entered stopped state.

p_doze
p_nap

p_sleep

O Low-power mode. These signals are asserted by the core to reflect the settings of the HID0[DOZE],
HID0[NAP], and HID0[SLEEP] control bits when MSR[WE] is set. The e200z6 core can be placed
in a low-power state by forcing m_clk to a quiescent state and brought out of low-power state by
re-enabling m_clk. The time base facilities may be separately enabled or disabled using
combinations of the timer facility control signals.

p_wakeup O Wakeup. Used by external logic to remove the e200z6 core and system logic from a low-power state.
It can also indicate to the system clock controller that m_clk should be re-enabled for debug
purposes.
p_wakeup (or other system state) should be monitored to determine when to release the core (and
system if applicable) from a low-power state.

p_tbdisable I Timer disable. Used to disable the internal time base and decrementer counters. This signal can be
used to freeze the state of the time base and decrementer during low power or debug operation.

Halted

Power-Down

~p_stop & p_halt

p_stop

~p_halt & ~p_stopp_halt | p_stop

~p_stopp_stop

Active ~p_halt & ~p_stop

(p_stopped asserted)

(p_halted asserted)

Chapter 9. Power Management 9-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Overview

9.1.2 Power Management Control Bits

Software uses the register fields listed in Table 9-3 to generate a request to enter a
power-saving state and to choose the state to be entered.

9.1.3 Software Considerations for Power Management

Setting MSR[WE] generates a request to enter a power-saving state (doze, nap, or sleep).
This state must be previously determined by setting the appropriate HID0 bit. Setting
MSR[WE] does not directly affect execution, but is reflected on p_doze, p_nap, and
p_sleep, depending on the setting of the HID0 DOZE, NAP, and SLEEP bits. Note that the
core is not affected by assertion of these signals directly. External system hardware may
interpret the state of these signals and activate the p_halt and/or p_stop inputs to cause the
e200z6 core to enter a quiescent state, in which clocks may be disabled for low-power
operation.

To ensure a clean transition into and out of a power-saving mode, the following program
sequence is recommended:

sync
mtmsr (WE)
isync

loop: br loop

p_tbclk I Timer external clock. Used as an alternate clock source for the time base and decrementer counters.
Selection of this clock is made using HID0[SEL_TBCLK] (see Section 2.11.1, “Hardware
Implementation-Dependent Register 0 (HID0)”).

p_tbint O Timer interrupt status. Indicates whether an internal timer facility unit is requesting an interrupt
(TSR[WIS]=1 and TCR[WIE]=1, or TSR[DIS]=1 and TCR[DIE]=1, or TSR[FIS]=1 and TCR[FIE]=1).
May be used to exit low power operation or for other system purposes.

Table 9-3. Power Management Control Bits

Bit Description

MSR[WE] Used to qualify assertion of the p_doze, p_nap, and p_sleep outputs to the integrated logic. When
MSR[WE] is negated, these signals are negated. If MSR[WE] is set, these pins reflect the state of their
respective HID0 control bits.

HID0[DOZE] The interpretation of the DOZE mode bit is done by the external integrated logic. Doze mode on the
e200z6 core is intended to be the halted state with the clocks running.

HID0[NAP] The interpretation of the NAP mode bit is done by the external integrated logic. Nap mode on the
e200z6 core may be used for a power-down state with the time base enabled.

HID0[SLEEP] The interpretation of the SLEEP mode bit is done by the external integrated logic. Sleep mode on the
e200z6 core may be used for a power-down state with the time base disabled.

Table 9-2. Descriptions of Timer Facility and Power Management Signals

Signal I/O Signal Description

9-4 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Overview

An interrupt is typically used to exit a power-saving state. The p_wakeup output is used to
indicate to the system logic that an interrupt (or a debug request) has become pending.
System logic uses this output to re-enable the clocks and exit a low power state. The
interrupt handler is responsible for determining how to exit the low-power loop if one is
used. The vectored interrupt capability provided by the core may be useful in assisting the
determination if an external hardware interrupt is used to perform the wake-up.

9.1.4 Debug Considerations for Power Management

When a debug request is presented to the e200z6 core when it is in either the halted or
stopped state, p_wakeup is asserted, and when m_clk is provided to the CPU, it temporarily
exits the halted or stopped state and enters debug mode, regardless of the assertion of p_halt
or p_stop. The p_halted and p_stopped outputs are negated as long as the CPU remains in
a debug session (jd_debug_b asserted). When the debug session is exited, the CPU
resamples the p_halt and p_stop inputs and re-enters halted or stopped state as appropriate.

Chapter 10. Debug Support 10-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Chapter 10
Debug Support

10.1 Introduction
This chapter describes the debug features of the e200z6 core and describes the e200z6
software and hardware debug facilities, events, and registers. It also details the external
debug support features available and introduces the reader to the on-chip emulation
circuitry (OnCE) and its key attributes, that is, the interface signals, debug inputs, and
outputs. This chapter also covers watchpoint support, MMU and cache operations during
debug, cache array access, and the basic steps for enabling, using, and exiting external
debug mode.

10.2 Overview
Internal debug support in the e200z6 core allows for software and hardware debugging by
providing debug functions such as instruction and data breakpoints and program trace
modes. For software-based debugging, debug facilities consisting of a set of
software-accessible debug registers and interrupt mechanisms are provided. These facilities
are also available to a hardware-based debugger that communicates using a modified
IEEE 1149.1 test access port (TAP) controller and pin interface. When hardware debugging
is enabled, the debug facilities are protected from software modification.

Software debug facilities are defined as part of Book E. The e200z6 supports a subset of
these defined facilities. In addition to the Book E–defined facilities, the e200z6 provides
additional flexibility and functionality in the form of debug event counters, linked
instruction and data breakpoints, and sequential debug event detection. These features are
also available to a hardware-based debugger.

The e200z6 core also supports an external Nexus real-time debug module. Real-time
debugging in an e200z6-based system is supported by an external Nexus class 2, 3, or 4
module. Definitions and features of this module are part of the system/platform
specification and are not further defined in this chapter. Additional information can be
found in Chapter 11, “Nexus3 Module.”

10-2 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Overview

10.2.1 Software Debug Facilities

The e200z6 debug facilities enable hardware and software debug functions, such as
instruction and data breakpoints and program single-stepping. The debug facilities consist
of a set of debug control registers (DBCR0–DBCR3), a set of address compare registers
(IAC1–IAC4, DAC1, and DAC2), a configurable debug counter register (DBCNT), a
debug status register (DBSR) for enabling and recording various kinds of debug events, and
a special debug interrupt type built into the interrupt mechanism (see Section 5.6.16,
“Debug Interrupt (IVOR15)”). The debug facilities also provide mechanisms for
software-controlled processor reset and for controlling the operation of the timers in a
debug environment.

Software debug facilities are enabled by setting the internal debug mode bit,
DBCR0[IDM]. If DBCR0[IDM] is set, debug events can occur and can be enabled to
record exceptions in the DBSR. If enabled by MSR[DE], these exceptions cause debug
interrupts. If DBCR0[IDM] and DBCR0[EDM] (EDM represents the external debug mode
bit) are cleared, no debug events occur and no status flags are set in DBSR unless already
set. In addition, if DBCR0[IDM] is cleared (or is overridden by DBCR0[EDM] being set),
no debug interrupts can occur, regardless of the contents of DBSR. A software debug
interrupt handler can access all system resources and perform the necessary functions
appropriate for system debugging.

10.2.1.1 PowerPC Book E Compatibility

The e200z6 core implements a subset of the PowerPC Book E internal debug features. The
following restrictions on functionality are present:

• Instruction address compares do not support compare on physical (real) addresses.

• Data address compares do not support compare on physical (real) addresses.

• Data value compares are not supported.

10.2.2 Additional Debug Facilities

In addition to the debug functionality defined in Book E, the e200z6 provides the capability
to link instruction and data breakpoints. The e200z6 also provides a configurable debug
event counter to allow debug exception generation and a sequential breakpoint control
mechanism.

The e200z6 also defines two new debug events (critical interrupt taken and critical return)
for debugging around critical interrupts.

In addition, the e200z6 implements the debug auxiliary processing unit (APU) which, when
enabled, allows debug interrupts to use a dedicated set of save/restore registers (DSRR0
and DSRR1) to save state information when a debug interrupt occurs and restore this state
information at the end of a debug interrupt handler with the rfdi instruction.

Chapter 10. Debug Support 10-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Overview

10.2.3 Hardware Debug Facilities

The e200z6 core contains facilities that allow for external test and debugging. A modified
IEEE 1149.1 control interface is used to communicate with core resources. This interface
is implemented through a standard 1149.1 TAP (test access port) controller.

By using public instructions, the external debugger can freeze or halt the e200z6 core, read
and write internal state and debug facilities, single-step instructions, and resume normal
execution.

Hardware debug is enabled by setting the external debug mode enable bit (DBCR0[EDM]).
Setting DBCR0[EDM] overrides the internal debug mode enable bit DBCR0[IDM]. If the
hardware debug facility is enabled, software is blocked from modifying the debug facilities.
In addition, because resources are owned by the hardware debugger, inconsistent values
may be present if software attempts to read debug-related resources.

When hardware debug is enabled (DBCR0[EDM] = 1), the registers and resources
described in Section 10.3, “Debug Registers,” are reserved for use by the external
debugger. The events described in Section 10.3, “Debug Registers,” are also used for
external debugging, but exceptions are not generated to running software. Debug events
enabled in the respective DBCR0–DBCR3 registers are recorded in the DBSR regardless
of MSR[DE], and no debug interrupts are generated. Instead, the CPU enters debug mode
when an enabled event causes a DBSR bit to become set. DBCR0[EDM] may only be
written through the OnCE port.

A program trace program counter FIFO (PC FIFO) is also provided to support program
change-of-flow capture.

To perform write accesses from the external hardware debugger, most debug resources
(registers) require the CPU clock (m_clk) to be running.

Figure 10-1 shows the e200z6 debug resources.

10-4 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Debug Registers

Figure 10-1. e200z6 Debug Resources

10.3 Debug Registers
The debug facility registers are listed in Table 10-1 and described in Section 2.10, “Debug
Registers.”

Table 10-1. Debug Registers

Mnemonic Name SPR Number Access Privileged
e200z6

Specific

DBCR0 Debug control register 0 308 R/W Yes No

DBCR1 Debug control register 1 309 R/W Yes No

DBCR2 Debug control register 2 310 R/W Yes No

DBCR3 Debug control register 3 561 R/W Yes Yes

DBSR Debug status register 304 Read/Clear 1 Yes No

DBCNT Debug counter register 562 R/W Yes Yes

IAC1 Instruction address compare 1 312 R/W Yes No

Pstat#
Attr#

Addr#
j_tdo, j_tdo_en

j_tdi

j_tclk

Breakpoint and
Trace Logic

Pipeline
Information

j_tms

dbg_dbgrq

cpu_dbgack

jd_watchpt[0:n]

#internal signals
to/from CPU only

p_devt[1,2]

j_trst_b

jd_de_en
jd_debug_b

Data#

jd_en_once

jd_de_b

jd_mclk_on

p_ude

PC
FIFO

Debug
Registers

and
Comparators

OnCE
Controller

and
Serial

Interface

Chapter 10. Debug Support 10-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Software Debug Events and Exceptions

10.4 Software Debug Events and Exceptions
Software debug events and exceptions are available if internal debug mode is enabled
(DBCR0[IDM] = 1) and not overridden by external debug mode (DBCR0[EDM] = 0).
When enabled, debug events cause debug exceptions to be recorded in the debug status
register. Specific event types are enabled by DBCR0–DBCR3. The unconditional debug
event (UDE) is an exception to this rule; it is always enabled. Once a DBSR bit other than
MRR and CNT1TRG is set, if debug interrupts are enabled by MSR[DE], a debug interrupt
is generated. The debug interrupt handler is responsible for ensuring that multiple repeated
debug interrupts do not occur by clearing the DBSR as appropriate.

Certain debug events are not allowed to occur when MSR[DE] = 0 and DBCR0[EDM] = 0.
Under these conditions, no debug exception occurs and thus no DBSR bit is set. Other
debug events may cause debug exceptions and set DBSR bits regardless of the state of
MSR[DE]. A debug interrupt is delayed until MSR[DE] is set.

When a DBSR bit is set while MSR[DE] = 0 and DBCR0[EDM] = 0, an imprecise debug
event flag (DBSR[IDE]) is also set to indicate that an exception bit in the DBSR was set
while debug interrupts were disabled. The debug interrupt handler software can use this bit
to determine whether DSRR0 holds the address associated with the instruction causing the
debug exception or the address of the instruction that enabled a delayed debug interrupt by
setting MSR[DE]. An mtmsr or mtdbcr0, which causes both MSR[DE] and
DBCR0[IDM] to be set, enabling precise debug mode, may cause an imprecise (delayed)
debug exception to be generated due to an earlier recorded event in the DBSR.

The following types of debug events are defined by Book E:

• Instruction address compare debug events

• Data address compare debug events

• Trap debug events

• Branch taken debug events

• Instruction complete debug events

IAC2 Instruction address compare 2 313 R/W Yes No

IAC3 Instruction address compare 3 314 R/W Yes No

IAC4 Instruction address compare 4 315 R/W Yes No

DAC1 Data address compare 1 316 R/W Yes No

DAC2 Data address compare 2 317 R/W Yes No

1 The DBSR can be read using mfspr rD,DBSR. It cannot be directly written to. Instead, DBSR bits corresponding to 1
bits in GPR(rS) can be cleared using mtspr DBSR,rS.

Table 10-1. Debug Registers (continued)

Mnemonic Name SPR Number Access Privileged
e200z6

Specific

10-6 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Software Debug Events and Exceptions

• Interrupt taken debug events

• Return debug events

• Unconditional debug events

These events are described in further detail in the EREF.

The e200z6 defines the following debug events, which are described in Table 10-2:

• The debug counter debug events DCNT1 and DCNT2

• The external debug events DEVT1 and DEVT2

• The critical interrupt taken debug event (CIRPT)

• The critical return debug event (CRET)

The e200z6 debug framework supports most of these event types. The following
Book E–defined functionality is not supported:

• Instruction address compare and data address compare real address mode

• Data value compare mode

A brief description of each of the debug event types is shown in Table 10-2. In these
descriptions, DSRR0 and DSRR1 are used to store the address of the instruction following
a load or store, assuming that the debug APU is enabled. If it is disabled, CSRR0 is used.

Chapter 10. Debug Support 10-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Software Debug Events and Exceptions

Table 10-2. Debug Event Descriptions

Event Name Type Description

Instruction
address compare
event

IAC Instruction address compare debug events occur if instruction address compare
debug events are enabled and execution is attempted of an instruction at an address
that meets the criteria specified in DBCR0, DBCR1, IAC1–IAC3, and IAC4. Instruction
address compares may specify user/supervisor mode and instruction space
(MSR[IS]), along with an effective address, masked effective address, or range of
effective addresses for comparison. This event can occur and be recorded in DBSR
regardless of the setting of MSR[DE]. If a higher-priority interrupt (such as an
asynchronous interrupt) prevents the instruction that had the IAC match from
executing, the e200z6 behaves as if the IAC event had not occurred; for example, the
corresponding DBSR[IACn] bit is not set.

Data address
compare event

DAC Data address compare debug events occur if data address compare debug events are
enabled and execution of a load or store class instruction or a cache maintenance
instruction results in a data access with an address that meets the criteria specified in
DBCR0, DBCR2, DAC1, and DAC2. Data address compares may specify
user/supervisor mode and data space (MSR[DS]), along with an effective address,
masked effective address, or range of effective addresses for comparison. This event
can occur and be recorded in DBSR regardless of the setting of MSR[DE]. Two
address compare values (DAC1 and DAC2) are provided.

Note:
In contrast to the Book E definition, data address compare events on the e200z6 do
not prevent the load or store instruction from completing. If a load or store class
instruction completes successfully without a data TLB or data storage interrupt, data
address compare exceptions are reported at the completion of the instruction. If the
exception results in a precise debug interrupt, the address value saved in DSRR0 (or
CSRR0 if the debug APU is disabled) is the address of the instruction following the
load or store class instruction.
If a load or store class instruction does not complete successfully due to a data TLB
or data storage exception, and a data address compare debug exception also occurs,
the result is an imprecise debug interrupt, the address value saved in DSRR0 (or
CSRR0 if the debug APU is disabled) is the address of the load or store class
instruction, and DBSR[IDE] is set. In addition to occurring when DBCR0[IDM] = 1, this
can also occur when DBCR0[EDM] = 1.

Note:
DAC events are not recorded or counted if an lmw or stmw instruction is interrupted
before completion by a critical input or external input interrupt.
Note:
 • DAC events are not signaled on:

—The second portion of a misaligned load or store that is broken up into two
separate accesses
—The tlbre, tlbwe, tlbsx, or tlbivax instructions

10-8 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Software Debug Events and Exceptions

Linked instruction
address and data
address compare
event

DAC1LNK,
DAC2LNK

Data address compare debug events may be linked with an instruction address
compare event by setting the DAC1LNK and/or DAC2LNK control bits in DBCR2 to
further refine when a data address compare debug event is generated. DAC1 may be
linked with IAC1, and DAC2 (when not used as a mask or range bounds register) may
be linked with IAC3. When linked, a DAC1 (or DAC2) debug event occurs when the
same instruction that generates the DAC1 (or DAC2) hit also generates an IAC1 (or
IAC3) hit. When linked, the IAC1 (or IAC3) event is not recorded in the DBSR,
regardless of whether a corresponding DAC1 (or DAC2) event occurs, or whether the
IAC1 (or IAC3) event enable is set.
When enabled and execution of a load or store class instruction results in a data
access with an address, and that address meets the criteria specified in DBCR0,
DBCR2, DAC1, and DAC2, and the instruction also meets the criteria for generating
an instruction address compare event, a linked data address compare debug event
occurs. This event can occur and be recorded in DBSR regardless of the setting of
MSR[DE]. The normal DAC1 and DAC2 status bits in the DBSR are used for recording
these events. The IAC1 and IAC3 status bits are not set if the corresponding
instruction address compare register is linked.
Linking is enabled using DBCR2 control bits. If data address compare debug events
are used to control or modify operation of the debug counter, linking is also available,
even though DBCR0 may not have enabled IAC or DAC events. Also, instruction
address compare events that are linked may still affect the debug counter (if enabled
to) and may be used to either trigger a counter or be counted, in contrast to being
blocked from affecting the DBSR.
Note:
Linked DAC events are not recorded or counted if an lmw or stmw instruction is
interrupted before completion by a critical input or external input interrupt.

Trap debug event TRAP A trap debug event occurs if trap debug events are enabled (DBCR0[TRAP] = 1), a
trap instruction (tw, twi) is executed, and the conditions specified by the instruction
for the trap are met. This event can occur and be recorded in DBSR regardless of the
setting of MSR[DE]. When a trap debug event occurs, DBSR[TRAP] is set.

Branch taken
debug event

BRT A branch taken debug event occurs if branch taken debug events are enabled
(DBCR0[BRT] = 1) and execution is attempted of a branch instruction that will be
taken (either an unconditional branch or a conditional branch whose branch condition
is true), and MSR[DE] = 1 or DBCR0[EDM] = 1. Branch taken debug events are not
recognized if MSR[DE] = 0 and DBCR0[EDM] = 0 at the time of execution of the
branch instruction and thus DBSR[IDE] can not be set by a branch taken debug event.
When a branch taken debug event is recognized, DBSR[BRT] is set to record the
debug exception, and the address of the branch instruction is recorded in DSRR0
(only when the interrupt is taken).

Table 10-2. Debug Event Descriptions (continued)

Event Name Type Description

Chapter 10. Debug Support 10-9
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Software Debug Events and Exceptions

Instruction
complete debug
event

IAC An instruction complete debug event occurs if instruction complete debug events are
enabled (DBCR0[ICMP] = 1), execution of any instruction is completed, and
MSR[DE] = 1 or DBCR0[EDM] = 1. If execution of an instruction is suppressed due to
the instruction causing some other exception which is enabled to generate an
interrupt, then the attempted execution of that instruction does not cause an
instruction complete debug event. The sc instruction does not fall into the category of
an instruction whose execution is suppressed, since the instruction actually executes
and then generates a system call interrupt. In this case, the instruction complete
debug exception is also set. When an instruction complete debug event is recognized,
DBSR[ICMP] is set to record the debug exception and the address of the next
instruction to be executed is recorded in DSRR0.
Instruction complete debug events are not recognized if MSR[DE] = 0 and
DBCR0[EDM] = 0 at the time of execution of the instruction; thus, DBSR[IDE] is not
generally set by an ICMP debug event.
One circumstance may cause DBSR[ICMP] and DBSR[IDE] to be set. This occurs
when an embedded FPU round exception occurs. Because the instruction is by
definition completed (SRR0 points to the following instruction), this interrupt takes
higher priority than the debug interrupt so as not to be lost, and DBSR[IDE] = 1 to
indicate imprecise recognition of a debug interrupt. In this case, the debug interrupt is
taken with SRR0 pointing to the instruction following the instruction which generated
the SPEFPU round exception, and DSRR0 points to the round exception handler. In
addition to occurring when DBCR0[IDM] = 1, this circumstance can also occur when
DBCR0[EDM] = 1.
Note:
Instruction complete debug events are not generated by the execution of an
instruction that sets MSR[DE] while DBCR0[ICMP] = 1, nor by the execution of an
instruction that sets DBCR0[ICMP] while MSR[DE] = 1 or DBCR0[EDM] = 1.

Interrupt taken
debug event

IRPT An interrupt-taken debug event occurs if interrupt-taken debug events are enabled
(DBCR0[IRPT] = 1) and a non-critical interrupt occurs. Only non-critical class
interrupts cause an interrupt-taken debug event. This event can occur and be
recorded in DBSR regardless of the setting of MSR[DE]. When an interrupt taken
debug event occurs, DBSR[IRPT] is set to record the debug exception. DSRR0 holds
the address of the non-critical interrupt handler.

Critical interrupt
taken debug
event

CIRPT A critical interrupt taken debug event occurs if critical interrupt taken debug events are
enabled (DBCR0[CIRPT] = 1) and a critical interrupt (other than a debug interrupt
when the debug APU is disabled) occurs. Only critical class interrupts cause a critical
interrupt taken debug event. This event can occur and be recorded in DBSR
regardless of the setting of MSR[DE]. When a critical interrupt taken debug event
occurs, DBSR[CIRPT] bit is set, ensuring that debug exceptions are recorded.
DSRR0 holds the address of the critical interrupt handler.

Note:
To avoid corruption of CSRR0 or CSRR1, this debug event should not normally be
enabled unless the debug APU is also enabled.

Return debug
event

RET A return debug event occurs if return debug events are enabled (DBCR0[RET] = 1)
and an attempt is made to execute an rfi instruction. This event can occur and be
recorded in DBSR regardless of the setting of MSR[DE]. When a return debug event
occurs, the DBSR[RET] bit is set so the debug exceptions are recorded.
If MSR[DE] = 0 and DBCR0[EDM] = 0 when rfi executes (that is, before the MSR is
updated by the rfi), DBSR[IDE] is also set to record the imprecise debug event.
If MSR[DE] = 1 when rfi executes, a debug interrupt occurs provided no higher
priority exception is enabled to cause an interrupt. DSRR0 holds the address of the
rfi instruction.

Table 10-2. Debug Event Descriptions (continued)

Event Name Type Description

10-10 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

External Debug Support

10.5 External Debug Support
External debug support is supplied through the e200z6 OnCE controller serial interface,
which allows access to internal CPU registers and other system state while in external
debug mode (DBCR0[EDM] is set). All debug resources, including DBCR0–DBCR3,
DBSR, IAC1–IAC4, DAC1, DAC2 and DBCNT are accessible through the serial on-chip
emulation (OnCE) interface in external debug mode. Setting the DBCR0[EDM] bit through
the OnCE interface enables external debug mode and disables software updates to the
debug registers. When DBCR0[EDM] is set, debug events enabled to set respective DBSR
status bits also cause the CPU to enter debug mode, as opposed to generating debug
interrupts. In debug mode, the CPU is halted at a recoverable boundary, and an external
debug control module may control CPU operation through the OnCE logic. No debug
interrupts can occur while DBCR0[EDM] remains set.

Critical return
debug event

CRET A critical return debug event occurs if critical return debug events are enabled
(DBCR0[CRET] = 1) and an attempt is made to execute an rfci instruction. This event
can occur and be recorded in DBSR regardless of the setting of MSR[DE]. When a
critical return debug event occurs, the DBSR[CRET] bit is set to record the debug
exception.
If MSR[DE] = 0 and DBCR0[EDM] = 0 at the time of the execution of the rfci (that is
before the MSR is updated by the rfci), DBSR[IDE] is also set to record the imprecise
debug event.
If MSR[DE] = 1 at the time of the execution of the rfci, a debug interrupt occurs
provided no higher priority exception is enabled to cause an interrupt. Debug
save/restore register 0 is set to the address of the rfci instruction. Note that this debug
event should not normally be enabled unless the debug APU is also enabled to avoid
corruption of CSRR0 or CSRR1.

Debug counter
debug event

DCNT1,
DCNT2

A debug counter debug event occurs if debug counter debug events are enabled
(DBCR0[DCNT1] = 1 or DBCR0[DCNT2] = 1), a debug counter is enabled, and a
counter decrements to zero. This event can occur and be recorded in DBSR
regardless of the setting of MSR[DE]. When a debug counter debug event occurs,
DBSR[DCNT1] or DBSR[DCNT2] is set to record the debug exception.

External debug
event

DEVT1,
DEVT2

An external debug event occurs if external debug events are enabled
(DBCR0[DEVT1] = 1 or DBCR0[DEVT2] = 1), and the respective p_devt1 or p_devt2
input signal transitions to the set state. This event can occur and be recorded in DBSR
regardless of the setting of MSR[DE]. When an external debug event occurs,
DBSR[DEVT1] or DBSR[DEVT2] is set to record the debug exception.

Unconditional
debug event

UDE An unconditional debug event occurs when the unconditional debug event (p_ude)
input transitions to the set state, and either DBCR0[IDM] = 1 or DBCR0[EDM] = 1.
The unconditional debug event is the only debug event that does not have a
corresponding enable bit for the event in DBCR0. This event can occur and be
recorded in DBSR regardless of the setting of MSR[DE]. When an unconditional
debug event occurs, DBSR[UDE] is set, so debug exceptions are recorded.

Table 10-2. Debug Event Descriptions (continued)

Event Name Type Description

Chapter 10. Debug Support -11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

External Debug Support

NOTE
On the initial setting of DBCR0[EDM], other bits in DBCR0
are unchanged. After DBCR0[EDM] is set, all debug register
resources may be subsequently controlled through the OnCE
interface. DBSR should be cleared as part of the process of
enabling external debug activity. The CPU should be placed
into debug mode through the OCR[DR] control bit before
setting EDM. This allows the debugger to cleanly write to the
DBCRn registers and the DBSR to clear out any residual
state/control information that could cause unintended
operation.

NOTE
It is intended for the CPU to remain in external debug mode
(DBCR0[EDM] = 1) in order to single-step or perform other
debug mode entry/reentry through the OCR[DR], by
performing OnCE Go+NoExit commands, or by assertion of
jd_de_b.

NOTE
DBCR0[EDM] operation is blocked if the OnCE operation is
disabled (jd_en_once negated) regardless of whether it is set or
cleared. This means that if DBCR0[EDM] was previously set
and then jd_en_once is negated (this should not occur), entry
into debug mode is blocked, all events are blocked, and
watchpoints are blocked.

Due to clock domain design, the CPU clock (m_clk) must be active for writes to be
performed to debug registers other than the OnCE command register (OCMD), the OnCE
control register (OCR), or DBCR0[EDM]. Register read data is synchronized back to the
j_tclk clock domain. The OnCE control register provides the capability of signaling the
system level clock controller that the CPU clock should be activated if not already active.

Updates to DBCRn, DBSR, and DBCNT through the OnCE interface should be performed
with the CPU in debug mode to guarantee proper operation. Due to the various points in the
CPU pipeline where control is sampled and event handshaking is performed, it is possible
that modifications to these registers while the CPU is running may result in early or late
entry into debug mode and incorrect status information posted in DBSR.

10.5.1 OnCE Introduction

The e200z6 on-chip emulation circuitry (OnCE/Nexus class 1 interface) provides a means
of interacting with the e200z6 core and integrated system so that a user may examine
registers, memory, or on-chip peripherals. OnCE operation is controlled through an

10-12 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

External Debug Support

industry-standard IEEE 1149.1 TAP controller. By using JTAG instructions, the external
hardware debugger can freeze or halt the CPU, read and write internal state, and resume
normal execution. The core does not contain IEEE 1149.1 standard boundary cells on its
interface, as it is a building block for further integration. It does not support the
JTAG-related boundary scan instruction functionality, although JTAG public instructions
may be decoded and signaled to external logic.

The OnCE logic provides for Nexus class 1 static debug capability (using the same set of
resources available to software while the e200z6 is in internal debug mode), and is present
in all e200z6-based designs. The OnCE module also provides support for directly
integrating a Nexus class 2 or class 3 real-time debug unit with the e200z6 core for
development of real-time systems where traditional static debug is insufficient. The
partitioning between a OnCE module and a connected Nexus module to provide real-time
debugging allows for capability and cost tradeoffs to be made.

The e200z6 core is designed to be a fully integratable module. The OnCE TAP controller
and associated enabling logic are designed to allow concatenation with an existing JTAG
controller if one is present in the system. Thus, the e200z6 module can be easily integrated
with existing JTAG designs or as a stand-alone controller.

In order to enable full OnCE operation, the jd_enable_once input signal must be asserted.
In some system integrations, this is automatic since the input will be tied asserted. Other
integrations may require the execution of the Enable OnCE command through the TAP and
appropriate entry of serial data. Refer to the documentation for the integrating device. The
jd_enable_once input should not change state during a debug session, or undefined activity
may occur.

Figure 10-2 shows the TAP controller and TAP registers implemented by the OnCE logic.

Figure 10-2. OnCE TAP Controller and Registers

OnCE Mapped Debug Registers

Auxiliary Data Registers

External Data Registers

Bypass Register

TAP Instruction Register

TAP
Controllerj_trst_b

j_tclk
j_tms TDO

Mux Logic

j_tdi j_tdo

j_tdo_en

 (OnCE OCMD)

Chapter 10. Debug Support -13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

External Debug Support

The OnCE controller is implemented as a 16-state finite state machine (FSM), shown in
Figure 10-3, with a one-to-one correspondence to the states defined for the JTAG TAP
controller.

Figure 10-3. OnCE Controller as an FSM

Access to e200z6 processor registers and the contents of memory locations is performed by
enabling external debug mode (setting DBCR0[EDM]), placing the processor into debug
mode, and scanning instructions and data into and out of the e200z6 CPU scan chain
(CPUSCR); execution of scanned instructions by the e200z6 is used as the method for
accessing required data. Memory locations may be read by scanning a load instruction into
the e200z6 core that references the desired memory location, executing the load instruction,

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select DR-ScanRun-Test/Idle

Test-Logic-Reset

1

0

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

0 0

00

0 0

00

00

0

0

00

0

Select IR-Scan

10-14 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

External Debug Support

and then scanning out the result of the load. Other resources are accessed in a similar
manner.

The initial entry by the CPU into the debug state (or mode) from normal, stopped, halted,
or checkstop states (all indicated by the OnCE status register (OSR) described in
Section 10.5.5.1, “e200z6 OnCE Status Register (OSR)”) by assertion of one or more
debug requests begins a debug session. The jd_debug_b output signal indicates that a debug
session is in progress, and the OSR indicates that the CPU is in the debug state. Instructions
may be single-stepped by scanning new values into the CPUSCR and performing a OnCE
Go+NoExit command (See Section 10.5.5.2, “e200z6 OnCE Command Register
(OCMD).”) The CPU then temporarily exits the debug state (but not the debug session) to
execute the instruction and returns to the debug state (again indicated by the OSR). The
debug session remains in force until the final Go+Exit command is executed, at which time
the CPU returns to its previous state (unless a new debug request is pending). A scan into
the CPUSCR is required before executing each Go+Exit or Go+NoExit command.

10.5.2 JTAG/OnCE Signals

The JTAG/OnCE interface is used to transfer OnCE instructions and data to the OnCE
control block. Depending on the resource being accessed, the CPU may need to be placed
in debug mode. For resources outside the CPU block and contained in the OnCE block, the
processor is not disturbed and may continue execution. If a processor resource is required,
an internal debug request (dbg_dbgrq) may be asserted to the CPU by the OnCE controller,
and causes the CPU to finish the instruction being executed, save the instruction pipeline
information, enter debug mode, and wait for further commands. Asserting dbg_dbgrq
causes the chip to exit the low-power mode enabled by setting MSR[WE].

Table 10-3 details the primary JTAG/OnCE interface signals.

A full description of JTAG signals is provided in Section 8.3.2, “JTAG ID Signals.”

Table 10-3. JTAG/OnCE Primary Interface Signals

Signal Name I/O Description

j_trst_b I JTAG test reset

j_tclk I JTAG test clock

j_tms I JTAG test mode select

j_tdi I JTAG test data input

j_tdo O Test data out to master controller or pad

j_tdo_en O Enables TDO output buffer
Set when the TAP controller is in the Shift-DR
or Shift-IR state.

Chapter 10. Debug Support -15
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

External Debug Support

10.5.3 OnCE Internal Interface Signals

The following sections describe the e200z6 OnCE interface signals to other internal blocks
associated with the e200z6 OnCE controller. Table 10-4 shows the OnCE internal interface
signals.

10.5.3.1 CPU Address and Attributes

The CPU address and attribute information are used by an external Nexus class 2–4 debug
unit with information for real-time address trace information.

10.5.3.2 CPU Data

The CPU data bus is used to supply an external Nexus class 2–4 debug unit with
information for real-time data trace capability.

10.5.4 OnCE Interface Signals

The following sections describe additional e200z6 OnCE interface signals to other external
blocks such as a Nexus controller and external blocks that may need information pertaining
to debug operation.

Table 10-5 describes the OnCE interface signals.

Table 10-4. OnCE Internal Interface Signals

Signal Name I/O Description

CPU debug request
(dbg_dbgrq)

O The dbg_dbgrq signal is set by the e200z6 OnCE control logic to request the CPU to
enter the debug state. It may be set for a number of different conditions, and causes the
CPU to finish the current instruction being executed, save the instruction pipeline
information, enter debug mode, and wait for further commands.

CPU debug
acknowledge
(cpu_dbgack)

I The cpu_dbgack signal is set by the CPU upon entering the debug state. This signal is
used as part of the handshake mechanism between the e200z6 OnCE control logic and
the rest of the CPU. The CPU core may enter debug mode through either a software or
hardware event.

10-16 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

External Debug Support

Table 10-5. OnCE Interface Signals 1

Signal Name I/O Description

OnCE enable
(jd_en_once)

I The OnCE enable signal, jd_en_once, is used to enable the OnCE controller to allow
certain instructions and operations to be executed. Assertion of this signal enables the
full OnCE command set, as well as operation of control signals and OnCE control
register functions. When this signal is disabled, only the Bypass, ID and Enable_OnCE
commands are executed by the e200z6 OnCE unit, and all other commands default to
the Bypass command. The OSR is not visible when OnCE operation is disabled. Also
OCR functions are also disabled, as is the operation of the jd_de_b input. Secure
systems may choose to leave jd_en_once negated until a security check has been
performed. Other systems should tie this signal asserted to enable full OnCE
operation. The j_en_once_regsel output signal is provided to assist external logic
performing security checks. Refer to Section 10.5.5.3, “e200z6 OnCE Control Register
(OCR),” for a description of the j_en_once_regsel output.
The jd_en_once input must change state only during the test-logic-reset,
Run-Test/Idle, or Update-DR TAP states. A new value takes effect after one additional
j_tclk cycle of synchronization. In addition, jd_enable_once must not change state
during a debug session, or undefined activity may occur.

OnCE debug
request
(jd_de_b)/event
(jd_de_en)

I/O The system-level bidirectional open drain debug event pin, DE_b, (not part of the
e200z6 interface described in Chapter 8, “External Core Complex Interfaces”)
provides a fast means of entering the debug mode of operation from an external
command controller (when input) as well as a fast means of acknowledging entry into
debug mode of operation to an external command controller (when output). The
assertion of this pin by a command controller causes the CPU core to finish the current
instruction being executed, save the instruction pipeline information, enter debug
mode, and wait for commands to be entered. If DE_b was used to enter debug mode,
DE_b must be negated after the OnCE controller responds with an acknowledge and
before sending the first OnCE command. The assertion of this pin by the CPU core
acknowledges that it has entered the debug mode and is waiting for commands to be
entered. To support operation of this system pin, the OnCE logic supplies the jd_de_en
output and samples the jd_de_b input when OnCE is enabled (jd_en_once set).
Assertion of jd_de_b causes the OnCE logic to place the CPU into debug mode. Once
debug mode has been entered, the jd_de_en output is asserted for three j_tclk periods
to signal an acknowledge; jd_de_en can be used to enable the open-drain pulldown of
the system level DE_b pin.

e200z6 OnCE
debug output
(jd_debug_b)

O The e200z6 OnCE debug output jd_debug_b is used to indicate to on-chip resources
that a debug session is in progress. Peripherals and other units may use this signal to
modify normal operation for the duration of a debug session, which may involve the
CPU executing a sequence of instructions solely for the purpose of visibility/system
control that are not part of the normal instruction stream the CPU would have executed
had it not been placed in debug mode. This signal is set the first time the CPU enters
the debug state, and remains set until the CPU is released by a write to the e200z6
OnCE command register (OCMD) with the GO and EX bits set, and a register specified
as either no register selected or the CPUSCR. This signal remains set even though the
CPU may enter and exit the debug state for each instruction executed under control of
the e200z6 OnCE controller. See Section 10.5.5.2, “e200z6 OnCE Command Register
(OCMD),” for more information on the function of the GO and EX bits. This signal is not
normally used by the CPU.

Chapter 10. Debug Support -17
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

External Debug Support

10.5.5 e200z6 OnCE Controller and Serial Interface

The e200z6 OnCE controller contains the e200z6 OnCE command register, the e200z6
OnCE decoder, and the status/control register. Figure 10-4 is a block diagram of the e200z6
OnCE controller. In operation, the e200z6 OnCE command register acts as the instruction
register (IR) for the e200z6 TAP controller, and all other OnCE resources are treated as data
registers (DR) by the TAP controller. The command register is loaded by serially shifting
in commands during the TAP controller Shift-IR state, and is loaded during the Update-IR
state. The command register selects a resource to be accessed as a data register (DR) during
the TAP controller Capture-DR, Shift-DR, and Update-DR states.

Figure 10-4. e200z6 OnCE Controller and Serial Interface

e200z6 CPU clock
on input
(jd_mclk_on)

I The e200z6 CPU clock on input (jd_mclk_on) is used to indicate that the CPU’s m_clk
input is active. This input signal is expected to be driven by system logic external to the
e200z6 core, is synchronized to the j_tclk (scan clock) clock domain and presented as
a status flag on the j_tdo output during the Shift-IR state. External firmware may use
this signal to ensure proper scan sequences occur to access debug resources in the
m_clk clock domain.

Watchpoint events
(jd_watchpt[0:7])

O The jd_watchpt[0:7] signals may be set by the e200z6 OnCE control logic to signal that
a watchpoint condition has occurred. Watchpoints do not cause the CPU to be
affected. They are provided to allow external visibility only. Watchpoint events are
conditioned by the settings in DBCR0, DBCR1, and DBCR2.

1 These are high–level descriptions of the OnCE interface signals, more detailed descriptions can be found in
Section 8.3, “Signal Descriptions.”

Table 10-5. OnCE Interface Signals 1

Signal Name I/O Description

OnCE Command Register
TDI
TCLK

Status and Control
Registers

TDO

Mode Select

OnCE Decoder

RegisterRegister CPU

Update

Read WriteControl/
Status

10-18 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

External Debug Support

10.5.5.1 e200z6 OnCE Status Register (OSR)

Status information regarding the state of the e200z6 CPU is latched into the OSR when the
OnCE controller state machine enters the Capture-IR state. When OnCE operation is
enabled, this information is provided on the j_tdo output in serial fashion when the Shift-IR
state is entered following a Capture-IR. Information is shifted out least-significant bit first.

Table 10-6 describes OnCE status register bits.
.

10.5.5.2 e200z6 OnCE Command Register (OCMD)

The OnCE command register (OCMD) is a 10-bit shift register that receives its serial data
from the TDI pin and serves as the instruction register (IR). It holds the 10-bit commands
to be used as input for the e200z6 OnCE decoder. OCMD is shown in Figure 10-5. It is
updated when the TAP controller enters the Update-IR state. It contains fields for
controlling access to a resource, as well as controlling single-step operation and exit from
OnCE mode.

0 1 2 3 4 5 6 7 8 9

Field MCLK ERR CHKSTOP RESET HALT STOP DEBUG 0 1

Figure 10-5. OnCE Status Register (OSR)

Table 10-6. OSR Field Descriptions

Bits Name Description

0 MCLK m_clk status bit. Reflects the logic level on the jd_mclk_on input signal after capture by j_tclk.
0 Inactive state
1 Active state

1 ERR Error. Used to indicate that an error condition occurred during attempted execution of the last
single-stepped instruction (Go+NoExit with CPUSCR or no register selected in OCMD), and that
the instruction may not have been properly executed. This could occur if an interrupt (all classes
including external, critical, machine check, storage, alignment, program, TLB, and so on) occurred
while attempting to perform the instruction single-step. In this case, the CPUSCR contains
information related to the first instruction of the interrupt handler, and no portion of the handler will
have been executed.

2 CHKSTOP Checkstop mode. Reflects the logic level on the CPU p_chkstop output after capture by j_tclk.

3 RESET Reset mode. Reflects the inverted logic level on the CPU p_reset_b input after capture by j_tclk.

4 HALT Halt mode. Reflects the logic level on the CPU p_halted output after capture by j_tclk.

5 STOP Stop mode. Reflects the logic level on the CPU p_stopped output after capture by j_tclk.

6 DEBUG Debug mode. Set once the CPU is in debug mode. It is negated once the CPU exits debug mode
(even during a debug session).

7 — Reserved, set to 0

8 — Reserved, set to 0 for 1149.1 compliance

9 — Reserved, set to 1 for 1149.1 compliance

Chapter 10. Debug Support -19
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

External Debug Support

Although OCMD is updated during the Update-IR TAP controller state, the corresponding
resource is accessed in the DR scan sequence of the TAP controller, and as such, the
Update-DR state must be transitioned through for an access to occur. In addition, the
Update-DR state must also be transitioned through in order for the single-step and/or exit
functionality to be performed, even though the command appears to have no data resource
requirement associated with it.

Table 10-7 describes OCMD fields.
.

0 1 2 3 9

Field R/W GO EX RS

Reset 0b10_0000_0010 on assertion of j_trst_b or m_por or while in test-logic-reset state

Figure 10-6. OnCE Command Register (OCMD)

Table 10-7. OCMD Field Descriptions

Bits Name Description

0 R/W Read/Write. Specifies the direction of data transfer.
0 Write the data associated with the command into the register specified by RS
1 Read the data contained in the register specified by RS
Note: The R/W bit is generally ignored for read-only or write-only registers, although the PC
FIFO pointer is only guaranteed to be updated when R/W = 1. In addition, it is ignored for all
bypass operations. When performing writes, most registers are sampled in the Capture-DR
state into a 32-bit shift register and subsequently shifted out on j_tdo during the first 32 clocks
of Shift-DR.

1 GO Go
0 Inactive (no action taken)
1 Execute instruction in IR
If the GO bit is set, the chip executes the instruction which resides in the IR register in the
CPUSCR. To execute the instruction, the processor leaves debug mode, executes the
instruction, and if the EX bit is cleared, returns to debug mode immediately after executing the
instruction. The processor goes on to normal operation if the EX bit is set, and no other debug
request source is set. The GO command is executed only if the operation is a read/write to
CPUSCR or a read/write to no register selected. Otherwise the GO bit is ignored. The
processor leaves debug mode after the TAP controller Update-DR state is entered.
On a Go+NoExit operation, returning to debug mode is treated as a debug event; thus,
exceptions such as machine checks and interrupts may take priority and prevent execution of
the intended instruction. Debug firmware should mask these exceptions as appropriate.
OSR[ERR] indicates such an occurrence.

10-20 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

External Debug Support

The OnCE decoder receives as input the 10-bit command from the OCMD and the status
signals from the processor, and generates all the strobes required for reading and writing
the selected OnCE registers.

2 EX Exit
0 Remain in debug mode
1 Leave debug mode
If the EX bit is set, the processor leaves debug mode and resumes normal operation until
another debug request is generated. The Exit command is executed only if the Go command
is issued and the operation is a read/write to CPUSCR or a read/write to no register selected.
Otherwise, the EX bit is ignored.
The processor leaves debug mode after the TAP controller Update-DR state is entered. Note
that if the DR bit in the OnCE control register is set or remains set, or if a bit in the DBSR is
set, or if a bit in the DBSR is set and DBCR0[EDM] = 1 (external debug mode is enabled), then
the processor may return to the debug mode without execution of an instruction, even though
the EX bit was set.

3–9 RS Register select. Defines which register is the source for the read or the destination for the write
operation. Table 10-9 indicates the e200z6 OnCE register addresses. Attempted writes to
read-only registers are ignored.
000 0000–000 0001 Reserved
000 0010 JTAG ID read–only
000 0011–000 1111 Reserved
001 0000 CPU scan register CPUSCR
001 0001 No register selected bypass
001 0010 OnCE control register OCR
001 0011–001 1111 Reserved
010 0000 Instruction address compare 1 IAC1
010 0001 Instruction address compare 2 IAC2
010 0010 Instruction address compare 3 IAC3
010 0011 Instruction address compare 4 IAC4
010 0100 Data address compare 1 DAC1
010 0101 Data address compare 2 DAC2
010 0110 Reserved DVC1 future use
010 0111 Reserved DVC2 future use
010 1000–010 1011 Reserved
010 1100 Debug counter register DBCNT
010 1101 Debug PCFIFO (PCFIFO) read–only
010 1110–010 1111 Reserved
011 0000 Debug status register DBSR
011 0001 Debug control register 0 DBCR0
011 0010 Debug control register 1 DBCR1
011 0011 Debug control register 2 DBCR2
011 0100 Debug control register 3 DBCR3
011 0101–101 1111 Reserved (do not access)
111 0000–111 1001 General purpose register selects [0–9]
111 1010 CDACNTL–See Section 4.19, “Cache Memory Access during Debug”
111 1011 CDADATA–See Section 4.19, “Cache Memory Access during Debug”
111 1100 Nexus3–Access–See Chapter 11, “Nexus3 Module”
111 1101 Reserved
111 1110 Enable_OnCE 1

1 Causes assertion of the j_en_once_regsel output. Refer to Section 10.5.5.3, “e200z6 OnCE Control Register
(OCR).”

Table 10-7. OCMD Field Descriptions (continued)

Bits Name Description

Chapter 10. Debug Support -21
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

External Debug Support

Single-stepping of instructions is performed by placing the CPU in debug mode, scanning
appropriate information into the CPUSCR, and setting the GO bit (with the EX bit cleared)
with the RS field indicating either the CPUSCR or no register selected. After executing a
single instruction, the CPU re-enters debug mode and awaits further commands. During
single-stepping, exception conditions may occur if not properly masked by debug firmware
(interrupts, machine checks, bus error conditions, and so on) and may prevent the desired
instruction from being successfully executed. The OSR[ERR] bit is set to indicate this
condition. In these cases, values in the CPUSCR correspond to the first instruction of the
exception handler.

Additionally, while single-stepping, to prevent debug events from generating debug
interrupts, DBCR0[EDM] is internally forced to 1. Also, during a debug session, DBSR
and DBCNT are frozen from updates due to debug events regardless of DBCR0[EDM].
They may still be modified during a debug session through a single-stepped mtspr
instruction if DBCR0[EDM] is cleared, or through OnCE access if DBCR0[EDM] is set.

10.5.5.3 e200z6 OnCE Control Register (OCR)

The e200z6 OnCE control register (OCR) forces the e200z6 core into debug mode and
enables/disables sections of the e200z6 OnCE control logic. It also provides control over
the MMU during a debug session. (See Section 10.7, “MMU and Cache Operation during
Debug.”) The control bits are read/write. These bits are effective only while OnCE is
enabled (jd_en_once set). The OCR is shown in Figure 10-7.

Table 10-8 provides bit definitions for the OnCE control register.

0 15 16 17 18 19 20 21 22 23 24 28 29 30 31

Field — DMDIS — DW DI DM DG DE — WKUP FDB DR

Reset 0x0000_0000 on m_por, j_trst_b, or entering test-logic-reset state

Figure 10-7. OnCE Control Register

Table 10-8. OnCE Control Register Bit Definitions

Bits Name Description

0–15 — Reserved, should be cleared.

16 DMDIS Debug MMU disable control bit
0 MMU not disabled for debug sessions
1 MMU disabled for debug sessions
This bit may be used to control whether the MMU is enabled normally or whether the MMU is
disabled during a debug session. When enabled, the MMU functions normally. When disabled,
no address translation is performed (1:1 address mapping), and the TLB WIMGE bits are taken
from the OCR bits DW, DI, DM, DG, and DE. The SX, SR, SW, UX, UR, and UW access
permission control bits are set to1 to allow full access. When disabled, no TLB miss or TLB
exceptions are generated. External access errors can still occur.

17–18 — Reserved

10-22 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

External Debug Support

10.5.6 Access to Debug Resources

Resources contained in the e200z6 OnCE module that do not require the e200z6 processor
core to be halted for access may be accessed while the e200z6 core is running, and will not
interfere with processor execution. Accesses to other resources such as the CPUSCR
require the e200z6 core to be placed in debug mode to avoid synchronization hazards.
Debug firmware may ensure that it is safe to access these resources by determining the state
of the e200z6 core before access.

NOTE
A scan operation to update the CPUSCR is required before
exiting debug mode.

Some cases of write accesses other than accesses to the OnCE command and control
registers or DBCR0[EDM] require the e200z6 m_clk to be running for proper operation.
The OnCE control register provides a means of signaling this need to a system level clock
control module.

19 DW Debug TLB W attribute bit. Provides the W attribute bit to be used when the MMU is disabled
during a debug session.

20 DI Debug TLB I attribute bit. Provides the I attribute bit to be used when the MMU is disabled during
a debug session.

21 DM Debug TLB M attribute bit. Provides the M attribute bit to be used when the MMU is disabled
during a debug session.

22 DG Debug TLB G attribute bit. Provides the G attribute bit to be used when the MMU is disabled
during a debug session.

23 DE Debug TLB E attribute bit. Provides the E attribute bit to be used when the MMU is disabled
during a debug session.

24–28 — Reserved

29 WKUP Wakeup request bit. Forces the e200z6 p_wakeup output signal to be set. This control function
may be used by debug firmware to request that the chip-level clock controller restore the m_clk
input to normal operation regardless of whether the CPU is in a low-power state to ensure that
debug resources may be properly accessed by external hardware through scan sequences.

30 FDB Force breakpoint debug mode bit. Determines whether the processor is operating in breakpoint
debug enable mode. The processor may be placed in breakpoint debug enable mode by setting
this bit. In breakpoint debug enable mode, execution of the bkpt pseudo-instruction causes the
processor to enter debug mode as if the jd_de_b input had been set.

Note: This bit is qualified with DBCR0[EDM], which must be set for FDB to take effect.

31 DR CPU debug request control bit. Unconditionally requests the CPU to enter debug mode. The CPU
indicates that debug mode has been entered through the data scanned out in the Shift-IR state.
0 No debug mode request
1 Unconditional debug mode request
When the DR bit is set the processor enters debug mode at the next instruction boundary.

Table 10-8. OnCE Control Register Bit Definitions (continued)

Bits Name Description

Chapter 10. Debug Support -23
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

External Debug Support

In addition, because the CPU may cause multiple bits of certain registers to change state,
reads of certain registers while the CPU is running (for example, DBSR and DBCNT) may
not have consistent bit settings unless read twice with the same value indicated. To
guarantee that the contents are consistent, the CPU should be placed into debug mode, or
multiple reads should be performed until consistent values have been obtained on
consecutive reads.

Table 10-9 lists access requirements for OnCE registers.

Table 10-9. OnCE Register Access Requirements

Register Name

Access Requirements

Notes
 jd_en_once

to be Set

 DBCR0
[EDM]

= 1

 m_clk
active

for Write
Access

 CPU to
be Halted
for Read
Access

 CPU to
be Halted
for Write
Access

Enable_OnCE N N N N —

Bypass N N N N N

CPUSCR Y Y Y Y Y

DAC1 Y Y Y N * 1

DAC2 Y Y Y N *1

DBCNT Y Y Y N *1 Reads of DBCNT while the CPU is
running may not give data that is
self-consistent due to synchronization
across clock domains.

DBCR0 Y Y Y N *1 *DBCR0[EDM] access only requires
jd_en_once set

DBCR1 Y Y Y N *1

DBCR2 Y Y Y N *1

DBCR3 Y Y Y N *1

DBSR Y Y Y N *1 Reads of DBSR while the CPU is
running may not give data that is
self-consistent due to synchronization
across clock domains.

IAC1 Y Y Y N *1

IAC2 Y Y Y N *1

IAC3 Y Y Y N *1

IAC4 Y Y Y N *1

JTAG ID N N — N — Read only

OCR Y N N N N

OSR Y N — N — Read only, accessed by scanning out
IR while jd_en_once is set

10-24 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

External Debug Support

10.5.7 Methods for Entering Debug Mode

The OSR indicates that the CPU has entered the debug mode through the debug status bit.
The following sections describe how e200z6 debug mode is entered assuming the OnCE
circuitry has been enabled. e200z6 OnCE operation is enabled by the assertion of the
jd_en_once input (see Table 10-2).

PC FIFO Y N — N — Read only, updates frozen while
OCMD holds PCFIFO register
encoding
Note:
No updates occur to the PCFIFO
while the OnCE state machine is in
the Test_Logic_Reset state

Cache Debug
Access Control
(CDACNTL)

Y N Y Y Y CPU must be in debug mode with
clocks running

Cache Debug
Access Data
(CDADATA)

Y N Y Y Y CPU must be in debug mode with
clocks running

Nexus3-Access Y N N N N

External GPRs Y N N N N

LSRL Select Y N ? ? ? System test logic implementation
determines LSRL functionality

1 Writes to these registers while the CPU is running may have unpredictable results due to the pipelined nature of the
operation and the fact that updates are not synchronized to a particular clock, instruction, or bus cycle boundary;
therefore, it is strongly recommended to ensure the processor is first placed into debug mode before updates to
these registers are performed.

Table 10-9. OnCE Register Access Requirements (continued)

Register Name

Access Requirements

Notes
 jd_en_once

to be Set

 DBCR0
[EDM]

= 1

 m_clk
active

for Write
Access

 CPU to
be Halted
for Read
Access

 CPU to
be Halted
for Write
Access

Chapter 10. Debug Support -25
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

External Debug Support

Table 10-10 describes the methods for entering debug mode.

Table 10-10. Methods for Entering Debug Mode

Method Name Description

External debug
request during
reset

Holding jd_de_b asserted during the assertion of p_reset_b and continuing to hold it asserted
following the negation of p_reset_b causes the e200z6 core to enter debug mode. After receiving
an acknowledge through the OnCE status register debug bit, the external command controller
should negate the jd_de_b signal before sending the first command. Note that in this case the
e200z6 core does not execute an instruction before entering debug mode, although the first
instruction to be executed may be fetched before entering debug mode.
In this case, all values in the debug scan chain are undefined, and the external debug control
module is responsible for proper initialization of the chain before debug mode is exited. In
particular, the exception processing associated with reset may not be performed when debug
mode is exited; thus, the debug controller must initialize PC, MSR, and IR to the image that the
processor would have obtained in performing reset exception processing or must cause the
appropriate bit reset to be re-asserted.

Debug request
during reset

Asserting a debug request by setting the OCR[DR] during the assertion of p_reset_b causes the
chip to enter debug mode. In this case the chip may fetch the first instruction of the reset
exception handler but does not execute an instruction before entering debug mode. In this case,
all values in the debug scan chain are undefined, and the external debug control module is
responsible for proper initialization of the chain before debug mode is exited. In particular, the
exception processing associated with reset may not be performed when debug mode is exited;
thus, the debug controller must initialize PC, MSR, and IR to the image that the processor would
have obtained in performing reset exception processing or must cause the appropriate reset to
be re-asserted.

Debug request
during normal
activity

Asserting a debug request by setting OCR[DR] during normal chip activity causes the chip to
finish execution of the current instruction and then enter debug mode. Note that in this case the
chip completes execution of the current instruction and stops after the newly fetched instruction
enters the CPU instruction register. This process is the same for any newly fetched instruction,
including instructions fetched by the interrupt processing or those that are aborted by the interrupt
processing.

Debug request
during halted or
stopped state

Asserting a debug request by setting OCR[DR] when the chip is in the halted state (p_halted set)
or stopped state (p_stopped set) causes the CPU to exit the state and enter debug mode once
the CPU clock m_clk has been restored. Note that in this case, the CPU negates both the
p_halted and p_stopped outputs. Once the debug session has ended, the CPU returns to the
state it was in before entering debug mode.
To signal the chip-level clock generator to re-enable m_clk, the p_wakeup output is set whenever
the debug block is asserting a debug request to the CPU due to OCR[DR] being set, or jd_de_b
assertion, and remains set from then until the debug session ends (jd_debug_b goes from set to
negated). In addition, the status of the jd_mclk_on input (after synchronization to the j_tclk clock
domain) may be sampled along with other status bits from the j_tdo output during the Shift-IR TAP
controller state. This status may be used if necessary by external debug firmware to ensure
proper scan sequences occur to registers in the m_clk clock domain.

Software request
during normal
activity

Upon executing a ‘bkpt’ pseudo-instruction (for the e200z6, defined to be an all zeros instruction
opcode), when OCR [FDB] is set (debug mode enable control bit is true) and DBCR0[EDM] = 1,
the CPU enters debug mode after the instruction following the ‘bkpt’ pseudo-instruction has
entered the instruction register.

10-26 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

External Debug Support

10.5.8 CPU Status and Control Scan Chain Register
(CPUSCR)

A number of on-chip registers store the CPU pipeline status and are configured in a single
scan chain for access by the e200z6 OnCE controller. CPUSCR contains these processor
resources, which are used to restore the pipeline and resume normal chip activity upon
return from debug mode, as well as a mechanism for the emulator software to access
processor and memory contents. Figure 10-8 shows the block diagram of the pipeline
information registers contained in the CPUSCR. Once debug mode has been entered, it is
required to scan in and update this register before exiting debug mode.

Figure 10-8. CPU Scan Chain Register (CPUSCR)

10.5.8.1 Instruction Register (IR)

The instruction register (IR) provides a way to control the debug session by serving as a
means for forcing in selected instructions and causing them to be executed in a controlled
manner by the debug control block. The opcode of the next instruction to be executed when
entering debug mode is contained in this register when the scan-out of this chain begins.
This value should be saved for later restoration if continuation of the normal instruction
stream is desired.

TDO

TDI

TCK

MSR

WBBRUpper

32

32
0 31

0 31

PC

32
0 31

IR

32
0 31

CTL

32
0 31

WBBRLower

32
0 31

Chapter 10. Debug Support -27
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

External Debug Support

On scan-in, in preparation for exiting debug mode, this register is filled with an instruction
opcode selected by debug control software. By selecting appropriate instructions and
controlling the execution of those instructions, the results of execution may be used to
examine or change memory locations and processor registers. The debug control module
external to the processor core controls execution by providing a single-step capability. Once
the debug session is complete and normal processing is to be resumed, this register may be
loaded with the value originally scanned out.

10.5.8.2 Control State Register (CTL)

The control state register (CTL), shown in Figure 10-9, stores the value of certain internal
CPU state variables before debug mode is entered. This register is affected by the
operations performed during the debug session and should normally be restored by the
external command controller when returning to normal mode. In addition to saved internal
state variables, two of the bits are used by emulation firmware to control the debug process.
In certain circumstances, emulation firmware must modify the content of this register as
well as the PC and IR values in the CPUSCR before exiting debug mode. These cases are
described more specifically in the text after the table.

0 15

Field *

16 19 20 21 22 23 24 25 26 27 28 29 30 31

Field PCOFST PCINV FFRA IRSTAT0 IRSTAT1 IRSTAT2 IRSTAT3 IRSTAT4 IRSTAT5 IRSTAT6 IRSTAT7 — —

Figure 10-9. Control State Register (CTL)

Table 10-11. CTL Field Definitions

Bits Name Description

0–15 * Internal state bits.These control bits represent internal processor state and should be restored to
their original value after a debug session is completed, that is, when an e200z6 OnCE command
is issued with the GO and EX bits set and not ignored. When performing instruction execution
during a debug session (see Section 10.2.1, “Software Debug Facilities)”, these bits should be
cleared.

16–19 PCOFST PC offset field. Indicates whether the value in the PC portion of the CPUSCR must be adjusted
before exiting debug mode. Due to the pipelined nature of the CPU, the PC value must be
backed-up by emulation software in certain circumstances. The PCOFST field specifies the value
to be subtracted from the original value of the PC. This adjusted PC value should be restored into
the PC portion of the CPUSCR just before exiting debug mode with a Go+Exit. In the event the
PCOFST is non-zero, the IR should be loaded with a nop instruction instead of the original IR
value; other wise the original value of IR should be restored. (But see PCINV which overrides this
field.)
0000 No correction required
0001 Subtract 0x04 from PC.
0010 Subtract 0x08 from PC.
0011 Subtract 0x0C from PC.
0100 Subtract 0x10 from PC.
0101 Subtract 0x14 from PC.
All other encodings are reserved.

10-28 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

External Debug Support

Emulation firmware should modify the CTL, PC, and IR values in the CPUSCR during
execution of debug-related instructions as well as just before exiting debug with a Go+Exit
command. During the debug session, the CTL register should be written with the FFRA bit
set as appropriate and with all other bits cleared, and IR set to the value of the desired
instruction to be executed.

20 PCINV PC and IR invalid status bit. This status bit indicates that the values in the IR and PC portions of
the CPUSCR are invalid. Exiting debug mode with the saved values in the PC and IR will have
unpredictable results. Debug firmware should initialize the PC and IR values in the CPUSCR with
desired values before exiting debug mode if this bit was set when debug mode was initially
entered.
0 No error condition exists
1 Error condition exists. PC and IR are corrupted.

21 FFRA Feed forward RA operand bit. This control bit causes the content of the WBBRlower to be used as
the rA (rS for logical and shift operations) operand value of the first instruction to be executed
following an update of the CPUSCR. This allows the debug firmware to update processor
registers, initialize the WBBRlower with the desired value, set the FFRA bit, and execute a ori
Rx,Rx,0 instruction to the desired register.
0 No action
1 Content of WBBR used as rA (rS for logical and shift operations) operand value

22 IRSTAT0 IR status bit 0.This control bit indicates an ERROR termination status for the IR.
0 No TEA occurred on the fetch of this instruction.
1 A TEA occurred on the fetch of this instruction

23 IRSTAT1 IR status bit 1. Indicates a TLB miss status for the IR.
0 No TLB miss occurred on the fetch of this instruction.
1 TLB miss occurred on the fetch of this instruction.

24 IRSTAT2 IR status bit 2. Indicates an instruction address compare 1 event status for the IR.
0 No instruction address compare 1 event occurred on the fetch of this instruction.
1 An instruction address compare 1 event occurred on the fetch of this instruction.

25 IRSTAT3 IR status bit 3. Indicates an instruction address compare 2 event status for the IR.
0 No instruction address compare 2 event occurred on the fetch of this instruction.
1 An instruction address compare 2 event occurred on the fetch of this instruction.

26 IRSTAT4 IR status bit 4. Indicates an instruction address compare 3 event status for the IR.
0 No instruction address compare 3 event occurred on the fetch of this instruction.
1 An instruction address compare 3 event occurred on the fetch of this instruction.

27 IRSTAT5 IR status bit 5. Indicates an Instruction address compare 4 event status for the IR.
0 No instruction address compare 4 event occurred on the fetch of this instruction.
1 An instruction address compare 4 event occurred on the fetch of this instruction.

28 IRSTAT6 IR status bit 6. This control bit indicates a parity error status for the IR.
0 No parity error occurred on the fetch of this instruction.
1 A parity error occurred on the fetch of this instruction.

29 IRSTAT7 IR status bit 7. Indicates a precise external termination error status for the IR.
0 No precise external termination error occurred on the fetch of this instruction.
1 Precise external termination error occurred on the fetch of this instruction.

Table 10-11. CTL Field Definitions (continued)

Bits Name Description

Chapter 10. Debug Support -29
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

External Debug Support

The PCINV status bit which was originally present when debug mode was first entered
should be tested before exiting debug mode with a Go+Exit and if set, the PC and IR
initialized for performing whatever recovery sequence is appropriate for a faulted
exception vector fetch. If the PCINV bit is cleared, the PCOFST bits should be examined
to determine whether the PC value must be adjusted. Due to the pipelined nature of the
CPU, the PC value must be backed up by emulation software in certain circumstances. The
PCOFST field specifies the value to be subtracted from the original value of the PC. This
adjusted PC value should be restored into the PC portion of the CPUSCR just before exiting
debug mode with a Go+Exit. In the event that PCOFST is non-zero, the IR should be loaded
with a nop instruction (such as ori r0,r0,0) instead of the original IR value; otherwise, the
original value of IR should be restored. Note that when a correction is made to the PC value,
it generally points to the last completed instruction, although that instruction will not be
re-executed. The nop instruction is executed instead, and instruction fetch and execution
resumes at location PC+4.

For CTL, the internal state bits should be restored to their original value. The IRStatus bits
should be cleared if the PC was adjusted. If no PC adjustment was performed, emulation
firmware should determine whether IRStat2–5 should be cleared to avoid re-entry into
debug mode for an instruction breakpoint request. Upon exiting debug mode with Go+Exit,
if one of these bits is set, debug mode is re-entered before any further instruction execution.

10.5.8.3 Program Counter Register (PC)

The PC is a 32-bit register that stores the value of the program counter that was present
when the chip entered debug mode. It is affected by the operations performed during debug
mode and must be restored by the external command controller when the CPU returns to
normal mode. PC normally points to the instruction contained in the IR portion of
CPUSCR. If debug firmware wishes to redirect program flow to an arbitrary location, the
PC and IR should be initialized to correspond to the first instruction to be executed upon
resumption of normal processing. Alternatively, the IR may be set to a nop and the PC set
to point to the location before the location at which it is desired to redirect flow to. On
exiting debug mode the nop is executed, and instruction fetch and execution resumes at
PC+4.

10.5.8.4 Write-Back Bus Register (WBBR (lower) and WBBR (upper))

WBBR provides a way to pass operand information between the CPU and the external
command controller. Whenever the external command controller needs to read the contents
of a register or memory location, it forces the chip to execute an instruction that brings that
information to WBBR. WBBRlower holds the 32-bit result of most instructions including
load data returned for a load or load with update instruction. For SPE instructions that
generate 64-bit results, WBBRlower holds the low-order 32 bits of the result.
WBBRupperholds the updated effective address calculated by a load with update

10-30 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

External Debug Support

instruction. For SPE instructions that generate 64-bit results, WBBRupper holds the
high-order 32 bits of the result. It is undefined for other instructions.

As an example, to read the lower 32 bits of processor register r1, an ori r1,r1,0 instruction
is executed, and the result value of the instruction is latched into WBBRlower. The contents
of WBBRlower can then be delivered serially to the external command controller. To update
a processor resource, this register is initialized with a data value to be written, and an ori
instruction is executed that uses this value as a substitute data value. The control state
register FFRA bit forces the value of the WBBRlower to be substituted for the normal RS
source value of the ori instruction, thus allowing updates to processor registers to be
performed. (Refer to Section 10.5.8.2, “Control State Register (CTL),” for more details.).

WBBRlower and WBBRupper are generally undefined on instructions that do not writeback
a result, and due to control issues are not defined on lmw or branch instructions as well.

To read and write the entire 64 bits of a GPR, both WBBRlower and WBBRupper are used.
For reads, an evslwi rn,rn,0 may be used. For writes, the same instruction may be used, but
the CTL[FFRA] bit must be set as well.

NOTE
MSR[SPE] must be set in order for these operations to be
performed properly.

10.5.8.5 Machine State Register (MSR)

The MSR is a 32-bit register used to read/write the machine state register (MSR). Whenever
the external command controller needs to save or modify the contents of the machine state
register, this register is used.This register is affected by the operations performed during
debug mode and must be restored by the external command controller when returning to
normal mode. Chapter 2, “Register Model,” further describes the MSR.

10.5.9 Instruction Address FIFO Buffer (PC FIFO)

To assist debugging and keep track of program flow, a first-in-first-out (FIFO) buffer stores
the addresses of the last eight instruction change-of-flow destinations that were fetched.
These include exception vectoring to an exception handler and returns, as well as pipeline
refills due to execution of the isync instruction.

The PC FIFO stores the addresses of the last eight instruction change-of-flow addresses that
were actually taken. The FIFO is implemented as a circular buffer containing eight 32-bit
registers and one 3-bit counter. All the registers have the same address, but any read access
to the FIFO address causes the counter to increment, making it point to the next FIFO
register. The registers are serially available to the external command controller through the
common FIFO address. Figure 10-10 shows the block diagram of the PC FIFO.

Chapter 10. Debug Support -31
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

External Debug Support

Figure 10-10. OnCE PC FIFO

The FIFO is not affected by the operations performed during a debug session except for the
FIFO pointer increment when reading the FIFO. When entering debug mode, the FIFO
counter is pointing to the FIFO register containing the address of the oldest of the eight
change of flow prefetches. When OCMD [RS] is loaded with the value corresponding to
the PC FIFO (010 1101), the current pointer value is captured into a temporary register.
This temporary value (not the actual FIFO counter) is incremented as FIFO reads are
performed. The first FIFO read obtains the oldest address and the following FIFO read
returns the other addresses from the oldest to the newest (the order of execution).

Updates to the FIFO are frozen whenever the OCMD register contains a command whose
RS[0–6] field points to the PC FIFO (010 1101) to allow firmware to read the contents of
the PC FIFO without placing the CPU into debug mode. After completing all accesses to

PC FIFO Register 0

TDO
TCK

PC FIFO Register 1

PC FIFO Register 2

PC FIFO Register 3

PC FIFO Register 4

Instruction Fetch Address

Circular
Buffer
Pointer

PC FIFO Shift Register

PC FIFO Register 5

PC FIFO Register 6

PC FIFO Register 7

10-32 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Watchpoint Support

the PC FIFO, another OCMD value that does not select the PC FIFO should be entered to
allow the PC FIFO to resume updating.

To ensure FIFO coherence, a complete set of eight reads of the FIFO should be performed
since each read increments the temporary FIFO pointer, thus making it point to the next
location. After eight reads the pointer points to the same location it pointed to before
starting the read procedure. The temporary counter value captures the actual counter each
time the OCMD RS field transitions to the value corresponding to the PC FIFO (010 1101).

The FIFO pointer is reset to entry 0 when either j_trst_b or m_por is set.

10.5.10Reserved Registers

The reserved registers are used to control various test control logic. These registers are not
intended for customer use. To preclude device and/or system damage, these registers should
not be accessed.

10.6 Watchpoint Support
The e200z6 supports the generation and signalling of watchpoints when operating in
internal debug mode (DBCR0[IDM] = 1) or in external debug mode (DBCR0[EDM] = 1).
Watchpoints are indicated with a dedicated set of interface signals. The jd_watchpoint[0:7]
output signals are used to indicate that a watchpoint has occurred.

Each debug address compare function (IAC1–IAC4, DAC1 and DAC2) and debug counter
event (DCNT1 and DCNT2) can trigger a watchpoint output. The DBCR1, DBCR2, and
DBCR3 control fields are used to configure watchpoints, regardless of whether events are
enabled in DBCR0. Watchpoints may occur whenever an associated event would have been
posted in the debug status register if enabled. No explicit enable bits are provided for
watchpoints; they are always enabled by definition (except during a debug session). If not
desired, the base address values for these events may be programmed to an unused system
address. MSR[DE] has no effect on watchpoint generation.

External logic may monitor the assertion of these signals for debugging purposes.
Watchpoints are signaled in the clock cycle following the occurrence of the actual event.
The Nexus3 module also monitors assertion of these signals for various development
control purposes (see Section 11.9, “Watchpoint Support)”.

Chapter 10. Debug Support -33
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

MMU and Cache Operation during Debug

10.7 MMU and Cache Operation during Debug
Normal operation of the MMU may be modified during a debug session using the OnCE
OCR. A debug session begins when the CPU initially enters debug mode and ends when a
OnCE command with Go+Exit is executed, releasing the CPU for normal operation. If
desired during a debug session, the debug firmware may disable the translation process and
may substitute default values for the access protection (UX, UR, UW, SX, SR, SW) bits,
and values obtained from the OnCE control register and page attribute (W, I, M, G, E) bits
normally provided by a matching TLB entry. In addition, no address translation is
performed, and instead, a 1:1 mapping of effective-to-real addresses is performed.

When disabled during a debug session, TLB miss or TLB-related DSI conditions cannot
occur. If the debugger desires to use the normal translation process, the MMU may be left
enabled in the OnCE OCR, and normal translation (including the possibility of a TLB miss
or DSI) remains in effect.

Table 10-12. Watchpoint Output Signal Assignments

Signal Name Type Description

jd_watchpt[0] IAC1 Instruction address compare 1 watchpoint
Set whenever an IAC1 compare occurs regardless of whether
IAC1 compares are enabled to set DBSR status.

jd_watchpt[1] IAC2 Instruction address compare 2 watchpoint
Set whenever an IAC2 compare occurs regardless of whether
IAC2 compares are enabled to set DBSR status.

jd_watchpt[2] IAC3 Instruction address compare 3 watchpoint
Set whenever an IAC3 compare occurs regardless of whether
IAC3 compares are enabled to set DBSR status.

jd_watchpt[3] IAC4 Instruction address compare 4 watchpoint
Set whenever an IAC4 compare occurs regardless of whether
IAC4 compares are enabled to set DBSR status.

jd_watchpt[4] DAC1 1

1 If the corresponding event is completely disabled in DBCR0, either load-type or store-type data
accesses are allowed to generate watchpoints, otherwise watchpoints are generated only for the
enabled conditions.

Data address compare 1 watchpoint
Set whenever a DAC1 compare occurs regardless of whether
DAC1 compares are enabled to set DBSR status.

jd_watchpt[5] DAC21 Data address compare 2 watchpoint
Set whenever a DAC2 compare occurs regardless of whether
DAC2 compares are enabled to set DBSR status.

jd_watchpt[6] DCNT1 Debug counter 1 watchpoint
Set whenever debug counter 1 decrements to zero regardless
of whether DCNT1 compares are enabled to set DBSR status.

jd_watchpt[7] DCNT2 Debug counter 2 watchpoint
Set whenever debug counter 2 decrements to zero regardless
of whether DCNT2 compares are enabled to set DBSR status.

10-34 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Cache Array Access During Debug

The OCRDMDIS, DW, DI, DM, DG, and DE control bits are used when debug mode is
entered. Refer to the bit definitions in the OCR (See Section 10.5.5.3, “e200z6 OnCE
Control Register (OCR),” for more detail). These substituted page attribute bits control
cache operation on accesses initiated during debug. No address translation is performed;
instead, a 1:1 mapping between effective and real addresses is performed.

10.8 Cache Array Access During Debug
The cache arrays may be read and written during debug mode through the CDACNTL and
CDADATA debug registers. This functionality is described in detail in Section 4.19,
“Cache Memory Access during Debug.”

10.9 Basic Steps for Enabling, Using, and Exiting
External Debug Mode

The following steps show one possible scenario for a debugger wishing to use the external
debug facilities. This simplified flow is intended to illustrate basic operations but does not
cover all potential methods in depth.

Enable external debug mode and initialize debug registers:

1. The debugger should ensure that the jd_en_once control signal is set in order to
enable OnCE operation.

2. Select the OCR and write a value to it in which OCR[DR] and OCR[WKUP] are
set. The TAP controller must step through the proper states as outlined earlier. This
step places the CPU in a debug state where it is halted and awaiting single-step
commands or a release to normal mode.

3. Scan out the value of the OSR to determine that the CPU clock is running and the
CPU has entered the debug state. This can be done in conjunction with a read of the
CPUSCR. The OSR is shifted out during the Shift-IR state. The CPUSCR is shifted
out during the Shift-DR state. The debugger should save the scanned-out value of
CPUSCR for later restoration.

4. Select the DBCR0 register and update it with DBCR0[EDM] set.

5. Clear the DBSR status bits.

6. Write appropriate values to the DBCR0–DBCR3, IAC, DAC, and DBCNT
registers.

NOTE
The initial write to DBCR0 only affects the EDM bit, so the
remaining portion of the register must now be initialized,
keeping the EDM bit set.

Chapter 10. Debug Support -35
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Basic Steps for Enabling, Using, and Exiting External Debug Mode

At this point the system is ready to commence debug operations. Depending on the desired
operation, different steps must occur.

1. Optionally set the OCR[DMDIS] control bit to ensure that no TLB misses occur
while performing the debug operations.

2. Optionally ensure that the values entered into the MSR portion of the CPUSCR
during the following steps cause interrupts to be disabled (clearing MSR[EE] and
MSR[CE]). This ensures that external interrupt sources do not cause single-step
errors.

To single-step the CPU:

1. The debugger scans in either a new or a previously saved value of the CPUSCR
(with appropriate modification of the PC and IR as described in Section 10.5.8.2,
“Control State Register (CTL)”) with a Go+NoExit OnCE command value.

2. The debugger scans out the OSR with no register selected, GO cleared, and
determines that the PCU has re-entered the debug state and that no ERR condition
occurred.

To return the CPU to normal operation (without disabling external debug mode):

1. OCR[DMDIS] and OCR[DR] should be cleared, leaving OCR[WKUP] set.

2. The debugger restores the CPUSCR with a previously saved value of the CPUSCR
(with appropriate modification of the PC and IR as described in Section 10.5.8.2,
“Control State Register (CTL)”), with a Go+Exit OnCE command value.

3. OCR[WKUP] may then be cleared.

To exit external debug mode:

1. The debugger should place the CPU in the debug state through the OCR[DR] with
OCR[WKUP] set, scanning out and saving the CPUSCR.

2. The debugger should write to DBCR0–DBCR3 as needed, likely clearing every
enable except DBCR0[EDM].

3. The debugger should write the DBSR to a cleared state.

4. The debugger should rewrite the DBCR0 with all bits including EDM cleared.

5. The debugger should clear OCR[DR].

6. The debugger restores the CPUSCR with the previously saved value of the
CPUSCR (with appropriate modification of the PC and IR as described in
Section 10.5.8.2, “Control State Register (CTL))”,with a Go+Exit OnCE command
value.

7. OCR[WKUP] may then be cleared.

NOTE
These steps are meant by way of examples, and are not meant
to be an exact template for debugger operation.

10-36 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Basic Steps for Enabling, Using, and Exiting External Debug Mode

Chapter 11. Nexus3 Module 11-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Chapter 11
Nexus3 Module
The e200z6 Nexus3 module provides real-time development capabilities for e200z6
processors in compliance with the IEEE-ISTO Nexus 5001-2003 standard. This module
provides development support capabilities without requiring the use of address and data
pins for internal visibility.

A portion of the pin interface, the JTAG port, is also shared with the OnCE/Nexus1 unit.
The IEEE-ISTO 5001-2003 standard defines an extensible auxiliary port which is used in
conjunction with the JTAG port in e200z6 processors.

11.1 Introduction

11.1.1 General Description

This chapter defines the auxiliary pin functions, transfer protocols and standard
development features of a class 3 device in compliance with the IEEE-ISTO Nexus
5001-2003 standard. The development features supported are program trace, data trace,
watchpoint messaging, ownership trace, and read/write access through the JTAG interface.
The Nexus3 module also supports two class 4 features: watchpoint triggering, and
processor overrun control.

11.1.2 Terms and Definitions

Table 11-1 contains a set of terms and definitions associated with the Nexus3 module.

Table 11-1. Terms and Definitions

Term Description

IEEE-ISTO 5001 Consortium and standard for real-time embedded system design. World Wide Web
documentation at http://www.ieee-isto.org/Nexus5001

Auxiliary port Refers to Nexus auxiliary port. Used as auxiliary port to the IEEE 1149.1 JTAG
interface.

Branch trace messaging
(BTM)

Visibility of addresses for taken branches and exceptions, and the number of
sequential instructions executed between each taken branch.

Data read message (DRM) External visibility of data reads to memory-mapped resources.

11-2 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Introduction

11.1.3 Feature List

The Nexus3 module is compliant with class 3 of the IEEE-ISTO 5001-2003 standard. The
following features are implemented:

• Program trace through branch trace messaging (BTM). Displays program flow
discontinuities, direct and indirect branches, and exceptions, allowing the
development tool to interpolate what transpires between the discontinuities. Thus
static code may be traced.

• Data trace by means of data write messaging (DWM) and data read messaging
(DRM). DRM and DWM provide the capability for the development tool to trace
reads and/or writes to selected internal memory resources.

• Ownership trace by means of ownership trace messaging (OTM). Facilitates
ownership trace by providing visibility of which process ID or operating system task
is activated. An ownership trace message is transmitted when a new process/task is
activated, allowing the development tool to trace ownership flow.

Data write message (DWM) External visibility of data writes to memory-mapped resources.

Data trace messaging (DTM) External visibility of how data flows through the embedded system. This may include
DRM and/or DWM.

JTAG compliant Device complying to IEEE 1149.1 JTAG standard.

JTAG IR and DR sequence JTAG instruction register (IR) scan to load an opcode value for selecting a
development register. The JTAG IR corresponds to the OnCE command register
(OCMD). The selected development register is then accessed through a JTAG data
register (DR) scan.

Nexus1 The e200z6 (OnCE) debug module. This module integrated with each e200z6
processor provides all static, core-halted, debug functionality. This module complies
with class 1 of the IEEE-ISTO 5001 standard.

Ownership trace message
(OTM)

Visibility of process/function that is currently executing.

Public messages Messages on the auxiliary pins for accomplishing common visibility and
controllability requirements.

SOC System-on-a-chip (SOC) signifies all of the modules on a single die. This generally
includes one or more processors with associated peripherals, interfaces and
memory modules.

Standard The phrase “according to the standard” is used to indicate the IEEE-ISTO 5001
standard.

Transfer code (TCODE) Message header that identifies the number and/or size of packets to be transferred,
and how to interpret each of the packets.

Watchpoint A data or instruction breakpoint which does not cause the processor to halt. Instead,
a pin is used to signal that the condition occurred. A watchpoint message is also
generated.

Table 11-1. Terms and Definitions (continued)

Term Description

Chapter 11. Nexus3 Module 11-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Introduction

• Run-time access to embedded processor registers and memory map through the
JTAG port. This allows for enhanced download/upload capabilities.

• Watchpoint messaging through the auxiliary pins

• Watchpoint trigger enable of program and/or data trace messaging

• Auxiliary interface for higher data input/output:

— Configurable, min/max, message data out pins, nex_mdo[n:0]

— One or two message start/end out pins, nex_mseo_b[1:0]

— One read/write ready pin, nex_rdy_b

— One watchpoint event pin, nex_evto_b

— One event in pin, nex_evti_b

— One message clock out (MCKO) pin

• Registers for program trace, data trace, ownership trace and watchpoint trigger

• All features controllable and configurable through the JTAG port

NOTE
Configuration of the message data out pins is controlled by the
port control register at the SoC level in multiple Nexus
implementations. For single Nexus implementations, this
configuration is controlled by DC1 within the e200z6 Nexus3
module.

In either implementation, full port mode (FPM—maximum
number of MDO pins) or reduced port mode (RPM—minimum
number of MDO pins) is supported. This setting should not be
changed while the system is running.

NOTE
The configuration of the message start/end out pins, 1 or 2, is
determined at the SOC integration level. This option is hard
wired based on SOC bandwidth requirements. Figure 11-1
shows the functional block diagram.

11-4 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Enabling Nexus3 Operation

Figure 11-1. Nexus3 Functional Block Diagram

11.2 Enabling Nexus3 Operation
The Nexus module is enabled by loading a single instruction, NEXUS3-Access, into the
JTAG instruction register/OnCE OCMD register. For the e200z6 Nexus3 module, the
OCMD value is 0b00_0111_1100. Once enabled, the module is ready to accept control
input through the JTAG/OnCE pins.

The Nexus module is disabled when the JTAG state machine reaches the test-logic-reset
state. This state can be reached by the assertion of the j_trst_b pin or by cycling through the
state machine using the j_tms pin. The Nexus module can also be disabled if a power-on

nex_mseo0_b

nex_mcko

e2
00

z6
 V

irt
ua

l B
us

A
H

B
 S

ys
te

m
 B

us

Nexus3 Block

Nexus1 Block (within e200z6 CPU)

nex_mdo[n:0]

j_tdo

j_tdi

j_tms
j_tclk
j_trst_b

nex_evto_b

nex_rdy_b

nex_evti_b

nex_mseo1_b

N+1

nex_aux_req[1:0]

npc_aux_grant

2

Note: The nex_aux_req[1:0], npc_aux_grant, and nex_aux_busy signals are used for inter-module

nex_aux_busy

communication in a multiple Nexus environment. They are not pins on the SoC.

ext_multi_nex_sel

Registers

DMA Registers

OnCE Debug

Breakpoint/
Watchpoint

Control

Memory
Control

Control/Status
Registers

Instruction
Snoop

I/O
Logic

Data
Snoop

DMA
(R/W)

Message
Queues

Chapter 11. Nexus3 Module 11-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

TCODEs Supported

reset (POR) event occurs. If the Nexus3 module is disabled, no trace output is provided, and
the module disables auxiliary port output pins, nex_mdo[n:0], nex_mseo[1:0], and
nex_mcko. Nexus registers are not available for reads or writes.

11.3 TCODEs Supported
The Nexus3 pins allow for flexible transfer operations through public messages. A TCODE
defines the transfer format, the number and/or size of the packets to be transferred, and the
purpose of each packet. The IEEE-ISTO 5001-2003 standard defines a set of public
messages. The Nexus3 block supports the public TCODEs seen in Table 11-2. Each
message contains multiple packets transmitted in the order shown in the table.

Table 11-2. Public TCODEs Supported

Message Name
Minimum

Packet
Size (Bits)

Maximum
Packet

Size (Bits)

Packet
Type

Packet Description

Debug status 6 6 Fixed TCODE number = 0 (0x00)

4 4 Fixed Source processor identifier (multiple Nexus configuration)

8 8 Fixed Debug status register (DS[31–24])

Ownership trace
message

6 6 Fixed TCODE number = 2 (0x02)

4 4 Fixed Source processor identifier (multiple Nexus configuration)

32 32 Fixed Task/process ID tag

Program
trace–Direct
branch message

6 6 Fixed TCODE number = 3 (0x03)

4 4 Fixed Source processor identifier (multiple Nexus configuration)

1 8 Variable
Number of sequential instructions executed since last taken
branch

Program
trace–Indirect
branch message

6 6 Fixed TCODE number = 4 (0x04)

4 4 Fixed Source processor identifier (multiple Nexus configuration)

1 8 Variable
Number of sequential instructions executed since last taken
branch

1 32 Variable Unique part of target address for taken branches/exceptions

Data trace–Data
write message

6 6 Fixed TCODE number = 5 (0x05)

4 4 Fixed Source processor identifier (multiple Nexus configuration)

3 3 Fixed Data size. Refer to Table 11-6.

1 32 Variable Unique portion of the data write address

1 64 Variable Data write value(s). See data trace section for details.

11-6 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

TCODEs Supported

Data trace–Data
read message

6 6 Fixed TCODE number = 6 (0x06)

4 4 Fixed Source processor identifier (multiple Nexus configuration)

3 3 Fixed Data size. Refer to Table 11-6.

1 32 Variable Unique portion of the data read address

1 64 Variable Data read value(s). See data trace section for details.

Error message 6 6 Fixed TCODE number = 8 (0x08)

4 4 Fixed Source processor identifier (multiple Nexus configuration)

5 5 Fixed Error code

Program
trace–Direct
branch message
with
synchronization

6 6 Fixed TCODE number = 11 (0x0B)

4 4 Fixed Source processor identifier (multiple Nexus configuration)

1 8 Variable
Number of sequential instructions executed since last taken
branch

1 32 Variable Full target address (leading zeros truncated)

Program
trace–Indirect
branch message
with
synchronization

6 6 Fixed TCODE number = 12 (0x0C)

4 4 Fixed Source processor identifier (multiple Nexus configuration)

1 8 Variable
Number of sequential instructions executed since last taken
branch

1 32 Variable Full target address (leading zeros truncated)

Data trace–Data
write message
with
synchronization

6 6 Fixed TCODE number = 13 (0x0D)

4 4 Fixed Source processor identifier (multiple Nexus configuration)

3 3 Fixed Data size. Refer to Table 11-6.

1 32 Variable Full access address (leading zeros truncated)

1 64 Variable Data write value(s). See data trace section for details.

Data trace–Data
read message
with
synchronization

6 6 Fixed TCODE number = 14 (0x0E)

4 4 Fixed Source processor identifier (multiple Nexus configuration)

3 3 Fixed Data size. Refer to Table 11-6.

1 32 Variable Full access address (leading zeros truncated)

1 64 Variable Data read value(s). See data trace section for details.

Watchpoint
message

6 6 Fixed TCODE number = 15 (0x0F)

4 4 Fixed Source processor identifier (multiple Nexus configuration)

8 8 Fixed Number indicating watchpoint source(s)

Table 11-2. Public TCODEs Supported (continued)

Message Name
Minimum

Packet
Size (Bits)

Maximum
Packet

Size (Bits)

Packet
Type

Packet Description

Chapter 11. Nexus3 Module 11-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

TCODEs Supported

Table 11-3 shows the error code encodings used when reporting an error through the
Nexus3 error message.

Port
replacement–Outp
ut message

6 6 Fixed TCODE number = 20 (0x14)

16 16 Fixed Direction of each low-speed I/O bit (0 = input / 1=output)

16 16 Fixed Low-speed output data (per bit of direction)

Resource full
message

6 6 Fixed TCODE number = 27 (0x1B)

4 4 Fixed Source processor identifier (multiple Nexus configuration)

4 4 Fixed
Resource code. Refer to Table 11-4. Indicates which
resource is the cause of this message.

1 32 Variable Branch / predicate instruction history (see Section 11.7.1,
“Branch Trace Messaging (BTM))

Program
trace–Indirect
branch history
message

6 6 Fixed TCODE number = 28 (0x1C). See note below.

4 4 Fixed Source processor identifier (multiple Nexus configuration)

1 8 Variable Number of sequential instructions executed since last taken
branch

1 32 Variable Unique part of target address for taken branches/exceptions

1 32 Variable
Branch / predicate instruction history (See Section 11.7.1,
“Branch Trace Messaging (BTM).”)

Program
trace–Indirect
branch history
message with
synchronization

6 6 Fixed TCODE number = 29 (0x1D). See note below.

4 4 Fixed Source processor identifier (multiple Nexus configuration)

1 8 Variable
Number of sequential instructions executed since last taken
branch

1 32 Variable Full target address (leading zero (0) truncated)

1 32 Variable
Branch / predicate instruction history (See Section 11.7.1,
“Branch Trace Messaging (BTM).”)

Program
trace–Program
correlation
message

6 6 Fixed TCODE number = 33 (0x21)

4 4 Fixed Source processor identifier (multiple Nexus configuration)

4 4 Fixed Event correlated with program flow. Refer to Table 11-5.

1 8 Variable
Number of sequential instructions executed since last taken
branch

1 32 Variable
Branch / predicate instruction history (see Section 11.7.1,
“Branch Trace Messaging (BTM)”)

Table 11-2. Public TCODEs Supported (continued)

Message Name
Minimum

Packet
Size (Bits)

Maximum
Packet

Size (Bits)

Packet
Type

Packet Description

11-8 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

TCODEs Supported

Table 11-4 shows the encodings used for resource codes for certain messages.

Table 11-5 shows the event code encodings used for certain messages.

Table 11-6 shows the data trace size encodings used for certain messages.

Table 11-3. Error Code Encodings (TCODE = 8)

Error Code
(ECODE)

Description

00000 Ownership trace overrun

00001 Program trace overrun

00010 Data trace overrun

00011 Read/write access error

00101 Invalid access opcode (Nexus register unimplemented)

00110 Watchpoint overrun

00111 Program trace or data trace and ownership trace overrun

01000
Program trace or data trace or ownership trace and watchpoint
overrun

01001–10111 Reserved

11000 BTM lost due to collision with higher priority message

11001–11111 Reserved

Table 11-4. Resource Code Encodings (TCODE = 27)

Resource Code
(RCODE)

Description

0001 Program trace, branch/predicate instruction history. This type of packet is terminated by a
stop bit set to 1 after the last history bit.

Table 11-5. Event Code Encodings (TCODE = 33)

Event Code
(EVCODE)

Description

0000 Entry into debug mode

0001 Entry into low power mode (CPU only)

0010–1111 Reserved

Table 11-6. Data Trace Size Encodings (TCODE = 5, 6, 13, or 14)

DTM Size Encoding Transfer Size

000 Byte

001 Half word (2 bytes)

010 Word (4 bytes)

Chapter 11. Nexus3 Module 11-9
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Nexus3 Programmer’s Model

NOTE
Program trace can be implemented using either branch
history/predicate instruction messages, or traditional
direct/indirect branch messages, and the user can select
between the two types. The advantages of each are discussed in
Section 11.7.1, “Branch Trace Messaging (BTM).” If the
branch history method is selected, the shaded TCODES above
will not be messaged out.

11.4 Nexus3 Programmer’s Model
This section describes the Nexus3 programmers model. Nexus3 registers are accessed
using the JTAG/OnCE port in compliance with IEEE 1149.1. See Section 11.5, “Nexus3
Register Access through JTAG/OnCE,” for details on Nexus3 register access.

NOTE
Nexus3 registers and output signals are numbered using bit 0
as the least-significant bit. This bit ordering is consistent with
the ordering defined by the IEEE-ISTO 5001 standard.

Table 11-7 shows the register map for the Nexus3 module.

011 Double word (8 bytes)

100 String (3 bytes)

101–111 Reserved

Table 11-7. Nexus3 Register Map

Nexus Register
Nexus
Access
Opcode

Read/Write
Read

Address
Write

Address

Client select control (CSC) 1 0x1 R 0x02 —

Port configuration register (PCR)1 PCR_INDEX2 R/W — —

Development control1 (DC1) 0x2 R/W 0x04 0x05

Development control2 (DC2) 0x3 R/W 0x06 0x07

Development status (DS) 0x4 R 0x08 —

Read/write access control/status (RWCS) 0x7 R/W 0x0E 0x0F

Read/write access address (RWA) 0x9 R/W 0x12 0x13

Read/write access data (RWD) 0xA R/W 0x14 0x15

Watchpoint trigger (WT) 0xB R/W 0x16 0x17

Table 11-6. Data Trace Size Encodings (TCODE = 5, 6, 13, or 14) (continued)

DTM Size Encoding Transfer Size

11-10 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Nexus3 Programmer’s Model

11.4.1 Client Select Control Register (CSC)

The CSC register determines which Nexus client is under development. This register is
present at the top-level SOC Nexus3 controller to select one of multiple on-chip Nexus3
units. Figure 11-2 shows the CSC register.

11.4.2 Port Configuration Register (PCR)

The port configuration register (PCR), shown in Figure 11-3, controls the basic port
functions for all Nexus modules in a multiple Nexus environment. This includes clock

Data trace control (DTC) 0xD R/W 0x1A 0x1B

Data trace start address1 (DTSA1) 0xE R/W 0x1C 0x1D

Data trace start address2 (DTSA2) 0xF R/W 0x1E 0x1F

Data trace end address1 (DTEA1) 0x12 R/W 0x24 0x25

Data trace end address2 (DTEA2) 0x13 R/W 0x26 0x27

Reserved 0x14–0x3F — 0x28–0x7E 0x29–7F

1 The CSC and PCR registers are shown in this table as part of the Nexus programmer’s model.
They are only present at the top level SoC Nexus3 controller in a multiple Nexus implementation,
not in the e200z6 Nexus3 module. The SoC’s CSC register is readable through Nexus3, but the
PCR is shown here for reference only.

2 PCR_INDEX is a parameter determined by the SoC. Refer to the reference manual for the device
integrating the e200z6 core for more information on how this parameter is implemented for each
Nexus module.

7 4 3 0

Field — CS

Reset All zeros

R/W Read only

Number 0x1

Figure 11-2. Client Select Control Register

Table 11-8. CSC Field Descriptions

Bits Name Description

7–4 — Reserved, should be cleared.

3–0 CSC
Client select control
0xX = Nexus client (SoC level)

Table 11-7. Nexus3 Register Map (continued)

Nexus Register
Nexus
Access
Opcode

Read/Write
Read

Address
Write

Address

Chapter 11. Nexus3 Module -11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Nexus3 Programmer’s Model

control and auxiliary port width. All bits in this register are writable only once after system
reset.

NOTE
The CSC and PCR registers exist in a separate module at the
SoC level in a multiple Nexus environment. If the e200z6
Nexus3 module is the only Nexus module, these registers are
not implemented and the e200z6 Nexus3-defined development
control register 1 (DC1) is used to control Nexus port
functionality.

31 30 29 28 26 25 0

Field OPC — MCK_EN MCK_DIV —

Reset All zeros

R/W Read/Write

Number PCR_INDEX

Figure 11-3. Port Configuration Register

Table 11-9. PCR Field Descriptions

Bits Name Description

31 OPC Output port mode control
0 Reduced port mode configuration (minimum number of nex_mdo[n:0] pins defined by

SOC)
1 Full port mode configuration (maximum number of nex_mdo[n:0] pins defined by SOC)

30 — Reserved

29 MCK_EN MCKO clock enable. See note below.
0 nex_mcko is disabled
1 nex_mcko is enabled

28–26 MCK_DIV MCKO clock divide ratio
000 nex_mcko is 1x processor clock freq.
001 nex_mcko is 1/2x processor clock freq.
010 Reserved (default to 1/2x processor clock freq.)
011 nex_mcko is 1/4x processor clock freq.
100–110 Reserved (default to 1/2x processor clock freq.)
111 nex_mcko is 1/8x processor clock freq.

25–0 — Reserved

11-12 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Nexus3 Programmer’s Model

11.4.3 Development Control Register 1, 2 (DC1, DC2)

The development control registers are used to control the basic development features of the
Nexus3 module. Development control register 1 is shown in Figure 11-4 and its fields are
described in Table 11-10.

31 30 29 28 27 26 25 24 23 8 7 5 4 3 2 0

Field OPC MCK_DIV EOC — PTM WEN — OVC EIC TM

Reset All zeros

R/W Read/Write

Number 0x2

Figure 11-4. Development Control Register 1 (DC1)

Table 11-10. DC1 Field Descriptions

Bits Name Description

31 OPC Output port mode control
0 Reduced port mode configuration (minimum number of nex_mdo[n:0] pins

defined by SOC)
1 Full port mode configuration (maximum number of nex_mdo[n:0] pins defined

by SOC)

30–29 MCK_DIV MCKO clock divide ratio. See note below.
00 nex_mcko is 1x processor clock freq.
01 nex_mcko is 1/2x processor clock freq.
10 nex_mcko is 1/4x processor clock freq.
11 nex_mcko is 1/8x processor clock freq.

28–27 EOC EVTO control
00 nex_evto_b upon occurrence of watchpoints (configured in DC2)
01 nex_evto_b upon entry into debug mode
10 nex_evto_b upon timestamping event
11 Reserved

26 — Reserved

25 PTM Program trace method
0 Program trace uses traditional branch messages.
1 Program trace uses branch history messages.

24 WEN Watchpoint trace enable
0 Watchpoint messaging disabled
1 Watchpoint messaging enabled

23–8 — Reserved

7–5 OVC Overrun control
000 Generate overrun messages
001–010 Reserved
011 Delay processor for BTM/DTM/OTM overruns
1XX Reserved

Chapter 11. Nexus3 Module -13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Nexus3 Programmer’s Model

NOTE
OPC and MCK_DIV must be modified only during system
reset or debug mode to insure correct output port and output
clock functionality. It is also recommended that all other bits of
DC1 be modified only in one of these two modes.

Development control register 2 is shown in Figure 11-5 and its fields are described in
Table 11-11.

NOTE
The EOC bits in DC1 must be programmed to trigger EVTO on
watchpoint occurrence for the EWC bits to have any effect.

4–3 EIC EVTI control
00 nex_evti_b is used for synchronization (program trace/ data trace)
01 nex_evti_b is used for debug request
1X Reserved

2–0 TM Trace mode
000 No trace
1XX Program trace enabled
X1X Data trace enabled
XX1 Ownership trace enabled

31 24 23 0

Field EWC —

Reset All zeros

R/W Read/Write

Number 0x3

Figure 11-5. Development Control Register 2 (DC2)

Table 11-11. DC2 Field Descriptions

Bits Name Description

31–24 EWC EVTO Watchpoint Configuration
00000000 No watchpoints trigger nex_evto_b
1xxxxxxx Watchpoint #0 (IAC1 from Nexus1) triggers nex_evto_b
x1xxxxxx Watchpoint #1 (IAC2 from Nexus1) triggers nex_evto_b
xx1xxxxx Watchpoint #2 (IAC3 from Nexus1) triggers nex_evto_b
xxx1xxxx Watchpoint #3 (IAC4 from Nexus1) triggers nex_evto_b
xxxx1xxx Watchpoint #4 (DAC1 from Nexus1) triggers nex_evto_b
xxxxx1xx Watchpoint #5 (DAC2 from Nexus1) triggers nex_evto_b
xxxxxx1x Watchpoint #6 (DCNT1 from Nexus1) triggers nex_evto_b
xxxxxxx1 Watchpoint #7 (DCNT2 from Nexus1) triggers nex_evto_b

23–0 — Reserved

Table 11-10. DC1 Field Descriptions (continued)

Bits Name Description

11-14 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Nexus3 Programmer’s Model

11.4.4 Development Status Register (DS)

The development status register, Figure 11-6, is used to report system debug status. When
debug mode is entered or exited, or an SOC- or e200z6-defined low-power mode is entered,
a debug status message is transmitted with DS[31–25]. The external tool can read this
register at any time.

11.4.5 Read/Write Access Control/Status Register (RWCS)

The read write access control/status register, shown in Figure 11-7, provides control for
read/write access. Read/write access provides DMA-like access to memory-mapped
resources on the AHB system bus either while the processor is halted, or during runtime.
RWCS also provides read/write access status information; see Table 11-14.

31 30 28 27 26 25 24 0

Field DBG LPC LPC CHK —

Reset All zeros

R/W Read–only

Number 0x4

Figure 11-6. Development Status Register (DS)

Table 11-12. DS Field Descriptions

Bits Name Description

31 DBG e200z6 CPU debug mode status
0 CPU not in debug mode
1 CPU in debug mode (jd_debug_b signal asserted)

30–28 LPS e200z6 system low power mode status
000 Normal (run) mode
XX1 Doze mode (p_doze signal asserted)
X1X Nap mode (p_nap signal asserted)
1XX Sleep mode (p_sleep signal asserted)

27–26 LPC e200z6 CPU low power mode status
00 Normal (run) mode
01 CPU in halted state (p_halted signal asserted)
10 CPU in stopped state (p_stopped signal asserted)
11 Reserved

25 CHK e200z6 CPU checkstop status
0 CPU not in checkstop state
1 CPU in checkstop state (p_chkstop signal asserted)

24–0 — Reserved, should be cleared.

Chapter 11. Nexus3 Module -15
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Nexus3 Programmer’s Model

Table 11-14 details the status bit encodings.

31 30 29 27 26 24 23 22 21 20 16 15 2 1 0

Field AC RW SZ MAP PR BST — CNT ERR DV

Reset All zeros

R/W Read/Write

Number 0x7

Figure 11-7. Read/Write Access Control/Status Register (RWCS)

Table 11-13. RWCS Field Descriptions

Bits Name Description

31 AC Access control
0 End access
1 Start access

30 RW Read/write select
0 Read access
1 Write access

29–27 SZ Word size
000 8-bit (byte)
001 16-bit (half-word)
010 32-bit (word)
011 64-bit (double word - only in burst mode)
100–111 Reserved (default to word)

26–24 MAP MAP select
000 Primary memory map
001–111 Reserved

23–22 PR Read/write access priority
00 Lowest access priority
01 Reserved (default to lowest priority)
10 Reserved (default to lowest priority)
11 Highest access priority

21 BST Burst Control
0 Block accesses are single bus cycle at a time
1 Block accesses are performed as burst operation
Note: This optional (determined by SOC integration) feature allows limited burst accesses
to the AHB. The Nexus buffer (if implemented) holds 32-bytes of data and only supports
double-word bursts (RWA 2–0 are ignored). See Section 11.10, “Nexus3 Read/Write
Access to Memory-Mapped Resources” for details on burst implementation.

20–16 — Reserved

15–2 CNT Access control count. Number of accesses of word size SZ

1 ERR Read/write access error. See Table 11-14.

0 DV Read/write access data valid. See Table 11-14.

11-16 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Nexus3 Programmer’s Model

11.4.6 Read/Write Access Data Register (RWD)

The read/write access data register, shown in Figure 11-8, provides the data to/from system
bus memory-mapped locations when initiating a read or a write access.

11.4.7 Read/Write Access Address Register (RWA)

The read/write access address register, shown in Figure 11-9, provides the system bus
address to be accessed when initiating a read or a write access.

11.4.8 Watchpoint Trigger Register (WT)

The watchpoint trigger register, shown in Figure 11-10, allows the watchpoints defined
within the e200z6 Nexus1 logic to trigger actions. These watchpoints can control program
and/or data trace enable and disable. The WT bits can be used to produce an address related
window for triggering trace messages.

Table 11-14. Read/Write Access Status Bit Encodings

Read Action Write Action ERR DV

Read access has not completed. Write access completed without error. 0 0

Read access error has occurred. Write access error has occurred. 1 0

Read access completed without error. Write access has not completed. 0 1

Not allowed Not allowed 1 1

31 0

Field Read/Write Data

Reset All zeros

R/W Read/Write

Number 0x9

Figure 11-8. Read/Write Access Data Register (RWD)

31 0

Field Read/Write Data

Reset All zeros

R/W Read/Write

Number 0xA

Figure 11-9. Read/Write Access Address Register (RWA)

Chapter 11. Nexus3 Module -17
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Nexus3 Programmer’s Model

Table 11-15 details the watchpoint trigger register fields.

31 29 28 26 25 23 22 20 19 0

Field PTS PTE DTS DTE —

Reset All zeros

R/W Read/Write

Number 0xB

Figure 11-10. Watchpoint Trigger Register (WT)

Table 11-15. WT Field Descriptions

Bits Name Description

31–29 PTS Program trace start control
000 Trigger disabled
001 Use watchpoint #0 (IAC1 from Nexus1)
010 Use watchpoint #1 (IAC2 from Nexus1)
011 Use watchpoint #2 (IAC3 from Nexus1)
100 Use watchpoint #3 (IAC4 from Nexus1)
101 Use watchpoint #4 (DAC1 from Nexus1)
110 Use watchpoint #5 (DAC2 from Nexus1)
111 Use watchpoint #6 or #7 (DCNT1 or DCNT2 from Nexus1)

28–26 PTE Program trace end control
000 Trigger disabled
001 Use watchpoint #0 (IAC1 from Nexus1)
010 Use watchpoint #1 (IAC2 from Nexus1)
011 Use watchpoint #2 (IAC3 from Nexus1)
100 Use watchpoint #3 (IAC4 from Nexus1)
101 Use watchpoint #4 (DAC1 from Nexus1)
110 Use watchpoint #5 (DAC2 from Nexus1)
111 Use watchpoint #6 or #7 (DCNT1 or DCNT2 from Nexus1)

25–23 DTS Data trace start control
000 Trigger disabled
001 Use watchpoint #0 (IAC1 from Nexus1)
010 Use watchpoint #1 (IAC2 from Nexus1)
011 Use watchpoint #2 (IAC3 from Nexus1)
100 Use watchpoint #3 (IAC4 from Nexus1)
101 Use watchpoint #4 (DAC1 from Nexus1)
110 Use watchpoint #5 (DAC2 from Nexus1)
111 Use watchpoint #6 or #7 (DCNT1 or DCNT2 from Nexus1)

22–20 DTE Data trace end control
000 Trigger disabled
001 Use watchpoint #0 (IAC1 from Nexus1)
010 Use watchpoint #1 (IAC2 from Nexus1)
011 Use watchpoint #2 (IAC3 from Nexus1)
100 Use watchpoint #3 (IAC4 from Nexus1)
101 Use watchpoint #4 (DAC1 from Nexus1)
110 Use watchpoint #5 (DAC2 from Nexus1)
111 Use watchpoint #6 or #7 (DCNT1 or DCNT2 from Nexus1)

19–0 — Reserved, should be cleared

11-18 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Nexus3 Programmer’s Model

NOTE
The WT bits only control program/data trace if the TM bits
within DC1 have not already been set to enable program and
data trace respectively.

11.4.9 Data Trace Control Register (DTC)

The data trace control register controls whether DTM messages are restricted to reads,
writes, or both for a user programmable address range. There are two data trace channels
controlled by the DTC for the Nexus3 module. Each channel can also be programmed to
trace data accesses or instruction accesses. Figure 11-11 shows DTC.

Table 11-16 details the data trace control register fields.

31 30 29 28 27 8 7 6 5 4 3 2 1 0

Field RWT1 RWT2 — RC1 RC2 — DI1 DI2 —

Reset All zeros

R/W Read/Write

Number 0xD

Figure 11-11. Data Trace Control Register (DTC)

Table 11-16. DTC Field Descriptions

Bits Name Description

31–30 RWT1 Read/write trace 1
00 No trace enabled
X1 Enable data read trace
1X Enable data write trace

29–28 RWT2 Read/write trace 2
00 No trace enabled
X1 Enable data read trace
1X Enable data write trace

27–8 — Reserved, should be cleared.

7 RC1 Range control 1
0 Condition trace on address within range
1 Condition trace on address outside of range

6 RC2 Range control 2
0 Condition trace on address within range
1 Condition trace on address outside of range

5–4 — Reserved, should be cleared.

Chapter 11. Nexus3 Module -19
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Nexus3 Programmer’s Model

11.4.10 Data Trace Start Address 1 and 2 Registers (DTSA1
and DTSA2)

The data trace start address registers, shown in Figure 11-12, define the start addresses for
each trace channel.

11.4.11 Data Trace End Address Registers 1 and 2 (DTEA1 and
DTEA2)

The data trace end address registers, shown in Figure 11-13, define the end addresses for
each trace channel.

Table 11-17 illustrates the range that is selected for data trace for various cases of DTSA
being less than, greater than, or equal to DTEA.

3 DI1 Data access/instruction access trace 1
0 Condition trace on data accesses
1 Condition trace on instruction accesses

2 DI2 Data access/instruction access trace 2
0 Condition trace on data accesses
1 Condition trace on instruction accesses

1–0 — Reserved, should be cleared.

31 0

Field Data Trace Start Address

Reset All zeros

R/W Read/Write

Number DTSA1: 0xE; DTSA2: 0xF

Figure 11-12. Data Trace Start Address Registers 1 and 2 (DTSAn)

31 0

Field Data Trace End Address

Reset All zeros

R/W Read/Write

Number DTEA1: 0x12; DTEA2: 0x13

Figure 11-13. Data Trace End Address Registers 1 and 2 (DTEAn)

Table 11-16. DTC Field Descriptions (continued)

Bits Name Description

11-20 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Nexus3 Register Access through JTAG/OnCE

NOTE
DTSA must be less than DTEA in order to guarantee correct
data write/read traces. Data trace ranges are exclusive of the
DTSA and DTEA addresses.

11.5 Nexus3 Register Access through JTAG/OnCE
Access to Nexus3 register resources is enabled by loading a single instruction,
NEXUS3-Access, into the JTAG instruction register/OnCE OCMD register. For the
Nexus3 block, the OCMD value is 0b00_0111_1100.

Once the NEXUS3-Access instruction has been loaded, the JTAG/OnCE port allows
tool/target communications with all Nexus3 registers according to the register map in
Table 11-7.

Reading/writing of a Nexus3 register then requires two passes through the data-scan path
of the JTAG state machine 12 (see Section 11.15, “IEEE 1149.1 (JTAG) RD/WR
Sequences”).

1. The first pass through the DR selects the Nexus3 register to be accessed by
providing an index (see Table 11-7), and the direction, read/write. This is achieved
by loading an 8-bit value into the JTAG data register (DR). This register has the
format shown in Figure 11-14.

Table 11-17. Data Trace—Address Range Options

Programmed Values Range Control Bit Value Range Selected

DTSA < DTEA

0
The address range lies between the values specified
by DTSA and DTEA. (DTSA -> <- DTEA)

1
The address range lies outside the values specified by
DTSA and DTEA. (<-DTSA DTEA->)

DTSA > DTEA N/A Invalid range–No trace

DTSA = DTEA N/A Invalid range–No trace

(7 bits) (1 bit)

Nexus Register Index R/W

Reset Value: 0x00

Figure 11-14. Nexus3 Register Access through JTAG/OnCE (Example)

Table 11-18. Nexus Register Example

Field Description

Chapter 11. Nexus3 Module -21
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Ownership Trace

2. The second pass through the DR then shifts the data in or out of the JTAG port,
least-significant bit first.

a) During a read access, data is latched from the selected Nexus register when the
JTAG state machine passes through the capture-DR state.

b) During a write access, data is latched into the selected Nexus register when the
JTAG state machine passes through the update-DR state.

11.6 Ownership Trace
This section details the ownership trace features of the Nexus3 module.

11.6.1 Overview

Ownership trace provides a macroscopic view, such as task flow reconstruction, when
debugging software is written in a high-level or object-oriented language. It offers the
highest level of abstraction for tracking operating system software execution. This is
especially useful when the developer is not interested in debugging at lower levels.

11.6.2 Ownership Trace Messaging (OTM)

Ownership trace information is messaged by means of the auxiliary port using OTM. For
e200z6 processors, there are two distinct methods for providing task/process ID data. Some
e200 processors contain a BookE–defined process ID register within the CPU while others
may not. Within Nexus, task/process ID data is handled in one of the following two ways
in order to maintain IEEE-ISTO 5001 compliance.

1. If the process ID register exists, it is updated by the operating system software to
provide task/process ID information. The contents of this register are replicated on
the pins of the processor and connected to Nexus. The process ID register value can
be accessed using the mfspr/mtspr instructions. See Section 2.14.5, “Process ID
Register (PID0).”

2. If the process ID register does not exist, the user base address register (UBA) is
implemented within Nexus. The UBA can be accessed by means of the
JTAG/OnCE port and contains the address of the ownership trace register (OTR).
The memory-mapped OTR is updated by the operating system software to provide
task/process ID information.

Nexus Register Index Selected from values in Table 11-7

Read/write (R/W) 0 Read
1 Write

Table 11-18. Nexus Register Example

11-22 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Ownership Trace

NOTE
The e200z6 includes a process ID register (PID0), thus the
UBA functionality is not implemented.

There are two conditions that cause an ownership trace message:

1. When new information is updated in the OTR register or process ID register by the
e200z6 processor, the data is latched within Nexus and is messaged out through the
auxiliary port, allowing development tools to trace ownership flow.

2. When the periodic OTM message counter expires after 255 queued messages
without an OTM, an OTM is sent. The data is sent from either the latched OTR data
or the latched process ID data. This allows processors using virtual memory to be
regularly updated with the latest process ID.

Ownership trace information is messaged out in the format shown in Figure 11-15

11.6.3 OTM Error Messages

An error message occurs when the message queue is full and a new message cannot be
queued. The FIFO discards incoming messages until it has completely emptied the queue.
Once the queue is emptied, an error message is queued. The error encoding indicates which
types of messages attempted to be queued while the FIFO was being emptied.

If only an OTM message attempts to enter the queue while the queue is being emptied, the
error message only incorporates the OTM error encoding 00000. If both OTM and either
BTM or DTM (that is, OTM and BTM or OTM and DTM) messages attempt to enter the
queue, the error message incorporates the OTM and program or data trace error
encoding 00111. If a watchpoint also attempts to be queued while the FIFO is being
emptied, then the error message incorporates error encoding 01000.

NOTE
DC1[OVC] can be set to delay the CPU in order to alleviate,
but not eliminate, potential overrun situations.

Error information is messaged out in the format shown in Figure 11-16.

(32 bits) (4 bits) (6 bits)

Task/Process ID Tag Source Process TCODE (000010)

Fixed Length = 42 bits

Figure 11-15. Ownership Trace Message Format

(5 bits) (4 bits) (6 its)

Error Code 1 Source Process TCODE (001000)

Fixed Length = 15 bits

Figure 11-16. Error Message Format

Chapter 11. Nexus3 Module -23
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Program Trace

11.6.4 OTM Flow

Ownership trace messages are generated when the operating system writes to the e200z6
process ID register (PID0) or the memory-mapped ownership trace register (OTR).

The following flow describes the OTM process:

1. For the Nexus3 module, there are two different registers which can contain
task/process ID data. Nexus uses one or the other for OTM.

a) The process ID register is a system control register. It is internal to the e200z6
processor and can be accessed by using PowerPC instructions. PID0 contents
are replicated on the pins of the processor and connected to Nexus. See
Section 2.14.5, “Process ID Register (PID0),” for more information on PID0.

b) The OTR is a memory-mapped register whose address is located in the UBA.
The UBA is internal to the Nexus module and can be accessed by the
IEEE-ISTO 5001 tool through the JTAG port.

2. If the UBA is implemented, only word writes to OTR are valid. Writes to PID0
pulse a write signal to Nexus. The data value written into the OTR or PID0 is
latched and formed into the ownership trace message that is queued to be
transmitted.

3. OTR or PID0 reads do not cause ownership trace messages to be transmitted by the
Nexus3 module.

4. If the periodic OTM message counter expires after 255 queued messages without
an OTM, an OTM is sent using the latched data from the previous OTR or PID0
write.

11.7 Program Trace
This section details the program trace mechanism supported by Nexus3 for the e200z6
processor. Program trace is implemented using branch trace messaging (BTM) as required
by the class 3 IEEE-ISTO 5001-2003 standard definition. Branch trace messaging for
e200z6 processors is accomplished by snooping the e200z6 virtual address bus, between
the CPU and MMU, attribute signals, and CPU status p_pstat[0:5].

11.7.1 Branch Trace Messaging (BTM)

Traditional branch trace messaging facilitates program trace by providing the following
types of information:

1 Must be one of 00000, 00111, or 01000

11-24 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Program Trace

• Messaging for taken direct branches includes how many sequential instructions
were executed since the last taken branch or exception. Direct or indirect branches
not taken are counted as sequential instructions.

• Messaging for taken indirect branches and exceptions includes how many sequential
instructions were executed since the last taken branch or exception and the unique
portion of the branch target address or exception vector address.

Branch history messaging facilitates program trace by providing the following information.

• Messaging for taken indirect branches and exceptions includes how many sequential
instructions were executed since the last predicate instruction, taken indirect branch,
or exception, the unique portion of the branch target address or exception vector
address, and a branch/predicate instruction history field. Each bit in the history field
represents a direct branch or predicated instruction where a value of one indicates
taken and a value of zero indicates not taken. Certain instructions (evsel) generate a
pair of predicate bits which are both reported as consecutive bits in the history field.

11.7.1.1 e200z6 Indirect Branch Message Instructions (Book E)

Table 11-19 shows the types of instructions and events which cause indirect branch
messages or branch history messages to be encoded.

11.7.1.2 e200z6 Direct Branch Message Instructions (Book E)

Table 11-20 shows the types of instructions that cause direct branch messages or will toggle
a bit in the instruction history buffer to be messaged out in a resource full message or branch
history message.

Table 11-19. Indirect Branch Message Sources

Source of Indirect Branch Message Instructions

Taken branch relative to a register value bcctr, bcctrl, bclr, bclrl

System call/trap exceptions taken sc, tw, twi

Return from interrupts/exceptions rfi, rfci, rfdi

Table 11-20. Direct Branch Message Sources

Source of Direct Branch Message Instructions

Taken direct branch instructions b, ba, bl, bla, bc, bca, bcl, bcla

Instruction synchronize isync

Chapter 11. Nexus3 Module -25
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Program Trace

11.7.1.3 BTM using Branch History Messages

Traditional BTM can accurately track the number of sequential instructions between
branches, but cannot accurately indicate which instructions were conditionally executed
and which were not.

Branch history messaging solves this problem by providing a predicated instruction history
field in each indirect branch message. Each bit in the history represents a predicated
instruction or direct branch. A value of one indicates the conditional instruction was
executed or the direct branch was taken. A value of zero indicates the conditional
instruction was not executed or the direct branch was not taken. Certain instructions (evsel)
generate a pair of predicate bits which are both reported as consecutive bits in the history
field.

Branch history messages solve predicated instruction tracking and save bandwidth since
only indirect branches cause messages to be queued.

11.7.1.4 BTM using Traditional Program Trace Messages

Program tracing can utilize either branch history messages (DC1[PTM] = 1) or traditional
direct/indirect branch messages (DC1[PTM] = 0).

Branch history saves bandwidth and keeps consistency between methods of program trace,
yet may lose temporal order between BTM messages and other types of messages. Since
direct branches are not messaged, but are instead included in the history field of the indirect
branch history message, other types of messages may enter the FIFO between branch
history messages. The development tool cannot determine the ordering of events that
occurred with respect to direct branches simply by the order in which messages are sent out.

Traditional BTM messages maintain their temporal ordering because each event that can
cause a message to be queued enters the FIFO in the order it occurred and is messaged out
maintaining that order.

11.7.2 BTM Message Formats

The e200z6 Nexus3 block supports three types of traditional BTM messages: direct,
indirect, and synchronized messages. It supports two types of branch history BTM
messages: indirect branch history, and indirect branch history with synchronized messages.
Debug status messages and error messages are also supported.

11.7.2.1 Indirect Branch Messages (History)

Indirect branches include all taken branches whose destination is determined at run time,
interrupts, and exceptions. If DC1[PTM] is set, indirect branch information is messaged out
in the format shown in Figure 11-17:

11-26 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Program Trace

11.7.2.2 Indirect Branch Messages (Traditional)

If DC1[PTM] is cleared, indirect branch information is messaged out in the format shown
in Figure 11-18:

11.7.2.3 Direct Branch Messages (Traditional)

Direct branches, conditional or unconditional, are all taken branches whose destination is
fixed in the instruction opcode. Direct branch information is messaged out in the format
shown in Figure 11-19:

NOTE
When DC1[PTM] is set, direct branch messages are not
transmitted. Instead, each direct branch or predicated
instruction toggles a bit in the history buffer.

11.7.2.4 Resource Full Messages

The resource full message is used in conjunction with the branch history messages. The
resource full message is generated when the internal branch/predicate history buffer is full.
If synchronization is needed at the time this message is generated, the synchronization is
delayed until the next branch trace message that is not a resource full message.

The current value of the history buffer is transmitted as part of the resource full message.
This information can be concatenated by the tool with the branch/predicate history
information from subsequent messages to obtain the complete branch history for a

(1–32 bits) (1–32 bits) (1–8 bits) (4 bits) (6 bits)

Branch History Relative Address Sequence
Count

Source
Process

TCODE
(011100)

Maximum length = 82 bit; Minimum length = 13 bits

Figure 11-17. Indirect Branch Message (History) Format

(1–32 bits) (1–8 bits) (4 bits) (6 bits)

Relative Address Sequence Count Source Process TCODE (000100)

Maximum length = 50 bits; Minimum length = 12 bits

Figure 11-18. Indirect Branch Message Format

(1–8 bits) (4 bits) (6 bits)

Sequence Count Source Process TCODE (000011)

Maximum Length = 18 bits; Minimum length = 11 bits

Figure 11-19. Direct Branch Message Format

Chapter 11. Nexus3 Module -27
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Program Trace

message. The internal history value is reset by this message and the I-CNT value is reset as
a result of a bit being added to the history buffer.

11.7.2.5 Debug Status Messages

Debug status messages report low-power mode and debug status. Entering/exiting debug
mode as well as entering a low-power mode triggers a debug status message. Debug status
information is sent out in the format shown in Figure 11-21:

11.7.2.6 Program Correlation Messages

Program correlation messages are used to correlate events to the program flow that may not
be associated with the instruction stream. In order to maintain accurate instruction tracing
information when entering debug mode or a CPU low-power mode, where tracing may be
disabled, this message is sent upon entry into one of these two modes and includes the
instruction count and branch history. Program correlation is messaged out in the format
shown in Figure 11-22:

11.7.2.7 BTM Overflow Error Messages

An error message occurs when to the message queue is full and a new message cannot be
queued. The FIFO discards incoming messages until it has completely emptied the queue.
Once emptied, an error message is queued. The error encoding indicates which types of
messages attempted to be queued while the FIFO was being emptied.

If only a program trace message attempts to enter the queue while it is being emptied, the
error message incorporates the program trace only error encoding, 00001. If both OTM and
program trace messages attempt to enter the queue, the error message incorporates the

(1–32 bits) (4 bits) (4 bits) (6 bits)

Branch History RCODE (0001) Source Process TCODE (011011)

Maximum length = 46 bits; Minimum length = 15 bits

Figure 11-20. Resource Full Message Format

(8 bits) (4 bits) (6 bits)

31–24 Source Process TCODE (000000)

Fixed length = 18 bits

Figure 11-21. Debug Status Message Format

(1–32 bits) (1–8 bits) (4 bits) (4 bits) (6 bits)

Branch History Sequence Count ECODE Source Process TCODE (100001)

Maximum length = 54 bits; Minimum length = 16 bits

Figure 11-22. Program Correlation Message Format

11-28 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Program Trace

OTM and program trace error encoding, 00111. If a watchpoint also attempts to be queued
while the FIFO is being emptied, the error message incorporates error encoding 01000.

NOTE
DC1[OVC] can be set to delay the CPU in order to alleviate,
but not eliminate, potential overrun situations.

 Error information is messaged out in the format shown in Figure 11-23:

11.7.2.8 Program Trace Synchronization Messages

A program trace direct/indirect branch with synchronization message is messaged using the
auxiliary port, provided program trace is enabled, for the following conditions (see
Table 11-21):

• Initial program trace message upon the first direct/indirect branch after exit from
system reset or whenever program trace is enabled

• Upon direct/indirect branch after returning from a CPU low-power state

• Upon direct/indirect branch after returning from debug mode

• Upon direct/indirect branch after occurrence of queue overrun, which can be caused
by any trace message

• Upon direct/indirect branch after the periodic program trace counter has expired,
indicating 255 without-synchronization program trace messages have occurred
since the last with-synchronization message occurred

• Upon direct/indirect branch after assertion of the event-in (nex_evti_b) signal, if the
EIC bits within the DC1 register have enabled this feature

• Upon direct/indirect branch after the sequential instruction counter has expired,
indicating 255 instructions have occurred between branches

• Upon direct/indirect branch after a BTM message was lost due to an attempted
access to a secure memory location (for SOCs with security)

• Upon direct/indirect branch after a BTM message was lost due to a collision entering
the FIFO between the BTM message and either a watchpoint message or an
ownership trace message

If the Nexus3 module is enabled at reset, a nex_evti_b assertion initiates a program trace
direct/indirect branch with synchronization message if program trace is enabled upon the

(5 bits) (4 bits) (6 bits)

Error Code 1

1 Must be one of 00001, 00111, or 01000.

Source Process TCODE (001000)

Fixed length = 15 bits

Figure 11-23. Error Message Format

Chapter 11. Nexus3 Module -29
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Program Trace

first direct/indirect branch. The format for program trace direct/indirect branch with
synchronization messages is shown in Figure 11-24:

The formats for program trace direct/indirect branch with synchronized messages and
indirect branch history with synchronized messages are shown in Figure 11-25:

Exception conditions that result in program trace synchronization are summarized in
Table 11-21.

(1–32 bits) (1–8 bits) (4 bits) (6 bits)

Full Target Address Sequence Count Source Process TOCODE
(001011 or 001100)

Maximum length = 50 bits; Minimum length = 12 bits

Figure 11-24. Direct/Indirect Branch with Synchronization Message Format

(1–32 bits) (1–32 bits) (1–8 bits) (4 bits) (6 bits)

Branch History Full Target Address Sequence
Count

Source
Process

TCODE
(011101)

Maximum length = 82 bit; Minimum length = 13 bits

Figure 11-25. Indirect Branch History with Synchronization Message Format

Table 11-21. Program Trace Exception Summary

Exception Condition Exception Handling

System reset
negation

At the negation of JTAG reset, j_trst_b, queue pointers, counters, state machines, and registers
within the Nexus3 module are reset. Upon the first branch out of system reset, if program trace
is enabled, the first program trace message is a direct/indirect branch with synchronization
message.

Program trace
enabled

The first program trace message, after program trace has been enabled, is a synchronization
message.

Exit from low
power/debug

Upon exit from a low-power mode or debug mode the next direct/indirect branch is converted
to a direct/indirect branch with synchronization message.

Queue overrun An error message occurs when the message queue is full and a new message cannot be
queued. The FIFO discards messages until it has completely emptied the queue. Once
emptied, an error message is queued. The error encoding indicates which types of messages
attempted to be queued while the FIFO was being emptied. The next BTM message in the
queue is a direct/indirect branch with synchronization message.

Periodic program
trace synchronization

A forced synchronization occurs periodically after 255 program trace messages have been
queued. A direct/indirect branch with synchronization message is queued. The periodic
program trace message counter then resets.

Event in If the Nexus module is enabled, assorting nex_evti_b initiates a direct/indirect branch with
synchronization message upon the next direct/indirect branch, if program trace is enabled and
the EIC bits of the DC1 register have enabled this feature.

Sequential instruction
count overflow

When the sequential instruction counter reaches its maximum count (up to 255 sequential
instructions may be executed), a forced synchronization occurs. The sequential counter then
resets. A program trace direct/indirect branch with synchronization message is queued upon
execution of the next branch.

11-30 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Program Trace

11.7.3 BTM Operation

11.7.3.1 Enabling Program Trace

Both types of branch trace messaging can be enabled in one of two ways:

• Setting DC1[TM] to enable program trace

• Using WT[PTS] to enable program trace on watchpoint hits. e200z6 watchpoints are
configured within the CPU.

11.7.3.2 Relative Addressing

The relative address feature is compliant with the IEEE-ISTO 5001-2003 standard
recommendations and is designed to reduce the number of bits transmitted for addresses of
indirect branch messages.

The address transmitted is relative to the target address of the instruction which triggered
the previous indirect branch or synchronized message. It is generated by XORing the new
address with the previous address and then using only the results up to the most significant
1 bit in the result. To recreate this address, an XOR of the most-significant zero-padded
message address with the previously decoded address gives the current address. For the
example given in Figure 11-26, assume the previous address (A1) = 0x0003FC01, and the
new address (A2) = 0x0003F365:

Attempted access to
secure memory

For SOCs which implement security, any attempted branch to secure memory locations
temporarily disables program trace and cause the corresponding BTM to be lost. The following
direct/indirect branch queues a direct/indirect branch with synchronization message. The count
value within this message will be inaccurate since the re-enable of program trace is not
necessarily aligned on an instruction boundary.

Collision priority All messages have the following priority: WPM → OTM → BTM → DTM. A BTM message which
attempts to enter the queue at the same time as a watchpoint message or ownership trace
message will be lost. An error message is sent indicating the BTM was lost. The following
direct/indirect branch queues a direct/indirect branch with synchronization message. The count
value within this message reflects the number of sequential instructions executed after the last
successful BTM message was generated. This count includes the branch which did not
generate a message due to the collision.

Message Generation

A1 0000 0000 0000 0011 1111 1100 0000 0001

A2 0000 0000 0000 0011 1111 0011 0110 0101

Figure 11-26. Relative Address Generation and Re-Creation Example

Table 11-21. Program Trace Exception Summary (continued)

Exception Condition Exception Handling

Chapter 11. Nexus3 Module -31
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Program Trace

11.7.3.3 Branch/Predicate Instruction History (HIST)

If DC1[PTM] is set, BTM messaging uses the branch history format. The branch history
(HIST) packet in these messages provides a history of direct branch execution used for
reconstructing program flow. This packet is implemented as a left-shifting shift register.
The register is always pre-loaded with a value of one. This bit acts as a stop bit so that the
development tools can determine which bit is the end of the history information. The
pre-loaded bit itself is not part of the history, but is transmitted with the packet.

A value of one is shifted into the history buffer on a taken branch, conditional or
unconditional, and on any instruction whose predicate condition executed as true. A value
of zero is shifted into the history buffer on any instruction whose predicate condition
executed as false, as well as on branches not taken. This includes indirect as well as direct
branches not taken. For the evsel instruction, two bits are shifted in, corresponding to the
low element shifted in first, and the high element shifted in second, conditions.

11.7.3.4 Sequential Instruction Count (I-CNT)

The I-CNT packet is present in all BTM messages. For traditional branch messages, I-CNT
represents the number of sequential instructions, or non-taken branches in between
direct/indirect branch messages.

For branch history messages, I-CNT represents the number of instructions executed since
the last taken/non-taken direct branch, last taken indirect branch, or exception. Not-taken
indirect branches are considered sequential instructions and cause the instruction count to
increment. I-CNT also represents the number of instructions executed since the last
predicate instruction.

The sequential instruction counter overflows when its value reaches 255. The next BTM
message is converted to a synchronization type message.

A1 ⊕ A2 0000 0000 0000 0000 0000 1111 0110 0100

M1
(Address Message)

1111 0110 0100

Address Re-creation

A1 0000 0000 0000 0011 1111 1100 0000 0001

M1 0000 0000 0000 0000 0000 1111 0110 0100

A1 ⊕ M1 (A2) 0000 0000 0000 0011 1111 0011 0110 0101

Figure 11-26. Relative Address Generation and Re-Creation Example

11-32 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Program Trace

11.7.3.5 Program Trace Queueing

Nexus3 implements a programmable depth queue (a minimum of 32 entries is
recommended) for queuing all messages. Messages that enter the queue are transmitted
through the auxiliary pins in the order in which they are queued.

NOTE
If multiple trace messages need to be queued at the same time,
watchpoint messages have the highest priority:
(WPM → OTM → BTM → DTM).

11.7.4 Program Trace Timing Diagrams (2 MDO/1 MSEO
Configuration)

Figure 11-27. Program Trace—Indirect Branch Message (Traditional)

Figure 11-28. Program Trace—Indirect Branch Message (History)

00 01 00 00 00 00 00 00 10 01 01 10 10

TCODE = 4
Source processor = 0000
Number of sequential instructions = 128
Relative address = 0xA5

00

MCKO

MSEO_B

MDO[1:0]

00 11 01 00 00 00 01 01 10 10 01 01 10

TCODE = 28
Source processor = 0000
Number of sequential instructions = 0
Relative address = 0xA5
Branch history = 010100101 (w/ stop)

10 00

MCKO

MSEO_B

MDO[1:0]

Chapter 11. Nexus3 Module -33
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Data Trace

Figure 11-29. Program Trace—Direct Branch (Traditional) and Error Messages

Figure 11-30. Program Trace—Indirect Branch with Synchronization Message

11.8 Data Trace
This section deals with the data trace mechanism supported by the Nexus3 module. Data
trace is implemented by means of data write messaging (DWM) and data read messaging
(DRM) in accordance with the IEEE-ISTO 5001-2003 standard.

11.8.1 Data Trace Messaging (DTM)

Data trace messaging for the e200z6 is accomplished by snooping the e200z6 virtual data
bus between the CPU and MMU, and storing the information for qualifying access, based
on enabled features and matching target addresses. The Nexus3 module traces all data
access that meet the selected range and attributes.

Direct Branch Error

11 00 00 00 00 11 00 00 10 00 00 00 01

DBM:
TCODE = 3
Source processor = 0000
Number of sequential instructions = 3

Error:
TCODE = 8
Source processor = 0000
Error code = 1 (Queue overrun—BTM only)

00 00

MCKO

MSEO_B

MDO[1:0]

00 11 00 00 00 11 10 11 00 11 10 10 11

TCODE = 12
Source processor = 0000
Number of sequential instructions = 3
Full target address = 0xDEADFACE

11 01 11 10 10 10 11 01 11 00

MCKO

MSEO_B

MDO[1:0]

11-34 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Data Trace

NOTE
Data trace is only performed on the e200z6 virtual data bus.
This allows for data visibility for e200z6 processors which
incorporate a data cache. Only e200z6 CPU-initiated accesses
are traced. No DMA accesses to the AHB system bus are
traced.

Data trace messaging can be enabled in one of two ways:

• Setting DC1[TM] to enable data trace.

• Using WT[DTS] to enable data trace on watchpoint hits. e200z6 watchpoints are
configured within the Nexus1 module.

11.8.2 DTM Message Formats

The Nexus3 block supports five types of DTM messages: data write, data read, data write
synchronization, data read synchronization, and error messages.

11.8.2.1 Data Write Messages

The data write message contains the data write value and the address of the write access,
relative to the previous data trace message. Data write message information is messaged
out in the format shown in Figure 11-31:

11.8.2.2 Data Read Messages

The data read message contains the data read value and the address of the read access,
relative to the previous data trace message. Data read message information is messaged out
in the format shown in Figure 11-32:

(1–64 bits) (1–32 bits) (3 bits) (4 bits) (6 bits)

Data Value(s) Relative Address
Data
Size

Source
Process

TCODE
(000101)

Maximum length = 109 bits; Minimum length = 15 bits

Figure 11-31. Data Write Message Format

(1–64 bits) (1–32 bits) (3 bits) (4 bits) (6 bits)

Data Value(s) Relative Address
Data
Size

Source
Process

TCODE
(000110)

Maximum length = 109 bits; Minimum length = 15 bits

Figure 11-32. Data Read Message Format

Chapter 11. Nexus3 Module -35
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Data Trace

NOTE
For e200z6-based CPUs, the double-word encoding,
p_tsiz = 0, indicates a double-word access and is sent out as a
single data trace message with a single 64-bit data value.

The debug/development tool needs to distinguish the two cases
based on the family of e200z6 processors.

11.8.2.3 DTM Overflow Error Messages

An error message occurs when the message queue is full and a new message cannot be
queued. The FIFO discards incoming messages until it has completely emptied the queue.
Once emptied, an error message is queued. The error encoding indicates which types of
messages attempted to be queued while the FIFO was being emptied.

If only a DTM attempts to enter the queue while it is being emptied, the error message
incorporates the data trace only error encoding, 00010. If both OTM and DTM attempt to
enter the queue, the error message incorporates the OTM and data trace error encoding,
00111. If a watchpoint also attempts to be queued while the FIFO is being emptied, the error
message incorporates error encoding, 01000.

NOTE
DC1[OVC] can be set to delay the CPU in order to alleviate,
but not eliminate, potential overrun situations.

Error information is messaged out in the format shown in Figure 11-33:

11.8.2.4 Data Trace Synchronization Messages

A data trace write/read with synchronization message is messaged through the auxiliary
port, provided data trace is enabled, for the following conditions (see Table 11-22):

• Initial data trace message after exit from system reset or whenever data trace is
enabled

• Upon returning from a CPU low power state

• Upon returning from debug mode

• After occurrence of queue overrun (can be caused by any trace message), provided
data trace is enabled

(5 bits) (4 bits) (6 bits)

Error Code (00010/00111/01000 Source Process TCODE (001000)

Fixed length = 15 bits

Figure 11-33. Error Message Format

11-36 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Data Trace

• After the periodic data trace counter has expired, indicating 255 data trace messages
have occurred without synchronization since the last with-synchronization message
occurred

• Upon assertion of the event-in nex_evti_b pin, the first data trace message is a
synchronization message if the EIC bits of the DC1 register have enabled this
feature.

• Upon data trace write/read after the previous DTM message was lost due to an
attempted access to a secure memory location (for SOC’s with security)

• Upon data trace write/read after the previous DTM message was lost due to a
collision entering the FIFO between the DTM message and any of the following:

— watchpoint message

— ownership trace message

— branch trace message

Data trace synchronization messages provide the full address, without leading zeros, and
insure that development tools fully synchronize with data trace regularly. Synchronization
messages provide a reference address for subsequent DTMs, in which only the unique
portion of the data trace address is transmitted. The format for data trace write/read with
synchronization messages is as follows:

Exception conditions that result in data trace synchronization are summarized in
Table 11-22.

(1–64 bits) (1–32 bits) (3 bits) (4 bits) (6 bits)

Data Value Full Address
Data
Size

Source
Process

TCODE
(001101 or 001110)

Maximum length = 109 bit; Minimum length = 15 bits

Figure 11-34. Data Write/Read with Synchronization Message Format

Table 11-22. Data Trace Exception Summary

Exception Condition Exception Handling

System reset negation At the negation of JTAG reset (j_trst_b), queue pointers, counters, state machines,
and registers within the Nexus3 module are reset. If data trace is enabled, the first
data trace message is a data write/read with synchronization message.

Data trace enabled The first data trace message (after data trace has been enabled) is a
synchronization message.

Exit from low power/debug Upon exit from a low-power mode or debug mode the next data trace message is
converted to a data write/read with synchronization message.

Chapter 11. Nexus3 Module -37
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Data Trace

11.8.3 DTM Operation

11.8.3.1 DTM Queueing

Nexus3 implements a programmable depth queue (a minimum of 32 entries is
recommended) for queuing all messages. Messages that enter the queue are transmitted
through the auxiliary pins in the order in which they are queued.

NOTE
If multiple trace messages need to be queued simultaneously,
watchpoint messages have the highest priority:
WPM → OTM → BTM → DTM.

11.8.3.2 Relative Addressing

The relative address feature is compliant with the IEEE-ISTO 5001-2003 standard
recommendations and is designed to reduce the number of bits transmitted for addresses of
data trace messages. Refer to Section 11.7.3.2, “Relative Addressing,” for details.

Queue overrun An error message occurs when a new message cannot be queued due to the
message queue being full. The FIFO discards messages until it has completely
emptied the queue. Once emptied, an error message is queued. The error
encoding indicates which type(s) of messages attempted to be queued while the
FIFO was being emptied. The next DTM message in the queue will be a data
write/read with synchronization message.

Periodic data trace
synchronization

A forced synchronization occurs periodically after 255 data trace messages have
been queued. A data write/read with synchronization message is queued. The
periodic data trace message counter then resets.

Event in If the Nexus module is enabled, a nex_evti_b assertion initiates a data trace
write/read with synchronization message upon the next data write/read (if data
trace is enabled and the EIC bits of the DC1 register have enabled this feature).

Attempted access to secure
memory

For SOCs which implement security, any attempted read or write to secure
memory locations temporarily disables data trace and causes the corresponding
DTM to be lost. A subsequent read/write queues a data trace read/write with
synchronization message.

Collision priority All messages have the following priority: WPM → OTM → BTM → DTM. A DTM
message which attempts to enter the queue at the same time as a watchpoint
message or ownership trace message or branch trace message will be lost. A
subsequent read/write queues a data trace read/write with synchronization
message.

Table 11-22. Data Trace Exception Summary (continued)

Exception Condition Exception Handling

11-38 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Data Trace

11.8.3.3 Data Trace Windowing

Data write/read messages are enabled by the RWT1n field in the data trace control register,
DTC, for each DTM channel. Data trace windowing is achieved through the address range
defined by the DTEA and DTSA registers and by DTC[RC1n]. All e200z6-initiated
read/write accesses which fall inside or outside these address ranges, as programmed, are
candidates to be traced.

11.8.3.4 Data Access/Instruction Access Data Tracing

The Nexus3 module is capable of tracing both instruction access data or data access data.
Each trace window can be configured for either type of data trace by setting the DI1n field
within the data trace control register for each DTM channel.

11.8.3.5 e200z6 Bus Cycle Special Cases

NOTE
For misaligned accesses, crossing 64-bit boundary, the access
is broken into two accesses. If both accesses are within the data
trace range, two DTMs are sent: one with a size encoding
indicating the size of the original access, that is word, and one
with a size encoding for the portion which crossed the
boundary, that is 3-byte. See Table 3-10 for examples of
misaligned accesses.

Table 11-23. e200z6 Bus Cycle Cases

Special Case Action

e200z6 bus cycle aborted Cycle ignored

e200z6 bus cycle with data error (TEA) Data trace message discarded

e200z6 bus cycle completed without error Cycle captured and transmitted

e200z6 (AHB) bus cycle initiated by Nexus3 Cycle ignored

e200z6 bus cycle is an instruction fetch Cycle ignored

e200z6 bus cycle accesses misaligned data (across 64-bit
boundary)—both first and second transactions within data
trace range

First and second cycle captured and two DTMs
transmitted

e200z6 bus cycle accesses misaligned data (across 64-bit
boundary)—first transaction within data trace range;
second transaction out of data trace range

First cycle captured and transmitted; second
cycle ignored

e200z6 bus cycle accesses misaligned data (across 64-bit
boundary)—first transaction out of data trace range;
second transaction within data trace range

First cycle ignored; second cycle captured and
transmitted

Chapter 11. Nexus3 Module -39
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Data Trace

NOTE
An STM (store) to the cache’s store buffer within the data trace
range initiates a DTM message. If the corresponding memory
access causes an error, a checkstop condition occurs. The
debug/development tool should use this indication to invalidate
the previous DTM.

11.8.4 Data Trace Timing Diagrams (8 MDO/2 MSEO
Configuration)

Figure 11-35. Data Trace—Data Write Message

Figure 11-36. Data Trace—Data Read with Synchronization Message

Figure 11-37. Error Message (Data Trace Only Encoded)

1010100000000101 00010100 11101111

11 00 00 01 00

TCODE = 5
Source processor = 0000
Data size = 010 (half word)
Relative address = 0xA5
Write data = 0xBEEF

11

10111110

MCKO

MSEO_B[1:0]

MDO[7:0]

1100000000001110 01011001 11010001

11 00

TCODE = 14
Source processor = 0000
Data size = 000 (byte)
Full access address = 0x01468ACE
Write data = 0x5C

00101000

01

00000000

11

01011100

MCKO

MSEO_B[1:0]

MDO[7:0]

0000100000001000

11 00 11

TCODE = 8
Source processor = 0000
Error code = 2 (queue overrun - DTM only)

xxxxxxxx

xx

MCKO

MSEO_B[1:0]

MDO[7:0]

11-40 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Watchpoint Support

11.9 Watchpoint Support
This section details the watchpoint features of the Nexus3 module.

11.9.1 Overview

The Nexus3 module provides watchpoint messaging by means of the auxiliary pins, as
defined by the IEEE-ISTO 5001-2003 standard.

Nexus3 is not compliant with class 4 breakpoint/watchpoint requirements defined in the
standard. The breakpoint/watchpoint control register is not implemented.

11.9.2 Watchpoint Messaging

Enabling watchpoint messaging is done by setting the watchpoint enable bit in the DC1
register. Setting the individual watchpoint sources is supported through the e200z6 Nexus1
module. The e200z6 Nexus1 module is capable of setting multiple address and/or data
watchpoints. Please refer to Chapter 10, “Debug Support,” for details on watchpoint
initialization.

When these watchpoints occur, a watchpoint event signal from the Nexus1 module causes
a message to be sent to the queue to be messaged out. This message includes the watchpoint
number indicating which watchpoint caused the message.

The occurrence of any of the e200z6-defined watchpoints can be programmed to assert the
event out, nex_evto_b, pin for one period of the output clock, nex_mcko; see Table 11-28
for details on nex_evto_b.

Watchpoint information is messaged out in the format shown in Figure 11-38:

Figure 11-38. Watchpoint Message Format.

(8 bit) (4 bits) (6 bits)

Watchpoint Source Source Process TCODE (001111)

Fixed length = 18 bits

Table 11-24. Watchpoint Source Encoding

Watchpoint Source (8-Bits) Watchpoint Description

0000_0001 e200z6 watchpoint #0 (IAC1 from Nexus1)

0000_0010 e200z6 watchpoint #1 (IAC2 from Nexus1)

0000_0100 e200z6 watchpoint #2 (IAC3 from Nexus1)

0000_1000 e200z6 watchpoint #3 (IAC4 from Nexus1)

0001_0000 e200z6 watchpoint #4 (DAC1 from Nexus1)

Chapter 11. Nexus3 Module -41
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Watchpoint Support

11.9.3 Watchpoint Error Message

An error message occurs when the message queue is full and a new message cannot be
queued. The FIFO discards messages until it has completely emptied the queue. Once
emptied, an error message is queued. The error encoding indicates which types of messages
attempted to be queued while the FIFO was being emptied.

If only a watchpoint message attempts to enter the queue while it is being emptied, the error
message incorporates the watchpoint-only error encoding, 00110. If an OTM and/or
program trace and/or data trace message also attempts to enter the queue while it is being
emptied, the error message incorporates error encoding 01000.

NOTE
DC1[OVC] can be set to delay the CPU in order to alleviate,
but not eliminate, potential overrun situations.

Error information is messaged out in the format, shown in Figure 11-39:

11.9.4 Watchpoint Timing Diagram (2 MDO/1 MSEO
Configuration)

Figure 11-40. Watchpoint Message and Watchpoint Error Message

0010_0000 e200z6 watchpoint #5 (DAC2 from Nexus1)

0100_0000 e200z6 watchpoint #6 (DCNT1 from Nexus1)

1000_0000 e200z6 watchpoint #7 (DCNT2 from Nexus1)

(5 bits) (4 bits) (6 bits)

Error Code (00110/01000 Source Process TCODE (001000)

Fixed length = 15 bits

Figure 11-39. Error Message Format

Table 11-24. Watchpoint Source Encoding (continued)

Watchpoint Source (8-Bits) Watchpoint Description

Watchpoint Error

11 11 00 00 10 00 00 00 10 00 00 10 01

WPM:
TCODE = 15
Source processor = 00
Watchpoint number = 2

Error:
TCODE = 8
Source processor = 00
Error code = 6 (Queue overrun—WPM only)

00

p_mcko

p_mseo_b

p_mdo[1:0]

11-42 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Nexus3 Read/Write Access to Memory-Mapped Resources

11.10 Nexus3 Read/Write Access to Memory-Mapped
Resources

The read/write access feature allows access to memory-mapped resources through the
JTAG/OnCE port. The read/write mechanism supports single as well as block reads and
writes to e200z6 AHB resources.

The Nexus3 module is capable of accessing resources on the e200z6 system bus, AHB,
with multiple configurable priority levels. Memory-mapped registers and other non-cached
memory can be accessed through the standard memory map settings.

All accesses are set up and initiated by the read/write access control/status register, RWCS,
as well as RWA and RWD.

Using RWCS, RWA and RWD, memory-mapped e200z6 AHB resources can be accessed
through Nexus3. The following sections describe the steps which are required to access
memory-mapped resources.

NOTE
Read/write access can only access memory-mapped resources
when system reset is cleared. Misaligned accesses are not
supported in the e200z6 Nexus3 module.

11.10.1 Single Write Access

NOTE

In the first three steps, the registers are initialized using the access method outlined in
Section 11.5, “Nexus3 Register Access through JTAG/OnCE.”

1. Initialize RWA using the Nexus register index of 0x9; see Table 11-7. Configure as
shown below:

— Write address = 0xnnnn_nnnn (write address)

2. Initialize RWCS using the Nexus register index of 0x7; see Table 11-7. Configure
the fields as shown in Table 11-25:

Table 11-25. Single Write Access Field Settings

Field Setting

AC (Access control) 1 (indicates start access)

MAP (Map select) 000 (primary memory map)

PR (Access priority) 00 (lowest priority)

RW (Read/write) 1 (write access)

SZ (Word size) 0nn (32-bit, 16-bit, 8-bit)

CNT (Access count) 0x0000 or 0x0001 (single access)

Chapter 11. Nexus3 Module -43
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Nexus3 Read/Write Access to Memory-Mapped Resources

NOTE
Access count (CNT) of 0x0000 or 0x0001 performs a single
access.

3. Initialize RWD using the Nexus register index of 0xA; see Table 11-7. Configure as
shown below:

— Write data = 0xnnnn_nnnn (write data)

4. The Nexus block then arbitrates for the AHB system bus and transfers the data
value from the RWD register to the memory-mapped address in RWA. When the
access has completed without error (ERR=0), Nexus asserts the nex_rdy_b signal
(see Table 11-28 for detail on nex_rdy_b) and clears RWCS[DV]. This indicates
that the device is ready for the next access.

NOTE
Only the nex_rdy_b signal and the DV and ERR fields within
RWCS provide read/write access status to the external
development tool.

11.10.2 Block Write Access (Non-Burst Mode)
1. For a non-burst block write access, follow Steps 1, 2, and 3 outlined in

Section 11.10.1, “Single Write Access,” to initialize the registers, but use a value
greater than one (0x0001) for RWCS[CNT].

2. The Nexus block then arbitrates for the AHB system bus and transfers the first data
value from the RWD register to the memory mapped address in RWA. When the
transfer has completed without error (ERR = 0), the address from the RWA register
is incremented to the next word size (specified in RWCS[SZ]) and the number from
the CNT field is decremented. Nexus then asserts the nex_rdy_b pin. This indicates
that the device is ready for the next access.

3. Repeat step 3 in Section 11.10.1, “Single Write Access,” until the internal CNT
value is zero. When this occurs, RWCS[DV] is cleared to indicate the end of the
block write access.

11.10.3 Block Write Access (Burst Mode)
1. For a burst block write access, follow steps 1 and 2 outlined in Section 11.10.1,

“Single Write Access” to initialize the registers, using a value of four (double word)
for RWCS[CNT] and an RWCS[SZ] value of 0b011, indicating 64-bit access.

2. Initialize the burst data buffer (RWD register) through the access method outlined
in Section 11.5, “Nexus3 Register Access through JTAG/OnCE,” using the Nexus
register index of 0xA; see Table 11-7.

3. Repeat step 2 until all double-word values are written to the buffer.

11-44 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Nexus3 Read/Write Access to Memory-Mapped Resources

NOTE
The data values must be shifted in 32 bits at a time,
least-significant bit first (that is, double-word write = two word
writes to RWD).

4. The Nexus block then arbitrates for the AHB system bus and transfers the burst
data values from the data buffer to the AHB beginning from the memory mapped
address in RWA. For each access within the burst, the address from the RWA
register is incremented to the next double-word size (as specified in RWCS[SZ]),
modulo the length of the burst, and the number from the CNT field is decremented.

5. When the entire burst transfer has completed without error (ERR=0), Nexus3 then
asserts the nex_rdy_b pin, and RWCS[DV] is cleared to indicate the end of the
block write access.

NOTE
The actual RWA and RWCS[CNT] values are not changed
when executing a block write access, burst or non-burst. The
original values can be read by the external development tool at
any time.

11.10.4 Single Read Access
1. Initialize RWA with the access method outlined in Section 11.5, “Nexus3 Register

Access through JTAG/OnCE,” using the Nexus register index of 0x9; see
Table 11-7. Configure as shown below:

— Read address = 0xnnnn_nnnn (read address)

2. Initialize RWCS with the access method outlined in Section 11.5, “Nexus3 Register
Access through JTAG/OnCE,” using the Nexus register index of 0x7, see
Table 11-7. Configure the bits as shown in Table 11-26:

NOTE
Access count (CNT) of 0x0000 or 0x0001 performs a single
access.

Table 11-26. Single Read Access Parameter Settings

Parameter Settings

Access control (AC) 1 (to indicate start access)

Map select (MAP) 000 (primary memory map)

Access priority (PR) 00 (lowest priority)

Read/write (RW) 0 (read access)

Word size (SZ) 0nn (32-bit, 16-bit, 8-bit)

Access count (CNT) 0x0000 or 0x0001(single access)

Chapter 11. Nexus3 Module -45
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Nexus3 Read/Write Access to Memory-Mapped Resources

3. The Nexus block then arbitrates for the AHB system bus and the read data is
transferred from the AHB to the RWD register. When the transfer is completed
without error (ERR=0), Nexus asserts the nex_rdy_b pin (see Table 11-28 for
details on nex_rdy_b) and sets RWCS[DV]. This indicates that the device is ready
for the next access.

4. The data can then be read from RWD with the access method outlined in
Section 11.5, “Nexus3 Register Access through JTAG/OnCE,” using the Nexus
register index of 0xA; see Table 11-7.

NOTE
Only the nex_rdy_b signal and the DV and ERR bits within
RWCS provide read/write access status to the external
development tool.

11.10.5 Block Read Access (Non-Burst Mode)
1. For a non-burst block read access, follow steps 1 and 2 outlined in Section 11.10.4,

“Single Read Access” to initialize the registers, but using a value greater than one
(0x0001) for RWCS[CNT].

2. The Nexus block then arbitrates for the AHB system bus and the read data is
transferred from the AHB to the RWD register. When the transfer has completed
without error (ERR = 0), the address from RWA is incremented to the next word
size (specified in the SZ field) and the number from the CNT field is decremented.
Nexus then asserts the nex_rdy_b pin. This indicates that the device is ready for the
next access.

3. The data can then be read from RWD with the access method outlined in
Section 11.5, “Nexus3 Register Access through JTAG/OnCE,” using the Nexus
register index of 0xA, see Table 11-7.

4. Repeat steps 3 and 4 in Section 11.10.4, “Single Read Access,” until the CNT value
is zero. When this occurs, RWCS[DV] is set to indicate the end of the block read
access.

11.10.6 Block Read Access (Burst Mode)
1. For a burst block read access, follow steps 1 and 2 outlined in Section 11.10.4,

“Single Read Access,” to initialize the registers, using a value of four
(double-words) for the CNT field and a SZ field indicating 64-bit access in RWCS.

2. The Nexus block then arbitrates for the AHB system bus and the burst read data is
transferred from the AHB to the data buffer (RWD register). For each access within
the burst, the address from the RWA register is incremented to the next
double-word, specified in the SZ field, and the number from the CNT field is
decremented.

11-46 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Nexus3 Read/Write Access to Memory-Mapped Resources

3. When the entire burst transfer has completed without error (ERR=0), Nexus then
asserts the nex_rdy_b pin and RWCS[DV] is set to indicate the end of the block
read access.

4. The data can then be read from the burst data buffer (RWD register) with the access
method outlined in Section 11.5, “Nexus3 Register Access through JTAG/OnCE,”
using the Nexus register index of 0xA, see Table 11-7.

5. Repeat step 3 until all double-word values are read from the buffer.

NOTE
The data values must be shifted out 32-bits at a time, least
significant bit first, that is double-word read = two word reads
from RWD.

NOTE
The actual RWA and CNT values within RWCS are not
changed when executing a block read access, burst or
non-burst. The original values can be read by the external
development tool at any time.

11.10.7 Error Handling

The Nexus3 module handles various error conditions as described in the following sections.

11.10.7.1 AHB Read/Write Error

All address and data errors that occur on read/write accesses to the e200z6 AHB system bus
return a transfer error encoding on the p_hresp[1:0] signals. If this occurs, the following
steps are taken:

1. The access is terminated without retrying, and RWCS[AC] is cleared.

2. RWCS[ERR] is set.

3. The error message is sent, TCODE = 8, indicating read/write error.

11.10.7.2 Access Termination

The following cases are defined for sequences of the read/write protocol that differ from
those described in the above sections.

1. If RWCS[AC] is set to start read/write accesses and invalid values are loaded into
RWD or RWA, an AHB access error may occur. This is handled as described above.

Chapter 11. Nexus3 Module -47
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Nexus3 Pin Interface

2. If a block access is in progress, all cycles are not completed, and the RWCS register
is written, the original block access is terminated at the boundary of the nearest
completed access.

a) If RWCS[AC] is set, the next read/write access begins and the RWD can be
written to/read from.

b) If RWCS[AC] is cleared, the read/write access is terminated at the nearest
completed access. This method can be used to break/early terminate block
accesses.

11.10.7.3 Read/Write Access Error Message

The read/write access error message is sent out when an AHB system bus access error, read
or write, has occurred.

Error information is messaged out in the format shown in Figure 11-41:

11.11 Nexus3 Pin Interface
This section details the Nexus3 pins and pin protocol.

The Nexus3 pin interface provides the function of transmitting messages from the messages
queues to the external tools. It is also responsible for handshaking with the message queues.

11.11.1 Pins Implemented

The Nexus3 module implements one nex_evti_b and either one nex_mseo_b or two
nex_mseo_b[1:0]. It also implements a configurable number of nex_mdo[n:0] pins,
nex_rdy_b pin, nex_evto_b pin, and one clock output pin, nex_mcko. The output pins are
synchronized to the Nexus3 output clock, nex_mcko.

All Nexus3 input functionality is controlled through the JTAG/OnCE port, in compliance
with IEEE 1149.1. (See Section 11.5, “Nexus3 Register Access through JTAG/OnCE,” for
details.) The JTAG pins are incorporated as I/O to the e200z6 processor and are further
described in Section 10.5.2, “JTAG/OnCE Signals.”

(5 bits) (4 bits) (6 bits)

Error Code (00011) Source Process TCODE (001000)

Fixed length = 15 bits

Figure 11-41. Error Message Format

11-48 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Nexus3 Pin Interface

The auxiliary pins are used to send and receive messages and are described in Table 11-28.

The Nexus auxiliary port arbitration pins are used when the Nexus3 module is implemented
in a multiple Nexus SoC that shares a single auxiliary output port. The arbitration is
controlled by an SoC-level Nexus port control module (NPC). Refer to Section 11.13 for
details on Nexus port arbitration.

Table 11-27. JTAG Pins for Nexus3

JTAG Pin I/O Description of JTAG Pins (included in e200z6 Nexus1)

j_tdo O Test data output. j_tdo is the serial output for test instructions and data. It is
three-stateable and is actively driven in the shift-IR and shift-DR controller states. It
changes on the falling edge of j_tclk.

j_tdi I test data input. j_tdi receives serial test instruction and data. TDI is sampled on the
rising edge of j_tclk.

j_tms I Test mode select. Input pin used to sequence the OnCE controller state machine.
j_tms is sampled on the rising edge of j_tclk.

j_tclk I Test clock. Input pin used to synchronize the test logic and control register access
through the JTAG/OnCE port.

j_trst_b I Test reset. Input pin used to asynchronously initialize the JTAG/OnCE controller.

Table 11-28. Nexus3 Auxiliary Pins

Auxiliary Pin I/O Description of Auxiliary Pins

nex_mcko O Message clock out. A free running output clock to development tools for timing of
nex_mdo[n:0] and nex_mseo_b[1:0] pin functions. nex_mcko is programmable
through the DC1 register.

nex_mdo[n–0] O Message data out. Used for OTM, BTM, and DTM. External latching of nex_mdo[n:0]
occurs on the rising edge of the Nexus3 clock (nex_mcko).

nex_mseo_b[1–0] O Message start/end out. Indicate when a message on the nex_mdo[n:0] pins has
started, when a variable length packet has ended, and when the message has ended.
External latching of nex_mseo_b[1–0] occurs on the rising edge of the Nexus3 clock
(nex_mcko). One- or two-pin MSEO functionality is determined at integration time
according to the SOC implementation

nex_rdy_b O Ready. Used to indicate to the external tool that the Nexus block is ready for the next
read/write access. If Nexus is enabled, this signal is asserted upon successful
completion (without error) of an AHB system bus transfer (Nexus read or write) and
is held asserted until the JTAG/OnCE state machine reaches the capture_dr state.
Upon exit from system reset or if Nexus is disabled, nex_rdy_b remains de-asserted

nex_evto_b O Event out. An output whose assertion indicates that one of two events has occurred
based on the bits in DC1[EOC]. nex_evto_b is held asserted for 1 cycle of nex_mcko:
 • One (or more) watchpoints has occurred (from Nexus1) and EOC = 00
 • Debug mode was entered (jd_debug_b asserted from Nexus1) and EOC = 01

nex_evti_b I Event in. An input whose assertion initiates one of two events based on DC1[EIC] (if
the Nexus module is enabled at reset):
 • Program trace and data trace synchronization messages (provided program trace

and data trace are enabled and EIC = 00).
 • Debug request to e200z6 Nexus1 module (provided EIC = 01 and this feature is

implemented).

Chapter 11. Nexus3 Module -49
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Nexus3 Pin Interface

11.11.2 Pin Protocol

The protocol for the e200z6 processor transmitting messages through the auxiliary pins is
accomplished with the MSEO pin function outlined in Table 11-30. Both single- and
dual-pin cases are shown.

nex_mseo_b[1:0] is used to signal the end of variable-length packets, and not fixed length
packets. nex_mseo_b[1:0] is sampled on the rising edge of the Nexus3 clock, nex_mcko.

Figure 11-42 illustrates the state diagram for single pin MSEO transfers.

Table 11-29. Nexus Port Arbitration Signals

Nexus Port
Arbitration Pins

Input/
Output

Description of Arbitration Pins

nex_aux_req[1:0] O Nexus auxiliary request. Output signals indicating to an SoC level Nexus arbiter a request
for access to the shared Nexus auxiliary port in a multiple Nexus implementation. The
priority encodings are determined by how many messages are currently in the message
queues, see Table 11-31).

nex_aux_busy O Nexus auxiliary busy. An output signal to an SoC level Nexus arbiter indicating that the
Nexus3 module is currently transmitting its message after being granted the Nexus
auxiliary port.

npc_aux_grant I Nexus auxiliary grant. An input from the SoC level Nexus port controller (NPC) indicating
that the auxiliary port has been granted to the Nexus3 module to transmit its message.

ext_multi_nex_sel I Multiple Nexus select. A static signal indicating that the Nexus3 module is implemented
within a multiple Nexus environment. If set, port control and arbitration is controlled by the
SoC-level arbitration module (NPC).

Table 11-30. MSEO Pin(s) Protocol

nex_mseo_b Function Single nex_mseo_b data (serial) Dual nex_mseo_b[1:0] data

Start of message 1–1–0 11–00

End of message 0–1–1–(more ones) 00 (or 01)–11–(more ones)

End of variable length packet 0–1–0 00–01

Message transmission 0s 00s

Idle (no message) 1s 11s

11-50 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Nexus3 Pin Interface

Figure 11-42. Single-Pin MSEO Transfers

Note that the end message state does not contain valid data on nex_mdo[n:0]. Also, it is not
possible to have two consecutive end packet messages. This implies the minimum packet
size for a variable length packet is 2x the number of nex_mdo[n:0] pins. This ensures that
a false end-of-message state is not entered by emitting two consecutive 1s on nex_mseo_b
before the actual end of message.

Normal

Transfer

nex_mseo_b=1

nex_mseo_b=1

nex_mseo_b=0

nex_mseo_b=0

nex_mseo_b=1

nex_mseo_b=1

nex_mseo_b=0

nex_mseo_b=0

nex_mseo_b=0nex_mseo_b=1

Not Allowed

End

Packet

Idle

MDO: Invalid

Stage

Message

End

Message
MDO: Invalid

Chapter 11. Nexus3 Module -51
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Nexus3 Pin Interface

Figure 11-43 illustrates the state diagram for dual-pin MSEO transfers.

Figure 11-43. Dual-Pin MSEO Transfers

The dual-pin MSEO option is more robust than the single-pin option. Termination of the
current message may immediately be followed by the start of the next message on
consecutive clocks. An extra clock to end the message is not necessary as with the one
MSEO pin option. The dual-pin option also allows for consecutive end packet states. This
can be an advantage when small, variable sized packets are transferred.

NOTE
The end message state may also indicate the end of a
variable-length packet as well as the end of the message when
using the dual-pin option.

Normal

Transfer

End

Message

nex_mseo_b[1:0]=11

nex_mseo_b[1:0]=11

nex_mseo_b[1:0]=00

nex_mseo_b[1:0]=00

nex_mseo_b[1:0]=01

nex_mseo_b[1:0]=01

nex_mseo_b[1:0]=00

nex_mseo_b[1:0]=00

nex_mseo_b[1:0]=00

nex_mseo_b[1:0]=11

nex_mseo_b[1:0]=01

End

Packet

nex_mseo_b[1:0]=11

nex_mseo_b[1:0]=11

nex_mseo_b[1:0]=10

Start

Message

nex_mseo_b[1:0]=10

nex_mseo_b[1:0]=10

nex_mseo_b[1:0]=01

nex_mseo_b[1:0]=01

Idle

MDO: Invalid

11-52 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Rules for Output Messages

11.12 Rules for Output Messages
e200z6-based class 3–compliant embedded processors must provide messages through the
auxiliary port in a consistent manner as described below:

• A variable-length packet within a message must end on a port boundary.

• A variable-length packet may start within a port boundary only when following a
fixed-length packet. If two variable-length packets end and start on the same clock,
it is impossible to know which bit is from the last packet and which bit is from the
next packet.

• Whenever a variable-length packet is sized such that it does not end on a port
boundary, it is necessary to extend and zero fill the remaining bits after the
highest-order bit so that it can end on a port boundary.

For example, if the nex_mdo[n:0] port is 2 bits wide and the unique portion of an indirect
address TCODE is 5 bits, the remaining 1 bit of nex_mdo[n:0] must be packed with a zero.

11.13 Auxiliary Port Arbitration
In a multiple Nexus environment, the Nexus3 module must arbitrate for the shared Nexus
port at the SoC level.The request scheme is implemented as a 2-bit request with various
levels of priority. The priority levels are defined in Table 11-31 below. The Nexus3 module
receives a 1-bit grant signal (npc_aux_grant) from the SoC level arbiter. When a grant is
received, the Nexus3 module begins transmitting its message following the protocol
outlined in Section 11.11.2, “Pin Protocol.” The Nexus3 module maintains control of the
port, by asserting the nex_aux_busy signal, until the MSEO state machine reaches the end
message state.

11.14 Examples
The following are examples of program trace and data trace messages.

Table 11-32 illustrates an example indirect branch message with 2 MDO/1 MSEO
configuration. Table 11-33 illustrates the same example with an 8 MDO/2 MSEO
configuration.

Table 11-31. MDO Request Encodings

Request Level
MDO Request Encoding

(nex_aux_req[1:0])
Condition of Queue

No request 00 No message to send

Low priority 01 Message queue less than half full

— 10 Reserved

High priority 11 Message queue at least half full

Chapter 11. Nexus3 Module -53
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Examples

Table 11-32. Indirect Branch Message Example (2 MDO/1 MSEO) 1

1 T0 and S0 are the least significant bits where: Tx = TCODE number (fixed);
Sx = Source processor (fixed); Ix = Number of instructions (variable); Ax = Unique
portion of the address (variable).

Clock nex_mdo[1:0] nex_mseo_b State

0 X X 1 Idle (or end of last message)

1 T1 T0 0 Start message

2 T3 T2 0 Normal transfer

3 T5 T4 0 Normal transfer

4 S1 S0 0 Normal transfer

5 S3 S2 0 Normal transfer

6 I1 I0 0 Normal transfer

7 I3 I2 0 Normal transfer

8 I5 I4 1 End packet

9 A1 A0 0 Normal transfer

10 A3 A2 0 Normal transfer

11 A5 A4 0 Normal transfer

12 A7 A6 1 End packet
Note: During clock 12, the nex_mdo[n:0]
pins are ignored in the single-MSEO case.

13 0 0 1 End message

14 T1 T0 0 Start message

Table 11-33. Indirect Branch Message Example (8 MDO/2 MSEO) 1

1 T0 and S0 are the least significant bits where: Tx = TCODE number (fixed); Sx = Source processor (fixed);
Ix = Number of instructions (variable); Ax = Unique portion of the address (variable).

Clock nex_mdo[7:0] nex_mseo_b[1:0] State

0 X X X X X X X X 1 1 Idle (or end of last message)

1 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start message

2 I5 I4 I3 I2 I1 I0 S3 S2 0 1 End packet

3 A7 A6 A5 A4 A3 A2 A1 A0 1 1 End packet/end message

4 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start message

11-54 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Examples

Table 11-35 illustrates examples of direct branch messages: one with 2 MDO/1 MSEO, and
one with 8 MDO/2 MSEO.

Table 11-36 illustrates an example data write message with 8 MDO/1 MSEO configuration,
and Table 11-37 illustrates the same DWM with 8 MDO/2 MSEO configuration

Table 11-34. Direct Branch Message Example (2 MDO/1 MSEO) 1

1 T0 and I0 are the least-significant bits where: Tx = TCODE number (fixed);
Sx = Source processor (fixed); Ix = Number of instructions (variable);
Ax = Unique portion of the address (variable).

Clock nex_mdo[1:0] nex_mseo_b State

0 X X 1 Idle (or end of last message)

1 T1 T0 0 Start message

2 T3 T2 0 Normal transfer

3 T5 T4 0 Normal transfer

4 S1 S0 0 Normal transfer

5 S3 S2 0 Normal transfer

6 I1 I0 1 End packet

7 0 0 1 End message

Table 11-35. Direct Branch Message Example (8 MDO / 2 MSEO) 1

1 T0 and I0 are the least-significant bits where: Tx = TCODE number (fixed); Sx = Source processor (fixed);
Ix = Number of instructions (variable); Ax = Unique portion of the address (variable).

Clock nex_mdo[7:0] nex_mseo_b[1:0] State

0 X X X X X X X X 1 1 Idle (or end of last message)

1 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start message

2 0 0 0 0 I1 I0 S3 S2 1 1 End packet/end message

3 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start message

Table 11-36. Data Write Message Example (8 MDO/1 MSEO) 1

1 T0, A0, D0 are the least-significant bits where: Tx = TCODE number (fixed); Sx = Source processor (fixed);
Zx = Data size (fixed); Ax = Unique portion of the address (variable); Dx = Write data (variable-8, 16 or 32-bit).

Clock nex_mdo[7:0] nex_mseo_b State

0 X X X X X X X X 1 Idle (or end of last message)

1 S1 S0 T5 T4 T3 T2 T1 T0 0 Start message

2 A2 A1 A0 Z2 Z1 Z0 S3 S2 1 End packet

3 D7 D6 D5 D4 D3 D2 D1 D0 0 Normal transfer

4 0 0 0 0 0 0 0 0 1 End packet

5 0 0 0 0 0 0 0 0 1 End message

Chapter 11. Nexus3 Module -55
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

IEEE 1149.1 (JTAG) RD/WR Sequences

11.15 IEEE 1149.1 (JTAG) RD/WR Sequences
This section contains example JTAG/OnCE sequences used to access resources.

11.15.1 JTAG Sequence for Accessing Internal Nexus
Registers

Table 11-37. Data Write Message Example (8 MDO/2 MSEO) 1

1 T0, A0, D0 are the least-significant bits where: Tx = TCODE number (fixed); Sx = Source processor (fixed);
Zx = Data size (fixed); Ax = Unique portion of the address (variable); Dx = Write data (variable - 8, 16 or 32-bit).

Clock nex_mdo[7:0] nex_mseo_b[1:0] State

0 X X X X X X X X 1 1 Idle (or end of last message)

1 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start message

2 A2 A1 A0 Z2 Z1 Z0 S3 S2 0 1 End packet

3 D7 D6 D5 D4 D3 D2 D1 D0 1 1 End packet/end message

Table 11-38. Accessing Internal Nexus3 Registers through JTAG/OnCE

Step TMS Pin Description

1 1 IDLE—SELECT–DR_SCAN

2 0 SELECT–DR_SCAN—CAPTURE-DR (Nexus command register value loaded in shifter)

3 0 CAPTURE-DR—SHIFT-DR

4 0 (7) TCK clocks issued to shift in direction (RD/WR) bit and first 6 bits of Nexus register address

5 1 SHIFT-DR—EXIT1–DR (7th bit of Nexus reg. shifted in)

6 1 EXIT1-DR—UPDATE-DR (Nexus shifter is transferred to Nexus command register)

7 1 UPDATE-DR—SELECT-DR_SCAN

8 0 SELECT-DR_SCAN—CAPTURE-DR (Register value is transferred to Nexus shifter)

9 0 CAPTURE-DR—SHIFT-DR

10 0 (31) TCK clocks issued to transfer register value to TDO pin while shifting in TDI value

11 1 SHIFT-DR—EXIT1–DR (MSB of value is shifted in/out of shifter)

12 1 EXIT1-DR—UPDATE–DR (if access is write, shifter is transferred to register)

13 0 UPDATE-DR—RUN-TEST/IDLE (transfer complete–Nexus controller to register select state)

11-56 e200z6 PowerPC Core Reference Manual
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

IEEE 1149.1 (JTAG) RD/WR Sequences

11.15.2 JTAG Sequence for Read Access of Memory-Mapped
Resources

11.15.3 JTAG Sequence for Write Access of Memory-Mapped
Resources

Table 11-39. Accessing Memory-Mapped Resources (Reads)

Step # TCLK clocks Description

1 13 Nexus command = write to read/write access address register (RWA)

2 37 Write RWA (initialize starting read address–data input on TDI)

3 13 Nexus command = write to read/write control/status register (RWCS)

4 37 Write RWCS (initialize read access mode and CNT value–data input on TDI)

5 — Wait for falling edge of nex_rdy_b pin

6 13 Nexus command = read read/write access data register (RWD)

7 37 Read RWD (data output on TDO)

8 — If CNT > 0, go back to Step 5

Table 11-40. Accessing Memory-Mapped Resources (Writes)

Step # TCLK clocks Description

1 13 Nexus command = write to read/write access control/status register (RWCS)

2 37 Write RWCS (initialize write access mode and CNT value–data input on TDI)

3 13 Nexus command = write to read/write address register (RWA)

4 37 Write RWA (initialize starting write address–data input on TDI)

5 13 Nexus command = read read/write access data register (RWD)

6 37 Write RWD (data output on TDO)

7 — Wait for falling edge of nex_rdy_b pin

8 — If CNT > 0, go back to Step #5

Index Index-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Index

A
Accumulator

signal processing engine (SPE) APU, 2-19
Address translation

see Memory management unit (MMU)
Alignment

misaligned accesses, 3-1
Alignment interrupt, 5-14

see also Interrupt handling
ALTCTXCR (alternate context control register), 2-69
Auxiliary processing units (APUs)

APU unavailable interrupt, 5-17
cache line lock and unlock APU, 4-12
debug APU, 10-2
embedded single-precision floating-point (SPFP)

APUs, 3-2, 3-15–3-16, 7-2, 7-11
signal processing engine (SPE) APU, 5-25, 7-2, 7-11

B
Block diagram, 1-2
Book E architecture

interrupt and exception model
interrupt registers, 2-19

Branch prediction, 7-7
instruction model, 3-5
see also Branch target buffer (BTB)

Branch registers
condition register (CR), 2-12–2-15

CR setting for compare instructions, 2-14
CR setting for integer instructions, 2-14
CR setting for store conditional instructions, 2-14

count register (CTR), 2-16
link register (LR), 2-15

Branch target buffer (BTB), 7-7
branch unit control and status register (BUCSR), 2-54
software requirements for changes to PID register, 7-8

Branch trace messaging (BTM), see Nexus3 module
Breakpoints, see Instruction address compare registers

(IAC1–IAC4)
BUCSR (branch unit control and status register), 2-54

C
Cache

cache control, 4-5
cache management instructions, 4-10

and exception handling, 4-14
transfer type encodings, 4-16

cache touch instructions (no-ops), 4-11
configuration register (L1CFG0), 2-57
control and status register (L1CSR0), 2-55
enable/disable, 4-7
flush and invalidate register (L1FINV0), 2-59
flush/invalidate by set and way, 4-9
invalidation, 4-8
registers

configuration register (L1CFG0), 4-5
control and status register (L1CSR0), 4-5
flush and invalidate register (L1FINV0), 4-6

cache line lock and unlock APU, 4-12
DSI handler recommendations, 4-13
effects of cache instructions on locked lines, 4-14
flash clearing of lock bits, 4-14
instructions, 4-13

coherency (software), 4-6
debug (hardware)

and cache operation, 4-18, 10-33
cache push and store buffers, 4-18
WIMGE bits, 4-18

cache debug access control reg. (CDACNTL), 4-19
cache debug access data register (CDADATA), 4-20

operation, 4-4
cache-inhibited accesses, 4-8
line fill, 4-4, 4-7
line replacement, 4-8
match criteria for hit, 4-4
modified data, push and store buffers, 4-9, 4-18
reset state, 4-6

organization, 4-2
cache line tag format, 4-3
cache set index, 4-4
physically addressed (no effective addr. aliasing),

4-6
overview of on-chip cache, 4-1
parity, 4-6

Index-2 e200z6 PowerPC Core Reference Manual MO
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

D–E

reservation instructions and cache interactions, 4-18
Carry bit (for integer operations), 2-12
CDACNTL (cache debug access control register), 4-19
CDADATA (cache debug access data register), 4-20
Context switching

registers, 2-68–2-69
Core complex interface

internal signal definitions, 8-4
CPUCSR (CPU status and control scan chain reg.),

10-26
CR (condition register), 2-12–2-15

CR setting for compare instructions, 2-14
CR setting for integer instructions, 2-14
CR setting for store conditional instructions, 2-14

Critical input interrupt (cint), 5-9
see also Interrupt handling

CSC (client select control register), 11-10
CSRR0 (critical save/restore register 0), 2-20, 5-1
CSRR1 (critical save/restore register 1), 2-21, 5-1
CTL (control state register), 10-27
CTR (count register), 2-16
CTXCR (context control register), 2-68–2-69

D
DAC1–DAC4 (data address compare registers), 2-36
Data organization in memory and data transfers, 3-1
Data TLB error interrupt, 5-20

 see also Interrupt handling
Data trace messaging (DTM), see Nexus3 module
DBCNT (debug counter register), 2-36
DBCR0–DBCR3 (debug control and status registers),

2-37–2-50
DBSR (debug status register), 2-50–2-51
DC1, DC2 (development control registers), 11-12
DEAR (data exception address register), 2-21, 6-16
Debug facilities

cache operation during debug, 4-18–4-21, 10-33
accesses through JTAG/OnCE port, 4-19, 10-34
cache debug access control reg. (CDACNTL), 4-19
cache debug access data register (CDADATA), 4-20
merging line-fill and late-write buffers into cache,

4-19
debug APU, 3-6
exceptions, 5-22

see also Exceptions
interrupts, 5-21

see also Interrupt handling
MMU implications, 6-18
Nexus3 module, see Nexus3 module
OnCE controller, 10-10–10-32

protocol and commands, 10-17
enabling, using, and exiting external debug mode,

10-34

entering debug mode, 10-24
register access requirements, 10-22–10-24

signals, 10-14
external, 10-15
internal, 10-15

overview
debug APU, 10-2
hardware debug facilities, 10-3
software debug facilities, 10-2

Book E compatibility, 10-2
power management considerations, 9-4
registers, 2-35–2-51, 10-4–10-5

control state register (CTL), 10-27
CPU status and control scan chain (CPUSCR),

10-26
instruction address FIFO buffer (PC FIFO), 10-30
instruction register (IR), 10-26
machine state register (MSR), 10-30
OnCE command register (OCMR), 10-18
OnCE control register (OCR), 10-21
OnCE status register (OSR), 10-18
program counter register (PC), 10-29
write-back bus (WBBR (lower and upper)), 10-29

software debug events and exceptions, 10-5
watchpoint signaling, 10-32

DEC (decrementer register), 2-34
DECAR (decrementer auto-reload register), 2-34
Decrementer

DEC (decrementer register), 2-34
DECAR (decrementer auto-reload register), 2-34
decrementer interrupt, 5-17

 see also Interrupt handling
Doze mode, see Power management
DS (development status register), 11-14
DSI (data storage interrupt), 5-12

 see also Interrupt handling
DSRR0 (debug save/restore register 0), 2-25, 5-1
DSRR1 (debug save/restore register 1), 2-26, 5-1
DTC (data trace control register), 11-18
DTEA1–2 (data trace end address 1, 2 registers), 11-19
DTSA1–2 (data trace start address 1, 2 reg’s), 11-19

E
e200z6 overview, 1-1

auxiliary processing units (APUs)
cache line lock and unlock APU

instructions, 1-6
machine check

rfmci instruction, 1-6
single-precision floating-point (SPFP)

instructions, 1-6
block diagram, 1-2
comparisons with legacy PowerPC devices, 1-15

Index Index-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

F–F

exception handling, 1-16
instruction set compatibility, 1-16
little endian mode, 1-17
memory management unit (MMU) and TLBs, 1-17
reset operation, 1-17

exceptions and interrupt handling, 1-7
critical interrupts, 1-9
interrupt classes, 1-8
interrupt registers, 1-9
interrupt types, 1-9

features, 1-3
programming model

instruction set, 1-6
Effective address (EA), 6-3

translation to real address, see Memory management
unit (MMU)

Embedded floating-point instructions, 1-6
Embedded single-precision floating-point (SPFP) APUs

instructions, 3-2, 3-15–3-16
ESR (exception syndrome register), 2-24, 5-4, 5-5
Exception handling

extended model, 1-7
overview, 1-16

Exceptions
definition, 5-1
enabling and disabling, 5-32
exception handling, see Interrupt handling
exception processing, 5-2
exception syndrome register (ESR), 2-24, 5-4
handling, 1-8
priorities, 5-28
recognition and priority, 5-26
register settings

ESR, 5-1, 5-5
MSR, 5-6

returning from an exception handler, 5-32
summary table, 5-3
terminology, 5-2
types (more granular than interrupts)

alignment exception, 5-14
data access exceptions, 6-16
debug exceptions, 5-22
DSI exception, 5-12, 5-20, 5-21
exceptions and conditions, 5-3
FP unavailable exception, 5-16
machine check exception, 5-10
program exception, 5-15
reset exception, 5-23
system call exception, 5-17
TLB miss exceptions, 6-8

Execution model
self-modifying code, 4-16
sequential, 4-16

Execution timing

control unit, 7-2
core interface, 7-2
decode unit, 7-2, 7-3
dispatch, 7-2
execution units

block diagram, 7-1
branch unit, 7-2, 7-11
embedded vector and scalar single-precision

floating-point units, 7-2, 7-11
integer unit, 7-2, 7-10
load/store unit (LSU), 7-2, 7-11
SPE APU unit, 7-2, 7-11

feed-forwarding, 7-2
instruction pipeline, 7-3

decode/dispatch stage, 7-4, 7-9
execute stages (3), 7-4, 7-9

example, 7-9
fetch stages (2), 7-4, 7-6
in-order execution, 7-5
operation

change-of-flow operations, 7-13
load/store instructions, 7-12, 7-14
multiple-cycle instructions, 7-13
single-cycle instructions, 7-12
SPR instructions, 7-16, 7-18

serialization, 7-18
completion serialization, 7-18
dispatch serialization, 7-19
refetch serialization, 7-19

throughput, 7-10
instruction unit, 7-2, 7-3

branch processing unit, 7-3
branch target buffer (BTB), 7-7

branch target instruction prefetch buffer, 7-3
instruction buffer, 7-3, 7-6

instruction register (IR), 7-6
interrupt recognition and exceptions, 7-19
operand placement and performance, 7-36
timings and clock cycles for each instruction, 7-2,

7-22–7-36
interrupt recognition and timing, 7-20
SPE and embedded floating-point APU, 7-23

SPE embedded scalar floating-point instruction
timing, 7-31

SPE integer complex instruction timing, 7-27
SPE integer simple instruction timing, 7-24
SPE load/store instruction timing, 7-25
SPE vector floating-point instruction timing, 7-30

write-back, 7-2

F
Feed-forwarding, see Execution timing
Fixed-interval timer

Index-4 e200z6 PowerPC Core Reference Manual MO
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

G–I

fixed-interval timer interrupt, 5-18
see also Interrupt handling

Floating-point model
floating-point unavailable interrupt, 5-16

 see also Interrupt handling
FP unavailable exception, 5-16

G
GPRn (general-purpose registers 0–31), 2-11
Guarded attribute (G bit)

see Memory/cache access attributes (WIMGE bits)

H
HIDn (hardware implementation-dependent registers)

HID0, 2-52
HID1, 2-54

I
IAC1–IAC4 (instruction address compare registers),

2-35
Instruction address compare

as breakpoints, 2-35
Instruction address FIFO buffer (PC FIFO), 10-30
Instruction pipeline, see Execution timing
Instruction register (IR), see Execution timing,

instruction unit
Instruction set

compatibility, 1-16
overview, 1-6

Instruction TLB error interrupt, 5-20
 see also Interrupt handling

Instructions
branch

predicting and resolution, 7-7
cache line lock and unlock APU instructions, 4-13
cache management instructions, 4-10
complete summary (sorted alphabetically), 3-18–3-25
complete summary (sorted by opcode), 3-25–3-33
debug APU

rfdi, 3-6, 3-7
e200z6-specific, 3-5
execution timing, see Execution timing
floating-point, 3-2, 3-15–3-16
interrupts and instruction execution, 3-5
invalid instruction forms, 3-17
isel (instruction select) APU, 3-6
isync, 5-33
load and store

memory synchronization, 3-4
lwarx, 3-4
mbar, 3-4
memory reservations, 3-4

memory synchronization, 3-4
msync, 3-4, 5-33
rfci, 5-32
rfdi, 5-32
rfi, 5-32
scalar floating-point, 1-6
SPE (signal processing engine APU), 3-7–3-14
SPFP (single-precision floating-point APUs)

floating-point, 3-15–3-16
stwcx., 3-4, 5-33
unsupported, 3-2

Integer exception register (XER), 2-11
Interrupt classes

categories, 1-8
Interrupt handling

classes of interrupts, 5-3
critical/non-critical, 5-3
precise/imprecise, 5-3
synchronous/asynchronous interrupts, 5-3

definition, 5-1
interrupt processing, 5-30, 7-19
interrupt types

alignment interrupt, 5-14
auxiliary processor unavailable, 5-25
critical input interrupt, 5-9
debug interrupts, 5-21
decrementer, 5-17
DSI (data storage interrupt), 5-12
fixed-interval timer, 5-18
floating-point unavailable interrupt, 5-16
ISI (instruction storage interrupt), 5-13
IVOR assignments, 5-9
machine check interrupt, 5-10, 5-11
program interrupt, 5-15
SPE floating-point data interrupt, 5-25
SPE floating-point round interrupt, 5-26
system call, 5-17
system reset interrupt, 5-23
TLB error

data TLB error interrupt, 5-20
instruction TLB error interrupt, 5-20
instruction/data register settings, 5-20

watchdog timer, 5-19
overview, 5-1
registers

critical save/restore 0 (CSRR0), 2-20
critical save/restore 1 (CSRR1), 2-21
critical save/restore register 0 (CSRR0), 5-1
critical save/restore register 1 (CSRR1), 5-1
data exception address (DEAR), 2-21
debug save/restore register 0 (DSRR0), 5-1
debug save/restore register 1 (DSRR1), 5-1
defined by Book E for interrupts, 2-19
e200z6-specific

Index Index-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

J–M

debug save/restore register 0 (DSRR0), 2-25
debug save/restore register 1 (DSRR1), 2-26
machine check syndrome (MCSR), 2-26

exception syndrome register (ESR), 2-24
interrupt vector offset (IVORn), 2-22
interrupt vector prefix (IVPR), 2-22
machine state register (MSR), 2-7, 5-5
save/restore 0 (SRR0), 2-20
save/restore 1 (SRR1), 2-20
save/restore register 0 (SRR0), 5-1
save/restore register 1 (SRR1), 5-1

return from interrupt handler, 5-32
Interrupt registers

overview, 1-9
Interrupts

types, 1-9
IPROT invalidation protection, 6-7

see also Memory management unit (MMU)
IR (instruction register), 10-26
isel (instruction select) APU, 3-6
ISI (instruction storage interrupt), 5-13

see also Interrupt handling
isync, 5-33
IVOR0–IVOR15, IVOR32–IVOR34 (interrupt vector

offset registers), 2-22
IVOR0–IVOR15, IVOR32–IVOR34 (vector offset

registers), 5-8, 5-9
IVPR (interrupt vector prefix register), 2-22, 5-7

J
JTAG interface

sequences
reads of memory-mapped resources, 11-56
writes of memory-mapped resources, 11-56

L
L1 cache, see Cache
L1CFG0 (L1 cache configuration register), 2-57
L1CSR0 (L1 cache control and status register), 2-55
L1FINV0 (L1 cache flush and invalidate register), 2-59
Load/store unit (LSU), 7-2, 7-11
LR (link register), 2-15
lwarx, 3-4

M
Machine check exception, 5-10
Machine check interrupt, 1-9, 5-10, 5-11

see also Interrupt handling
MAS0–MAS4, MAS6 (MMU assist registers),

2-63–2-67, 6-16
mbar, 3-4
MCSR (machine check syndrome register), 2-26

Memory management
overview, 1-17

Memory management unit (MMU)
address space, 6-3
address translation

address space, 6-3
effective to real translation, 6-2
field comparisons, 6-5
page size (effective address bits compared), 6-5
page size (real address generation), 6-5
translation flow, 6-3, 6-4
virtual addresses, 6-4

entry compare process, 6-5
debug implications, 6-18
effective addresses, 6-3
features, 6-1
MMU assist registers (MAS0–MAS4, MAS6), 6-16

field updates, 6-17
summary of fields, 6-17

overview, 6-1
permission attributes, 6-5

granting access, 6-6
process ID (and PID0 register), 6-4

software requirements relative to BTB, 7-8
registers, 2-59–2-67
TLB concept, 6-7
TLBs

access time, 6-8
entry compare process, 6-5
entry field definitions, 6-9
instructions, 6-2

tlbivax, 6-12, 6-14
tlbre, 6-10
tlbsx, 6-11, 6-14
tlbsync, 6-12
tlbwe, 6-11, 6-13

maintenance features, 6-1
programming model, 6-2

operations
coherency control, 6-13
load on reset, 6-14
miss exception update, 6-8
reading, 6-13
searching, 6-13
translation reload, 6-13
writing, 6-13

organization, 6-7
replacement algorithm, 6-8
software interface and instructions, 6-10

Memory model
sequential with single pipeline, 4-16

Memory subsystem
overview, 1-16

Memory synchronization, 3-4

Index-6 e200z6 PowerPC Core Reference Manual MO
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

N–N

reservation instructions, 3-4
synchronization instructions, 3-4

Memory/cache access attributes (WIMGE bits), 4-17
caching-inhibited accesses (I bit), 2-65, 4-17
endianness (little-endian) bit (E bit), 2-65, 4-18
guarded memory bit (G bit), 2-65, 4-17, 6-9
memory coherency required bit (M bit), 2-65, 4-17
write-through mode (W bit), 2-65, 4-17

mfspr
and MAS registers, 6-10

Misalignment in accesses, 3-1
MMUCFG (MMU configuration register), 2-60
MMUCSR0 (MMU control and status register), 2-59
MSCR (machine check syndrome register), 5-7
MSR (machine state register), 2-7, 5-5, 10-30
msync, 3-4, 5-33
mtspr

and MAS registers, 6-10

N
Nap mode, see Power management
Nexus3 module

access to memory-mapped resources, 11-42
block read access (burst mode), 11-45
block read access (non-burst), 11-45
block write access (burst mode), 11-43
block write access (non-burst), 11-43
single read access, 11-44
single write access, 11-42

auxiliary port
arbitration, 11-52
rules for output messages, 11-52

block diagram, 11-4
branch trace messaging (BTM)

data trace timing diagrams, 11-39
direct branch message instructions, 11-24
for program tracing, 11-23
indirect branch message instructions, 11-24
message formats, 11-25–11-30

BTM overflow error messages, 11-27
debug status messages, 11-27
direct branch messages (traditional), 11-26
indirect branch messages (history), 11-25
indirect branch messages (traditional), 11-26
program correlation messages, 11-27
program trace synchronization messages, 11-28
resource full messages, 11-26

operation, 11-30
branch/predicate instruction history (HIST),

11-31
enabling program trace, 11-30
program trace queueing, 11-32
relative addressing, 11-30

sequential instruction count (I-CNT), 11-31
program trace timing diagrams, 11-32–11-33
using branch history messages, 11-25
using tranditional program trace messages, 11-25

data trace messaging (DTM)
message formats, 11-34–11-37

data read messages, 11-34
data trace synchronization messages, 11-35
data write messages, 11-34
DTM overflow error messages, 11-35

operation
data access/instruction access data tracing, 11-38
data trace windowing, 11-38
DTM queueing, 11-37
relative addressing, 11-37
special cases (bus cycles), 11-38

error handling
access termination, 11-46
AHB read/write error, 11-46
read/write access error message, 11-47

example messages, 11-52
features, 11-2
IEEE 1149.1 (JTAG) sequences

reads of memory-mapped resources, 11-56
writes of memory-mapped resources, 11-56

operation
enabling Nexus3 module, 11-4
register access through JTAG/OnCE, 11-20
TCODEs supported, 11-5

ownership trace messaging (OTM), 11-21
error messages, 11-22
OTM flow, 11-23

programming model, 11-9
registers

client select control (CSC), 11-10
data trace control (DTC), 11-18
data trace end address 1, 2 (DTEA1, DTEA2),

11-19
data trace start address 1, 2 (DTSA1, DTSA2),

11-19
development control (DC1, DC2), 11-12
development status (DS), 11-14
port configuration (PCR), 11-10
read/write access address (RWA), 11-16
read/write access control/status (RWCS), 11-14
read/write access data (RWD), 11-16
watchpoint trigger (WT), 11-16

signal interface, 11-47
protocol, 11-49

terms and definitions, 11-1
watchpoint messaging, 11-40–11-41

error message format, 11-41
watchpoint timing diagrams, 11-41

Index Index-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

O–R

O
OCMR (OnCE command register), 10-18
OCR (OnCE control register), 10-21
OnCE controller interface

signals, 10-14
external, 10-15
internal, 10-15

OnCE controller, see Debug facilities
Operands

conventions, 3-1
OSR (OnCE status register), 10-18
Overflow (OV), 2-11
Ownership trace messaging, see Nexus3 module

P
Page sizes, see Memory management unit (MMU)
Parity, see Cache, parity
PC (program counter register), 10-29
PCR (port configuration register), 11-10
Permission attributes (MMU), 6-5

execute access permission, 6-6
read access permission, 6-6
write access permission, 6-6

PID0 (process ID register 0), 2-67, 6-4
see also Memory management unit (MMU)
software requirements relative to BTB, 7-8

Pipeline, see Execution timing
PIR (processor ID register), 2-9
Power management

control bits, 9-3
HID0[DOZE], 9-3
HID0[NAP], 9-3
HID0[SLEEP], 9-3
MSR[WE], 9-3

debug considerations, 9-4
power states, 9-1

active, 9-1
halted, 9-1
power-down (stopped), 9-1

signals, 9-2
software considerations, 9-3

PowerPC architecture
legacy support overview, 1-15

Process ID, 2-67
see also Memory management unit (MMU)

Process switching, 5-33
isync, 5-33
msync, 5-33
stwcx., 5-33

Program exception, 5-15
Program interrupt, 5-15

 see also Interrupt handling
Programming model

e200z6 core, 2-1
PVR (processor version register), 2-9

R
Registers

branch operations
condition register (CR), 2-12–2-15

CR setting for compare instructions, 2-14
CR setting for integer instructions, 2-14
CR setting for store conditional instructions, 2-14

count register (CTR), 2-16
link register (LR), 2-15

BTB
branch unit control and status (BUCSR), 2-54

cache control
L1 cache configuration (L1CFG0), 2-57, 4-5
L1 cache control and status (L1CSR0), 2-55, 4-5
L1 cache flush and invalidate (L1FINV0), 2-59, 4-6

context switching (fast)
alternate context control (ALTCTXCR), 2-69
context control register (CTXCR), 2-68–2-69

debug, 2-35–2-51, 10-4–10-5
cache debug access control (CDACNTL), 4-19
cache debug access data (CDADATA), 4-20
control state register (CTL), 10-27
CPU status and control scan chain (CPUSCR),

10-26
data address compare (DAC1–DAC4), 2-36
debug control and status registers

(DBCR0–DBCR3), 2-37–2-50
debug counter register (DBCNT), 2-36
debug status register (DBSR), 2-50–2-51
instruction address compare (IAC1–IAC4), 2-35
instruction register (IR), 10-26
machine state register (MSR), 10-30
OnCE command register (OCMR), 10-18
OnCE control register (OCR), 10-21
OnCE status register (OSR), 10-18
program counter (PC), 10-29
write-back bus (WBBR), 10-29

decrementer auto-reload (DECAR), 2-34
decrementer register (DEC), 2-34
e200z6-specific implementation registers, 2-5
embedded single-precision floating-point (SPFP)

SPEFSCR, 2-16
general purpose registers 0–31 (GPRn), 2-11
hardware implementation-dependent (HID)

HID0, 2-52
HID1, 2-54

integer exception (XER), 2-11
interrupt

critical save/restore 0 (CSRR0), 2-20, 5-1
critical save/restore 1 (CSRR1), 2-21, 5-1

Index-8 e200z6 PowerPC Core Reference Manual MO
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

S–S

data exception address (DEAR), 2-21, 6-16
defined by Book E, 2-19
e200z6-specific

debug save/restore 0 (DSRR0), 2-25, 5-1
debug save/restore 1 (DSRR1), 2-26, 5-1
machine check syndrome (MCSR), 2-26
machine check syndrome register (MCSR), 5-7

exception syndrome register (ESR), 2-24, 5-4
interrupt vector offset (IVORn), 2-22, 5-8
interrupt vector prefix (IVPR), 2-22, 5-7
save/restore 0 (SRR0), 2-20, 5-1
save/restore 1 (SRR1), 2-20, 5-1

machine state register (MSR), 5-5
MMU, 2-59–2-67

MMU assist (MAS0–MAS4, MAS6), 2-63–2-67,
6-16

MMU configuration register (MMUCFG), 2-60
MMU control and status (MMUCSR0), 2-59
process ID register 0 (PID0), 2-67
TLB configuration registers 0–1 (TLBnCFG), 2-61,

6-15
Nexus3

client select control (CSC), 11-10
data trace control (DTC), 11-18
data trace end address 1, 2 (DTEA1, DTEA2), 11-19
data trace start address 1, 2 (DTSA1, DTSA2),

11-19
development control (DC1, DC2), 11-12
development status (DS), 11-14
port configuration (PCR), 11-10
read/write access address (RWA), 11-16
read/write access control/status (RWCS), 11-14
read/write access data (RWD), 11-16
watchpoint trigger (WT), 11-16

processor control
machine state register (MSR), 2-7
processor ID register (PIR), 2-9
processor version register (PVR), 2-9
system version register (SVR), 2-10

reset settings, 2-74
signal processing engine (SPE) APU

accumulator, 2-19
SPEFSCR, 2-16

special-purpose (SPRs)
invalid SPR references, 2-70
software-use SPRs, USPRG0, 2-27
SPRG0-SPRG7, 2-27
summary, 2-71
synchronization requirements for SPRs, 2-70
unimplemented and read-only SPRs, 3-17

time base
TBL and TBU, 2-32
timer control register (TCR), 2-29
timer status register (TSR), 2-31

Reservation instructions
and cache interactions, 4-18

Reset
common vector, 1-17
register settings, 2-74
reset exception, 5-23

Returning from interrupt handler, 5-32
see also Interrupt handling

rfci, 5-32
rfdi, 3-6, 3-7, 5-32
rfi, 5-32
RWA (read/write access address register), 11-16
RWCS (read/write access control/status register), 11-14
RWD (read/write access data register), 11-16

S
Scan chain, 10-26
Self-modifying code, 4-16
Serialization, see Execution timing, instruction pipeline
Signal processing engine (SPE) APU

registers
accumulator, 2-19
SPEFSCR, 2-16

Signals
core signal definitions, 8-4
debug

OnCE controller signals, 10-14
external, 10-15
internal, 10-15

Nexus3 interface, 11-47
protocol, 11-49

Sleep mode, see Power management
SPE APU unavailable interrupt, 5-25

 see also Interrupt handling
SPE floating-point data interrupt, 5-25

 see also Interrupt handling
SPE floating-point round interrupt, 5-26

 see also Interrupt handling
SPEFSCR (SPE floating-point status and control

register), 2-16
SPFP (embedded single-precision floating-point) APUs

floating-point instructions, 3-15–3-16
SPR model

invalid SPR references, 2-70
SPR summary, 2-71
synchronization requirements for SPRs, 2-70
unimplemented and read-only SPRs, 3-17

SPRG0–SPRG7 (software use SPRs), 2-27
SRR0 (save/restore register 0), 2-20, 5-1
SRR1 (save/restore register 1), 2-20, 5-1
stwcx., 3-4, 4-18, 5-33
Summary overflow (SO), 2-11
SVR (system version register), 2-10

Index Index-9
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

T–X

Synchronization
execution of rfi, 5-32
memory synchronization, 3-4
memory synchronization instructions, 3-4

Synchronization requirements for SPRs, 2-70
System call interrupt, 5-17

 see also Interrupt handling
System reset interrupt, 5-23

 see also Interrupt handling

T
TBL and TBU (time base registers), 2-32
TCR (timer control register), 2-29
Time base, 2-28–2-35

registers
TBL and TBU, 2-32
timer control register (TCR), 2-29
timer status register (TSR), 2-31

Timing, instruction execution, see Execution timing
TLB concept, see Memory management unit (MMU)
TLBnCFG (TLB configuration registers 0–1), 2-61, 6-15
TLBs (translation lookaside buffers)

entry field definitions, 6-9
interrupts, 6-2
IPROT (protection from invalidation) field, 6-7
maintenance features

programming model, 6-1
miss exception not taken, 6-8
registers, 6-2

True little-endian pages, 2-65
TSR (timer status register), 2-31

U
Unsupported instructions and instruction forms, 3-2
USPRG0 (user SPR), 2-27

W
Watchdog timer

watchdog timer interrupt, 5-19
see also Interrupt handling

Watchpoint messaging, see Nexus3 module
Watchpoint signaling, see Debug facilities
WBBR (write-back bus register), 10-29
WIMGE bits

 see Memory/cache access attributes (WIMGE bits),
6-9

WT (watchpoint trigger register), 11-16

X
XER (integer exception register), 2-11

Index-10 e200z6 PowerPC Core Reference Manual MO
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

X–X

	Contents
	Figures
	Tables
	Chapter�1 e200z6 Overview
	1.1 Overview of the e200z6
	Figure�1-1. e500z6 Block Diagram
	1.1.1 Features

	1.2 Programming Model
	1.2.1 Register Set
	Figure�1-2. e200z6 Programmer’s Model

	1.3 Instruction Set
	Table�1-1. Cache Block Lock and Unlock APU Instructions�
	Table�1-2. Scalar and Vector Embedded Floating-Point APU Instructions�

	1.4 Interrupts and Exception Handling
	1.4.1 Exception Handling
	1.4.2 Interrupt Classes
	1.4.3 Interrupt Types
	1.4.4 Interrupt Registers
	Table�1-3. Interrupt Registers�
	Table�1-4. Exceptions and Conditions�

	1.5 Microarchitecture Summary
	1.5.1 Instruction Unit Features
	1.5.2 Integer Unit Features
	1.5.3 Load/Store Unit (LSU) Features
	1.5.4 L1 Cache Features
	1.5.5 MMU Features
	1.5.6 e200z6 System Bus (Core Complex Interface) Features
	1.5.7 Nexus3 Module Features

	1.6 Legacy Support of PowerPC Architecture
	1.6.1 Instruction Set Compatibility
	1.6.1.1 User Instruction Set
	1.6.1.2 Supervisor Instruction Set

	1.6.2 Memory Subsystem
	1.6.3 Exception Handling
	1.6.4 Memory Management
	1.6.5 Reset
	1.6.6 Little-Endian Mode

	Chapter�2 Register Model
	Figure�2-1. e200z6 Programmer’s Model
	2.1 PowerPC Book E Registers
	2.2 e200z6-Specific Registers
	2.3 Processor Control Registers
	2.3.1 Machine State Register (MSR)
	Figure�2-2. Machine State Register (MSR)
	Table�2-1. MSR Field Descriptions�

	2.3.2 Processor ID Register (PIR)
	Figure�2-3. Processor ID Register (PIR)
	Table�2-2. PIR Field Descriptions�

	2.3.3 Processor Version Register (PVR)
	Figure�2-4. Processor Version Register (PVR)
	Table�2-3. PVR Field Descriptions�

	2.3.4 System Version Register (SVR)
	Figure�2-5. System Version Register (SVR)
	Table�2-4. SVR Field Description�

	2.4 Registers for Integer Operations
	2.4.1 General-Purpose Registers (GPRs)
	2.4.2 Integer Exception Register (XER)
	Figure�2-6. Integer Exception Register (XER)
	Table�2-5. XER Field Descriptions�

	2.5 Registers for Branch Operations
	2.5.1 Condition Register (CR)
	Figure�2-7. Condition Register (CR)
	Table�2-6. BI Operand Settings for CR Fields�
	2.5.1.1 CR Setting for Integer Instructions
	Table�2-7. CR0 Field Descriptions�

	2.5.1.2 CR Setting for Store Conditional Instructions
	2.5.1.3 CR Setting for Compare Instructions
	Table�2-8. CR Setting for Compare Instructions�

	2.5.2 Link Register (LR)
	Figure�2-8. Link Register (LR)

	2.5.3 Count Register (CTR)
	Figure�2-9. Count Register (CTR)

	2.6 SPE and SPFP APU Registers
	2.6.1 Signal Processing/Embedded Floating-Point Status and Control Register (SPEFSCR)
	Figure�2-10. Signal Processing and Embedded Floating-Point Status and Control Register (SPEFSCR)
	Table�2-9. SPEFSCR Field Descriptions�

	2.6.2 Accumulator (ACC)

	2.7 Interrupt Registers
	2.7.1 Interrupt Registers Defined by Book E
	2.7.1.1 Save/Restore Register 0 (SRR0)
	Figure�2-11. Save/Restore Register 0 (SRR0)

	2.7.1.2 Save/Restore Register 1 (SRR1)
	Figure�2-12. Save/Restore Register 1 (SRR1)

	2.7.1.3 Critical Save/Restore Register 0 (CSRR0)
	Figure�2-13. Critical Save/Restore Register 0 (CSRR0)

	2.7.1.4 Critical Save/Restore Register 1 (CSRR1)
	Figure�2-14. Critical Save/Restore Register 1 (CSRR1)

	2.7.1.5 Data Exception Address Register (DEAR)
	Figure�2-15. Data Exception Address Register (DEAR)

	2.7.1.6 Interrupt Vector Prefix Register (IVPR)
	Figure�2-16. Interrupt Vector Prefix Register (IVPR)
	Table�2-10. IVPR Field Descriptions�

	2.7.1.7 Interrupt Vector Offset Registers (IVORs)
	Figure�2-17. Interrupt Vector Offset Registers (IVOR)
	Table�2-11. IVOR Field Descriptions�
	Table�2-12. IVOR Assignments�

	2.7.1.8 Exception Syndrome Register (ESR)
	Figure�2-18. Exception Syndrome Register (ESR)
	Table�2-13. ESR Field Descriptions�

	2.7.2 e200z6-Specific Interrupt Registers
	2.7.2.1 Debug Save/Restore Register 0 (DSRR0)
	Figure�2-19. Debug Save/Restore Register 0 (DSRR0)

	2.7.2.2 Debug Save/Restore Register 1 (DSRR1)
	Figure�2-20. Debug Save/Restore Register 1 (DSRR1)

	2.7.2.3 Machine Check Syndrome Register (MCSR)
	Figure�2-21. Machine Check Syndrome Register (MCSR)
	Table�2-14. MCSR Field Descriptions�

	2.8 Software-Use SPRs (SPRG0–SPRG7 and USPRG0)
	Figure�2-22. Software-Use SPRs (SPRG0–SPRG7 and USPRG0)

	2.9 Timer Registers
	Figure�2-23. Relationship of Timer Facilities to the Time Base
	2.9.1 Timer Control Register (TCR)
	Figure�2-24. Timer Control Register (TCR)
	Table�2-15. TCR Field Descriptions�
	Table�2-16. Timeout Period Selection (at 80 MHz)�

	2.9.2 Timer Status Register (TSR)
	Figure�2-25. Timer Status Register (TSR)
	Table�2-17. Timer Status Register Field Descriptions�

	2.9.3 Time Base (TBU and TBL)
	Figure�2-26. Time Base Upper/Lower Registers (TBU/TBL)

	2.9.4 Decrementer Register
	Figure�2-27. Decrementer Register (DEC)

	2.9.5 Decrementer Auto-Reload Register (DECAR)
	Figure�2-28. Decrementer Auto-Reload Register (DECAR)

	2.10 Debug Registers
	2.10.1 Debug Address and Value Registers
	2.10.1.1 Instruction Address Compare Registers (IAC1–IAC4)
	Figure�2-29. Instruction Address Compare Registers (IAC1–IAC4)

	2.10.1.2 Data Address Compare Registers (DAC1–DAC2)
	Figure�2-30. Data Address Compare Registers (DAC1–DAC2)

	2.10.2 Debug Counter Register (DBCNT)
	Figure�2-31. DBCNT Register

	2.10.3 Debug Control and Status Registers (DBCR0–DBCR3)
	2.10.3.1 Debug Control Register 0 (DBCR0)
	Figure�2-32. DBCR0 Register
	Table�2-18. DBCR0 Field Descriptions�

	2.10.3.2 Debug Control Register 1 (DBCR1)
	Figure�2-33. Debug Control Register 1 (DBCR1)
	Table�2-19. DBCR1 Field Descriptions�

	2.10.3.3 Debug Control Register 2 (DBCR2)
	Figure�2-34. DBCR2 Register
	Table�2-20. DBCR2 Field Descriptions�

	2.10.3.4 Debug Control Register 3 (DBCR3)
	Figure�2-35. DBCR3 Register
	Table�2-21. DBCR3 Field Descriptions�

	2.10.4 Debug Status Register (DBSR)
	Figure�2-36. DBSR Register
	Table�2-22. DBSR Field Descriptions�

	2.11 Hardware Implementation-Dependent Registers
	2.11.1 Hardware Implementation-Dependent Register 0 (HID0)
	Figure�2-37. Hardware Implementation-Dependent Register 0 (HID0)
	Table�2-23. HID0 Field Descriptions�

	2.11.2 Hardware Implementation-Dependent Register 1 (HID1)
	Figure�2-38. Hardware Implementation-Dependent Register 1 (HID1)
	Table�2-24. HID1 Field Descriptions�

	2.12 Branch Target Buffer (BTB) Registers
	2.12.1 Branch Unit Control and Status Register (BUCSR)
	Figure�2-39. Branch Unit Control and Status Register (BUCSR)
	Table�2-25. Branch Unit Control and Status Register�

	2.13 L1 Cache Configuration Registers
	2.13.1 L1 Cache Control and Status Register 0 (L1CSR0)
	Figure�2-40. L1 Cache Control and Status Register 0 (L1CSR0)
	Table�2-26. L1CSR0 Field Descriptions�

	2.13.2 L1 Cache Configuration Register 0 (L1CFG0)
	Figure�2-41. L1 Cache Configuration Register 0 (L1CFG0)
	Table�2-27. L1CFG0 Field Descriptions�

	2.13.3 L1 Cache Flush and Invalidate Register (L1FINV0)
	Figure�2-42. L1 Flush/Invalidate Register (L1FINV0)
	Table�2-28. L1FINV0 Field Descriptions�

	2.14 MMU Registers
	2.14.1 MMU Control and Status Register 0 (MMUCSR0)
	Figure�2-43. MMU Control and Status Register 0 (MMUCSR0)
	Table�2-29. MMUCSR0 Field Descriptions

	2.14.2 MMU Configuration Register (MMUCFG)
	Figure�2-44. MMU Configuration Register 1 (MMUCFG)
	Table�2-30. MMUCFG Field Descriptions�

	2.14.3 TLB Configuration Registers (TLBnCFG)
	2.14.3.1 TLB Configuration Register 0 (TLB0CFG)
	Figure�2-45. TLB Configuration Register 0 (TLB0CFG)
	Table�2-31. TLB0CFG Field Descriptions�

	2.14.3.2 TLB Configuration Register 1 (TLB1CFG)
	Figure�2-46. TLB Configuration Register 1 (TLB1CFG)
	Table�2-32. TLB1CFG Field Descriptions�

	2.14.4 MMU Assist Registers (MAS0–MAS4, MAS6)
	Figure�2-47. MAS Register 0 (MAS0) Format
	Table�2-33. MAS0—MMU Read/Write and Replacement Control
	Figure�2-48. MMU Assist Register 1 (MAS1)
	Table�2-34. MAS1 —Descriptor Context and Configuration Control�
	Figure�2-49. MMU Assist Register 2 (MAS2)
	Table�2-35. MAS2—EPN and Page Attributes�
	Figure�2-50. MMU Assist Register 3 (MAS3)
	Table�2-36. MAS3—RPN and Access Control
	Figure�2-51. MMU Assist Register 4 (MAS4)
	Table�2-37. MAS4—Hardware Replacement Assist Configuration Register
	Figure�2-52. MMU Assist Register 6 (MAS6))
	Table�2-38. MAS6—TLB Search Context Register 0

	2.14.5 Process ID Register (PID0)
	Figure�2-53. Process ID Register (PID0)

	2.15 Support for Fast Context Switching
	2.15.1 Context Control Register (CTXCR)
	Figure�2-54. Context Control Register (CTXCR)
	Table�2-39. CTXCR Field Descriptions�

	2.16 SPR Register Access
	2.16.1 Invalid SPR References
	Table�2-40. System Response to Invalid SPR Reference

	2.16.2 Synchronization Requirements for SPRs
	Table�2-41. Additional Synchronization Requirements for SPRs�

	2.16.3 Special Purpose Register Summary
	Table�2-42. Special Purpose Registers�

	2.16.4 Reset Settings
	Table�2-43. Reset Settings for e200z6 Resources�

	Chapter�3 Instruction Model
	3.1 Operand Conventions
	3.1.1 Data Organization in Memory and Data Transfers
	3.1.2 Alignment and Misaligned Accesses
	3.1.3 e200z6 Floating-Point Implementation

	3.2 Unsupported Instructions and Instruction Forms
	Table�3-1. Unsupported 32-Bit Book E Instructions�

	3.3 Memory Synchronization and Reservation Instructions
	Table�3-2. Memory Synchronization and Reservation Instructions—e200z6-Specific Details

	3.4 Branch Prediction
	3.5 Interruption of Instructions by Interrupt Requests
	3.6 e200z6-Specific Instructions
	3.6.1 Integer Select APU
	3.6.2 Debug APU
	3.6.3 SPE APU Instructions
	Table�3-3. SPE APU Vector Multiply Instruction Mnemonic Structure
	Table�3-4. Mnemonic Extensions for Multiply-Accumulate Instructions
	Table�3-5. SPE APU Vector Instructions�

	3.6.4 Embedded Vector and Scalar Single-Precision Floating-Point APU Instructions
	Table�3-6. Vector and Scalar SPFP APU Floating-Point Instructions�
	3.6.4.1 Options for Embedded Floating-Point APU Implementations
	Table�3-7. Embedded Floating–Point APU Options

	3.7 Unimplemented SPRs and Read-Only SPRs
	3.8 Invalid Instruction Forms
	Table�3-8. Invalid Instruction Forms�

	3.9 Instruction Summary
	3.9.1 Instruction Index Sorted by Mnemonic
	Table�3-9. Instructions Sorted by Mnemonic�

	3.9.2 Instruction Index Sorted by Opcode
	Table�3-10. Instructions Sorted by Opcode�

	Chapter�4 L1 Cache
	4.1 Overview
	Figure�4-1. e200z6 Unified Cache

	4.2 32-Kbyte Cache Organization
	Figure�4-2. Cache Organization and Line Format
	4.2.1 32-Kbyte Cache Line Tag Format
	Figure�4-3. Cache Tag Format
	Table�4-1. Tag Entry Field Descriptions�

	4.3 Cache Lookup
	Figure�4-4. 32-Kbyte Cache Lookup Flow

	4.4 Cache Control
	4.5 Cache Coherency
	4.6 Address Aliasing
	4.7 Cache Parity
	4.8 Operation of the Cache
	4.8.1 Cache at Reset
	4.8.2 Cache Enable/Disable
	4.8.3 Cache Fills
	4.8.4 Cache Line Replacement
	4.8.5 Cache-Inhibited Accesses
	4.8.6 Cache Invalidation
	4.8.7 Cache Flush/Invalidate by Set and Way

	4.9 Push and Store Buffers
	4.10 Cache Management Instructions
	Table�4-2. Cache Management Instructions�

	4.11 Touch Instructions
	4.12 Cache Line Locking/Unlocking APU
	Table�4-3. Cache Locking APU Instructions
	4.12.1 Effects of Other Cache Instructions on Locked Lines
	4.12.2 Flash Clearing of Lock Bits

	4.13 Cache Instructions and Exceptions
	4.13.1 Exception Conditions for Cache Instructions
	Table�4-4. Special Case Handling�

	4.13.2 Transfer Type Encodings for Cache Management Instructions
	Table�4-5. Transfer Type Encoding�

	4.14 Sequential Consistency
	4.15 Self-Modifying Code Requirements
	4.16 Page Table Control Bits
	4.16.1 Write-Through Stores
	4.16.2 Cache-Inhibited Accesses
	4.16.3 Memory Coherence Required
	4.16.4 Guarded Storage
	4.16.5 Misaligned Accesses and the Endian (E) Bit

	4.17 Reservation Instructions and Cache Interactions
	4.18 Effect of Hardware Debug on Cache Operation
	4.19 Cache Memory Access during Debug
	4.19.1 Merging Line-Fill and Late-Write Buffers into the Cache Array
	4.19.2 Cache Memory Access through JTAG/OnCE Port
	4.19.2.1 Cache Debug Access Control Register (CDACNTL)
	Figure�4-5. CDACNTL Register
	Table�4-6. Cache Debug Access Control Register Definition�

	4.19.2.2 Cache Debug Access Data Register (CDADATA)
	Figure�4-6. Cache Debug Access Data Register (CDADATA)
	Table�4-7. CDADATA Field Descriptions�

	Chapter�5 Interrupts and Exceptions
	5.1 Overview
	5.2 e200z6 Interrupts
	Table�5-1. Interrupt Classifications�
	Table�5-2. Exceptions and Conditions�

	5.3 Exception Syndrome Register (ESR)
	Table�5-3. ESR Field Descriptions�

	5.4 Machine State Register (MSR)
	Figure�5-1. Machine State Register (MSR)
	Table�5-4. MSR Field Descriptions�
	5.4.1 Machine Check Syndrome Register (MCSR)
	Table�5-5. MCSR Field Descriptions�
	5.4.1.1 Interrupt Vector Prefix Register (IVPR)
	Figure�5-2. Interrupt Vector Prefix Register (IVPR)
	Table�5-6. IVPR Field Descriptions�

	5.5 Interrupt Vector Offset Registers (IVORn)
	Figure�5-3. Interrupt Vector Offset Registers (IVOR)
	Table�5-7. IVOR Assignments�

	5.6 Interrupt Definitions
	5.6.1 Critical Input Interrupt (IVOR0)
	Table�5-8. Critical Input Interrupt Register Settings�

	5.6.2 Machine Check Interrupt (IVOR1)
	5.6.2.1 Machine Check Interrupt Enabled (MSR[ME]=1)
	Table�5-9. Machine Check Interrupt Register Settings�

	5.6.2.2 Checkstop State

	5.6.3 Data Storage Interrupt (IVOR2)
	Table�5-10. Data Storage Interrupt Register Settings�

	5.6.4 Instruction Storage Interrupt (IVOR3)
	Table�5-11. Instruction Storage Interrupt Register Settings�

	5.6.5 External Input Interrupt (IVOR4)
	Table�5-12. External Input Interrupt Register Settings�

	5.6.6 Alignment Interrupt (IVOR5)
	Table�5-13. Alignment Interrupt Register Settings�

	5.6.7 Program Interrupt (IVOR6)
	Table�5-14. Program Interrupt Register Settings�

	5.6.8 Floating-Point Unavailable Interrupt (IVOR7)
	Table�5-15. Floating-Point Unavailable Interrupt Register Settings�

	5.6.9 System Call Interrupt (IVOR8)
	Table�5-16. System Call Interrupt Register Settings�

	5.6.10 Auxiliary Processor Unavailable Interrupt (IVOR9)
	5.6.11 Decrementer Interrupt (IVOR10)
	Table�5-17. Decrementer Interrupt Register Settings�

	5.6.12 Fixed-Interval Timer Interrupt (IVOR11)
	Table�5-18. Fixed-Interval Timer Interrupt Register Settings�

	5.6.13 Watchdog Timer Interrupt (IVOR12)
	Table�5-19. Watchdog Timer Interrupt Register Settings�

	5.6.14 Data TLB Error Interrupt (IVOR13)
	Table�5-20. Data TLB Error Interrupt Register Settings�

	5.6.15 Instruction TLB Error Interrupt (IVOR14)
	Table�5-21. Instruction TLB Error Interrupt Register Settings�

	5.6.16 Debug Interrupt (IVOR15)
	Table�5-22. Debug Exceptions�
	Table�5-23. Debug Interrupt Register Settings�

	5.6.17 System Reset Interrupt
	Table�5-24. TSR Watchdog Timer Reset Status�
	Table�5-25. DBSR Most Recent Reset�
	Table�5-26. System Reset Interrupt Register Settings�

	5.6.18 SPE APU Unavailable Interrupt (IVOR32)
	Table�5-27. SPE Unavailable Interrupt Register Settings�

	5.6.19 SPE Floating-Point Data Interrupt (IVOR33)
	Table�5-28. SPE Floating-Point Data Interrupt Register Settings�

	5.6.20 SPE Floating-Point Round Interrupt (IVOR34)
	Table�5-29. SPE Floating-Point Round Interrupt Register Settings�

	5.7 Exception Recognition and Priorities
	5.7.1 Exception Priorities
	Table�5-30. e200z6 Exception Priorities�

	5.8 Interrupt Processing
	Table�5-31. MSR Setting Due to Interrupt�
	5.8.1 Enabling and Disabling Exceptions
	5.8.2 Returning from an Interrupt Handler

	5.9 Process Switching

	Chapter�6 Memory Management Unit
	6.1 Overview
	6.1.1 MMU Features
	6.1.2 TLB Entry Maintenance Features Summary
	Table�6-1. TLB Maintenance Programming Model�

	6.2 Effective-to-Real Address Translation
	Figure�6-1. Effective-to-Real Address Translation Flow
	6.2.1 Effective Addresses
	6.2.2 Address Spaces
	6.2.3 Virtual Addresses and Process ID
	6.2.4 Translation Flow
	Figure�6-2. Virtual Address and TLB-Entry Compare Process
	Table�6-2. Page Size (for e200z6 Core) and EPN Field Comparison�

	6.2.5 Permissions
	Figure�6-3. Granting of Access Permission

	6.3 Translation Lookaside Buffer
	Figure�6-4. e200z6 TLB1 Organization
	6.3.1 IPROT Invalidation Protection in TLB1
	6.3.2 Replacement Algorithm for TLB1
	Figure�6-5. Victim Selection

	6.3.3 TLB Access Time
	6.3.4 The G Bit (of WIMGE)
	6.3.5 TLB Entry Field Summary
	Table�6-3. TLB Entry Bit Fields for e200z6�

	6.4 Software Interface and TLB Instructions
	6.4.1 TLB Read Entry Instruction (tlbre)
	6.4.2 TLB Write Entry Instruction (tlbwe)
	6.4.3 TLB Search Indexed Instruction (tlbsx)
	6.4.4 TLB Invalidate (tlbivax) Instruction
	Table�6-4. tlbivax EA Bit Definitions�

	6.4.5 TLB Synchronize Instruction (tlbsync)

	6.5 TLB Operations
	6.5.1 Translation Reload
	6.5.2 Reading the TLB
	6.5.3 Writing the TLB
	6.5.4 Searching the TLB
	6.5.5 TLB Coherency Control
	6.5.6 TLB Miss Exception Update
	6.5.7 TLB Load on Reset
	Table�6-5. TLB Entry 0 Values after Reset

	6.6 MMU Configuration and Control Registers
	6.6.1 MMU Configuration Register (MMUCFG)
	6.6.2 TLB0 and TLB1 Configuration Registers
	6.6.3 DEAR Register
	6.6.4 MMU Control and Status Register 0 (MMUCSR0)
	6.6.5 MMU Assist Registers (MAS)
	6.6.5.1 MAS Registers Summary
	Figure�6-6. MMU Assist Registers Summary

	6.6.5.2 MAS Register Updates
	Table�6-6. MMU Assist Register Field Updates�

	6.7 Effect of Hardware Debug on MMU Operation

	Chapter�7 Instruction Pipeline and Execution Timing
	7.1 Overview of Operation
	Figure�7-1. e200z6 Block Diagram
	7.1.1 Instruction Unit

	7.2 Instruction Pipeline
	Figure�7-2. Seven-Stage Instruction Pipeline
	Figure�7-3. Pipeline
	7.2.1 Fetch Stages
	7.2.1.1 Instruction Buffer
	Figure�7-4. e200z6 Instruction Buffer

	7.2.1.2 Branch Target Buffer (BTB)
	Figure�7-5. e200z6 Branch Target Buffer
	Figure�7-6. Updating Branch History

	7.2.2 Decode Stage
	7.2.3 Execute Stages
	Figure�7-7. Pipelining—Execute and Write Back Stages
	7.2.3.1 Integer Execution Unit
	7.2.3.2 SPE Execution Unit
	7.2.3.3 Embedded Floating-Point Execution Units
	7.2.3.4 Load/Store Unit (LSU)
	7.2.3.5 Branch Execution Unit

	7.3 Pipeline Drawings
	7.3.1 Pipeline Operation for Instructions with Single-Cycle Latency
	Figure�7-8. Basic Pipeline Flow, Single-Cycle Instructions

	7.3.2 Basic Load and Store Instruction Pipeline Operation
	Figure�7-9. Basic Pipeline Flow, Load and Store Instructions

	7.3.3 Change-of-Flow Instruction Pipeline Operation
	Figure�7-10. Basic Pipeline Flow, Branch Instructions
	Figure�7-11. Basic Pipeline Flow, Branch Speculation

	7.3.4 Basic Multiple-Cycle Instruction Pipeline Operation
	Figure�7-12. Basic Pipeline Flow, Multiple-Cycle Instructions

	7.3.5 Additional Examples of Instruction Pipeline Operation for Load and Store
	Figure�7-13. Pipelined Load/Store Instructions
	Figure�7-14. Pipelined Load/Store Instructions with Wait-State
	Figure�7-15. Pipelined Load Instructions with Load Target Data Dependency
	Figure�7-16. Pipelined Instructions with Base Register Update Data Dependency

	7.3.6 Move to/from SPR Instruction Pipeline Operation
	Figure�7-17. mtspr, mfspr Instruction Execution - (1)
	Figure�7-18. mtmsr, wrtee, and wrteei Execution
	Figure�7-19. Cache/MMU mtspr, mfspr, and MMU Instruction Execution

	7.4 Control Hazards
	7.5 Instruction Serialization
	7.5.1 Completion Serialization
	7.5.2 Dispatch Serialization
	7.5.3 Refetch Serialization

	7.6 Interrupt Recognition and Exception Processing
	Figure�7-20. Interrupt Recognition and Exception Processing Timing
	Figure�7-21. Interrupt Recognition and Handler Instruction Execution—Load/Store in Progress
	Figure�7-22. Interrupt Recognition and Handler Instruction Execution—Multiple-Cycle Instruction A...

	7.7 Instruction Timings
	Table�7-1. Instruction Cycle Counts�
	7.7.1 SPE and Embedded Floating-Point APU Instruction Timing
	7.7.1.1 SPE Integer Simple Instruction Timing
	Table�7-2. Timing for SPE Integer Simple Instructions�

	7.7.1.2 SPE Load and Store Instruction Timing
	Table�7-3. SPE Load and Store Instruction Timing�

	7.7.1.3 SPE Complex Integer Instruction Timing
	Table�7-4. SPE Complex Integer Instruction Timing�

	7.7.1.4 SPE Vector Floating-Point Instruction Timing
	Table�7-5. SPE Vector Floating-Point Instruction Timing�

	7.7.1.5 Embedded Scalar Floating-Point Instruction Timing
	Table�7-6. Scalar SPE Floating-Point Instruction Timing�
	Table�7-7. Instruction Timing by Mnemonic�

	7.8 Effects of Operand Placement on Performance
	Table�7-8. Performance Effects of Operand Placement�

	Chapter�8 External Core Complex Interfaces
	8.1 Overview
	8.2 Signal Index
	Figure�8-1. e200z6 Signal Groups
	Table�8-1. Interface Signal Definitions�

	8.3 Signal Descriptions
	Table�8-2. Processor Clock Signal Description�
	Table�8-3. Descriptions of Signals Related to Reset�
	Table�8-4. Descriptions of Signals for the Address and Data Buses
	Table�8-5. Descriptions of Transfer Attribute Signals�
	Table�8-6. Descriptions of Signals for Byte Lane Specification�
	Table�8-7. Byte Strobe Assertion for Transfers�
	Table�8-8. Big-and Little-Endian Storage (64-bit GPR contains ‘A B C D E F G H’.)�
	Table�8-9. Descriptions of Signals for Transfer Control Signals�
	Table�8-10. Descriptions of Master ID Configuration Signals�
	Table�8-11. Descriptions of Interrupt Signals�
	Table�8-12. Descriptions of Timer Facility Signals�
	Table�8-13. Descriptions of Processor Reservation Signals�
	Table�8-14. Descriptions of Miscellaneous Processor Signals�
	8.3.1 Processor State Signals
	Table�8-15. Descriptions of Processor State Signals�
	Table�8-16. Descriptions of Power Management Control Signals�
	Table�8-17. Descriptions of Debug Events Signals�
	Table�8-18. e200z6 Debug / Emulation Support Signals�
	Table�8-19. Descriptions of Debug/Emulation (Nexus 1/ OnCE) Support Signals
	Table�8-20. e200z6 Development Support (Nexus3) Signals�
	Table�8-21. JTAG Primary Interface Signals�
	Table�8-22. Descriptions of JTAG Interface Signals�
	Figure�8-2. Example External JTAG Register Design

	8.3.2 JTAG ID Signals
	Table�8-23. JTAG Register ID Fields�
	Table�8-24. JTAG ID Register Inputs�
	Table�8-25. Descriptions of JTAG ID Signals�

	8.4 Internal Signals
	Table�8-26. Internal Signal Descriptions�

	8.5 Timing Diagrams
	8.5.1 Processor Instruction/Data Transfers
	8.5.1.1 Basic Read Transfer Cycles
	Figure�8-3. Basic Read Transfer—Single-cycle Reads, Full Pipelining

	8.5.1.2 Read Transfer with Wait State
	Figure�8-4. Read with Wait-State, Single-Cycle Reads, Full Pipelining

	8.5.1.3 Basic Write Transfer Cycles
	Figure�8-5. Basic Write Transfers—Single-Cycle Writes, Full Pipelining

	8.5.1.4 Write Transfer with Wait States
	Figure�8-6. Write with Wait-state, Single-Cycle Writes, Full Pipelining

	8.5.1.5 Read and Write Transfers
	Figure�8-7. Single-Cycle Reads, Single-Cycle Write, Full Pipelining
	Figure�8-8. Single-Cycle Read, Write, Read—Full Pipelining
	Figure�8-9. Multiple-Cycle Reads with Wait-State, Single-Cycle Writes, Full Pipelining
	Figure�8-10. Multi-Cycle Read with Wait-State, Single-cycle write, Read with Wait-State, Single-C...

	8.5.1.6 Misaligned Accesses
	Figure�8-11. Misaligned Read, Read, Full Pipelining
	Figure�8-12. Misaligned Write, Write, Full Pipelining
	Figure�8-13. Misaligned Write, Single Cycle Read Transfer, Full Pipelining

	8.5.1.7 Burst Accesses
	Figure�8-14. Burst Read Transfer
	Figure�8-15. Burst Read with Wait-State Transfer
	Figure�8-16. Burst Write Transfer
	Figure�8-17. Burst Write with Wait-State Transfer

	8.5.1.8 Error Termination Operation
	Figure�8-18. Read and Write Transfers: Instruction Read with Error, Data Read, Write, Full Pipeli...
	Figure�8-19. Data Read with Error, Data Write Retracted, Instruction Read, Full Pipelining
	Figure�8-20. Misaligned Write with Error, Data Write Retracted, Burst Read Substituted, Full Pipe...
	Figure�8-21. Burst Read with Error Termination, Burst Write

	8.5.2 Power Management
	Figure�8-22. Wakeup Control Signal (p_wakeup)

	8.5.3 Interrupt Interface
	Figure�8-23. Interrupt Interface Input Signals
	Figure�8-24. Interrupt Pending Operation
	Figure�8-25. Interrupt Acknowledge Operation
	Figure�8-26. Interrupt Acknowledge Operation—2

	Chapter�9 Power Management
	9.1 Overview
	Table�9-1. Power States�
	Figure�9-1. Power Management State Diagram
	9.1.1 Power Management Signals
	Table�9-2. Descriptions of Timer Facility and Power Management Signals�

	9.1.2 Power Management Control Bits
	Table�9-3. Power Management Control Bits�

	9.1.3 Software Considerations for Power Management
	9.1.4 Debug Considerations for Power Management

	Chapter�10 Debug Support
	10.1 Introduction
	10.2 Overview
	10.2.1 Software Debug Facilities
	10.2.1.1 PowerPC Book E Compatibility

	10.2.2 Additional Debug Facilities
	10.2.3 Hardware Debug Facilities
	Figure�10-1. e200z6 Debug Resources

	10.3 Debug Registers
	Table�10-1. Debug Registers�

	10.4 Software Debug Events and Exceptions
	Table�10-2. Debug Event Descriptions�

	10.5 External Debug Support
	10.5.1 OnCE Introduction
	Figure�10-2. OnCE TAP Controller and Registers
	Figure�10-3. OnCE Controller as an FSM

	10.5.2 JTAG/OnCE Signals
	Table�10-3. JTAG/OnCE Primary Interface Signals�

	10.5.3 OnCE Internal Interface Signals
	Table�10-4. OnCE Internal Interface Signals�
	10.5.3.1 CPU Address and Attributes
	10.5.3.2 CPU Data

	10.5.4 OnCE Interface Signals
	Table�10-5. OnCE Interface Signals

	10.5.5 e200z6 OnCE Controller and Serial Interface
	Figure�10-4. e200z6 OnCE Controller and Serial Interface
	10.5.5.1 e200z6 OnCE Status Register (OSR)
	Figure�10-5. OnCE Status Register (OSR)
	Table�10-6. OSR Field Descriptions�

	10.5.5.2 e200z6 OnCE Command Register (OCMD)
	Figure�10-6. OnCE Command Register (OCMD)
	Table�10-7. OCMD Field Descriptions�

	10.5.5.3 e200z6 OnCE Control Register (OCR)
	Figure�10-7. OnCE Control Register
	Table�10-8. OnCE Control Register Bit Definitions�

	10.5.6 Access to Debug Resources
	Table�10-9. OnCE Register Access Requirements�

	10.5.7 Methods for Entering Debug Mode
	Table�10-10. Methods for Entering Debug Mode�

	10.5.8 CPU Status and Control Scan Chain Register (CPUSCR)
	Figure�10-8. CPU Scan Chain Register (CPUSCR)
	10.5.8.1 Instruction Register (IR)
	10.5.8.2 Control State Register (CTL)
	Figure�10-9. Control State Register (CTL)
	Table�10-11. CTL Field Definitions�

	10.5.8.3 Program Counter Register (PC)
	10.5.8.4 Write-Back Bus Register (WBBR (lower) and WBBR (upper))
	10.5.8.5 Machine State Register (MSR)

	10.5.9 Instruction Address FIFO Buffer (PC FIFO)
	Figure�10-10. OnCE PC FIFO

	10.5.10 Reserved Registers

	10.6 Watchpoint Support
	Table�10-12. Watchpoint Output Signal Assignments

	10.7 MMU and Cache Operation during Debug
	10.8 Cache Array Access During Debug
	10.9 Basic Steps for Enabling, Using, and Exiting External Debug Mode

	Chapter�11 Nexus3 Module
	11.1 Introduction
	11.1.1 General Description
	11.1.2 Terms and Definitions
	Table�11-1. Terms and Definitions�

	11.1.3 Feature List
	Figure�11-1. Nexus3 Functional Block Diagram

	11.2 Enabling Nexus3 Operation
	11.3 TCODEs Supported
	Table�11-2. Public TCODEs Supported�
	Table�11-3. Error Code Encodings (TCODE�=�8)�
	Table�11-4. Resource Code Encodings (TCODE�=�27)�
	Table�11-5. Event Code Encodings (TCODE�=�33)�
	Table�11-6. Data Trace Size Encodings (TCODE�=�5, 6, 13, or 14)�

	11.4 Nexus3 Programmer’s Model
	Table�11-7. Nexus3 Register Map�
	11.4.1 Client Select Control Register (CSC)
	Figure�11-2. Client Select Control Register
	Table�11-8. CSC Field Descriptions

	11.4.2 Port Configuration Register (PCR)
	Figure�11-3. Port Configuration Register
	Table�11-9. PCR Field Descriptions�

	11.4.3 Development Control Register 1, 2 (DC1, DC2)
	Figure�11-4. Development Control Register 1 (DC1)
	Table�11-10. DC1 Field Descriptions�
	Figure�11-5. Development Control Register 2 (DC2)
	Table�11-11. DC2 Field Descriptions�

	11.4.4 Development Status Register (DS)
	Figure�11-6. Development Status Register (DS)
	Table�11-12. DS Field Descriptions�

	11.4.5 Read/Write Access Control/Status Register (RWCS)
	Figure�11-7. Read/Write Access Control/Status Register (RWCS)
	Table�11-13. RWCS Field Descriptions�
	Table�11-14. Read/Write Access Status Bit Encodings�

	11.4.6 Read/Write Access Data Register (RWD)
	Figure�11-8. Read/Write Access Data Register (RWD)

	11.4.7 Read/Write Access Address Register (RWA)
	Figure�11-9. Read/Write Access Address Register (RWA)

	11.4.8 Watchpoint Trigger Register (WT)
	Figure�11-10. Watchpoint Trigger Register (WT)
	Table�11-15. WT Field Descriptions�

	11.4.9 Data Trace Control Register (DTC)
	Figure�11-11. Data Trace Control Register (DTC)
	Table�11-16. DTC Field Descriptions�

	11.4.10 Data Trace Start Address 1 and 2 Registers (DTSA1 and DTSA2)
	Figure�11-12. Data Trace Start Address Registers 1 and 2 (DTSAn)

	11.4.11 Data Trace End Address Registers 1 and 2 (DTEA1 and DTEA2)
	Figure�11-13. Data Trace End Address Registers 1 and 2 (DTEAn)
	Table�11-17. Data Trace—Address Range Options�

	11.5 Nexus3 Register Access through JTAG/OnCE
	Figure�11-14. Nexus3 Register Access through JTAG/OnCE (Example)
	Table�11-18. Nexus Register Example

	11.6 Ownership Trace
	11.6.1 Overview
	11.6.2 Ownership Trace Messaging (OTM)
	Figure�11-15. Ownership Trace Message Format

	11.6.3 OTM Error Messages
	Figure�11-16. Error Message Format

	11.6.4 OTM Flow

	11.7 Program Trace
	11.7.1 Branch Trace Messaging (BTM)
	11.7.1.1 e200z6 Indirect Branch Message Instructions (Book�E)
	Table�11-19. Indirect Branch Message Sources�

	11.7.1.2 e200z6 Direct Branch Message Instructions (Book�E)
	Table�11-20. Direct Branch Message Sources�

	11.7.1.3 BTM using Branch History Messages
	11.7.1.4 BTM using Traditional Program Trace Messages

	11.7.2 BTM Message Formats
	11.7.2.1 Indirect Branch Messages (History)
	Figure�11-17. Indirect Branch Message (History) Format

	11.7.2.2 Indirect Branch Messages (Traditional)
	Figure�11-18. Indirect Branch Message Format

	11.7.2.3 Direct Branch Messages (Traditional)
	Figure�11-19. Direct Branch Message Format

	11.7.2.4 Resource Full Messages
	Figure�11-20. Resource Full Message Format

	11.7.2.5 Debug Status Messages
	Figure�11-21. Debug Status Message Format

	11.7.2.6 Program Correlation Messages
	Figure�11-22. Program Correlation Message Format

	11.7.2.7 BTM Overflow Error Messages
	Figure�11-23. Error Message Format

	11.7.2.8 Program Trace Synchronization Messages
	Figure�11-24. Direct/Indirect Branch with Synchronization Message Format
	Figure�11-25. Indirect Branch History with Synchronization Message Format
	Table�11-21. Program Trace Exception Summary�

	11.7.3 BTM Operation
	11.7.3.1 Enabling Program Trace
	11.7.3.2 Relative Addressing
	Figure�11-26. Relative Address Generation and Re-Creation Example

	11.7.3.3 Branch/Predicate Instruction History (HIST)
	11.7.3.4 Sequential Instruction Count (I-CNT)
	11.7.3.5 Program Trace Queueing

	11.7.4 Program Trace Timing Diagrams (2 MDO/1 MSEO Configuration)
	Figure�11-27. Program Trace—Indirect Branch Message (Traditional)
	Figure�11-28. Program Trace—Indirect Branch Message (History)
	Figure�11-29. Program Trace—Direct Branch (Traditional) and Error Messages
	Figure�11-30. Program Trace—Indirect Branch with Synchronization Message

	11.8 Data Trace
	11.8.1 Data Trace Messaging (DTM)
	11.8.2 DTM Message Formats
	11.8.2.1 Data Write Messages
	Figure�11-31. Data Write Message Format

	11.8.2.2 Data Read Messages
	Figure�11-32. Data Read Message Format

	11.8.2.3 DTM Overflow Error Messages
	Figure�11-33. Error Message Format

	11.8.2.4 Data Trace Synchronization Messages
	Figure�11-34. Data Write/Read with Synchronization Message Format
	Table�11-22. Data Trace Exception Summary�

	11.8.3 DTM Operation
	11.8.3.1 DTM Queueing
	11.8.3.2 Relative Addressing
	11.8.3.3 Data Trace Windowing
	11.8.3.4 Data Access/Instruction Access Data Tracing
	11.8.3.5 e200z6 Bus Cycle Special Cases
	Table�11-23. e200z6 Bus Cycle Cases�

	11.8.4 Data Trace Timing Diagrams (8 MDO/2 MSEO Configuration)
	Figure�11-35. Data Trace—Data Write Message
	Figure�11-36. Data Trace—Data Read with Synchronization Message
	Figure�11-37. Error Message (Data Trace Only Encoded)

	11.9 Watchpoint Support
	11.9.1 Overview
	11.9.2 Watchpoint Messaging
	Figure�11-38. Watchpoint Message Format.
	Table�11-24. Watchpoint Source Encoding�

	11.9.3 Watchpoint Error Message
	Figure�11-39. Error Message Format

	11.9.4 Watchpoint Timing Diagram (2 MDO/1 MSEO Configuration)
	Figure�11-40. Watchpoint Message and Watchpoint Error Message

	11.10 Nexus3 Read/Write Access to Memory-Mapped Resources
	11.10.1 Single Write Access
	Table�11-25. Single Write Access Field Settings

	11.10.2 Block Write Access (Non-Burst Mode)
	11.10.3 Block Write Access (Burst Mode)
	11.10.4 Single Read Access
	Table�11-26. Single Read Access Parameter Settings

	11.10.5 Block Read Access (Non-Burst Mode)
	11.10.6 Block Read Access (Burst Mode)
	11.10.7 Error Handling
	11.10.7.1 AHB Read/Write Error
	11.10.7.2 Access Termination
	11.10.7.3 Read/Write Access Error Message
	Figure�11-41. Error Message Format

	11.11 Nexus3 Pin Interface
	11.11.1 Pins Implemented
	Table�11-27. JTAG Pins for Nexus3�
	Table�11-28. Nexus3 Auxiliary Pins�
	Table�11-29. Nexus Port Arbitration Signals

	11.11.2 Pin Protocol
	Table�11-30. MSEO Pin(s) Protocol�
	Figure�11-42. Single-Pin MSEO Transfers
	Figure�11-43. Dual-Pin MSEO Transfers

	11.12 Rules for Output Messages
	11.13 Auxiliary Port Arbitration
	Table�11-31. MDO Request Encodings

	11.14 Examples
	Table�11-32. Indirect Branch Message Example (2 MDO/1 MSEO)
	Table�11-33. Indirect Branch Message Example (8 MDO/2 MSEO)
	Table�11-34. Direct Branch Message Example (2 MDO/1 MSEO)
	Table�11-35. Direct Branch Message Example (8 MDO / 2 MSEO)
	Table�11-36. Data Write Message Example (8 MDO/1 MSEO)
	Table�11-37. Data Write Message Example (8 MDO/2 MSEO)

	11.15 IEEE 1149.1 (JTAG) RD/WR Sequences
	11.15.1 JTAG Sequence for Accessing Internal Nexus Registers
	Table�11-38. Accessing Internal Nexus3 Registers through JTAG/OnCE�

	11.15.2 JTAG Sequence for Read Access of Memory-Mapped Resources
	Table�11-39. Accessing Memory-Mapped Resources (Reads)�

	11.15.3 JTAG Sequence for Write Access of Memory-Mapped Resources
	Table�11-40. Accessing Memory-Mapped Resources (Writes)�

	Index

