
1

Special Topics for
Embedded Programming

1

Reference: The C Programming Language by Kernighan
& Ritchie

2

Overview of Topics

• Microprocessor architecture
– Peripherals
– Registers
– Memory mapped I/O

• C programming for embedded systems

2

• C programming for embedded systems
• Lab 1: General Purpose I/O

– Read data from input pins and write to output pins on the
MPC5553

– GPIO example code

3

Freescale MPC55xx Architecture

• 132 MHz 32-bit PowerPC,
Temperature range: -40 to 125ºC
•1.5 MB of embedded Flash
• 64 KB on-chip static RAM
•8 KB of cache
• 210 selectable-priority interrupt
sourcessources
• 3 DSPI (serial peripheral interface)
• 2 eSCI (serial communications)
•GPIO
•2 x 40-ch. ADC
•24-ch. eMIOS
•2 CAN
•32-ch. eTPU
•Direct Memory Access (DMA)

4

Microprocessor Architecture

• Microprocessor memory has
location (“address”) and
contents (the data stored at a
specific address in memory)

• Data are accessed by specifying
a location on the address bus,
and reading the contents of the
specified address on the data specified address on the data
bus

• Registers are memory locations
used for calculations, to initialize
the processor or check its
status, or to access peripheral
devices.
– General purpose registers
– Special purpose registers

5

General Purpose Registers

• Hold data values before
and after calculations

• C compilers
automatically use these
registers as resources to

+
GPR 3: 5

GPR 4: 2

GPR 2: 7

5

registers as resources to
load/store data &
perform calculations

6Special Purpose Registers: Memory
Mapped I/O

•Access peripherals by
writing to and reading
from memory
•Each peripheral has a
fixed range of memory
addresses assigned to it

6

– These are “memory-mapped
registers,” used for interacting
with peripherals

•Memory locations can be:
– Peripheral configuration

registers
– Peripheral status registers
– inputs from the hardware
– outputs to the hardware

7

C Programming for Embedded
Systems

7

Systems

8

Primitive Data Types, Data Declaration
• Integer data types

– Have both size and sign
– char (8-bit)
– short (16-bit)
– int (32-bit)
– long (32-bit)
– signed (positive and negative)
– unsigned (positive only)

{
/* Top of Code Block
*/
signed char A;
char input;
unsigned short var;
int output;

8

– unsigned (positive only)
• Floating-point types

– Only have size
– Can always be positive or negative
– float (32-bit)
– double (64-bit)

•Data declarations should be at the top of a
code block

int output;
unsigned long var2;

float realNum;
double realNum2;
.
}

9

Freescale Defined Types

• See freescale/typedefs.h
– typedef signed char int8_t;
– typedef unsigned char uint8_t;
– typedef volatile signed char vint8_t;– typedef volatile signed char vint8_t;
– typedef volatile unsigned char vuint8_t;
– typedef signed short int16_t;
– typedef unsigned short uint16_t;

– …

10

• Function Prototype declares name, parameters and return type prior to the
functions actual declaration

• Information for the compiler; does not include the actual function code
• You will be given function prototypes to access peripherals
• Pro forma: RetType FcnName (ArgType ArgName, …);

Functions and Function Prototypes

int Sum (int a, int b); /* Function Prototype */

void main()void main()

{

c = Sum (2, 5); /* Function call */

}

int Sum (int a, int b) /* Function Definition */

{

return (a + b);

}

11

C vs. C++

• C++ language features cannot be used
– No new, delete, class
– Comment with /* */ , not //

• Variables must be declared at top of code blocks
{

11

int j;
double x;

/* code */
int q; /* only in C++, not in C */
/* code */
}

12

Useful Features for Embedded Code

• Type Qualifiers
–Volatile
–Static

• Pointers

12

• Structures
• Unions
• Bit Operations
• Integer Conversions

13

Volatile Type Qualifier
• Variables that tend to be reused repeatedly in different parts of the
code are often identified by compilers for optimization.
– These variables are often stored in an internal register that is read
from or written to whenever the variable is accessed in the code.

– This optimizes performance and can be a useful feature
• Problem for embedded code: Some memory values may change
without software action!
– Example: Consider a memory-mapped register representing a
DIP-switch input

13

– Example: Consider a memory-mapped register representing a
DIP-switch input

– Register is read and saved into a general-purpose register
– Program will keep reading the same value, even if hardware has
changed

• Use volatile qualifier:
– Value is loaded from or stored to memory every time it is
referenced

– Example: volatile unsigned char *GPIO_pointer;

14

Static Type Qualifier
• Variables local to functions are destroyed when the
function returns a value and exits (they have local scope)

• In embedded code we often want a variable to retain its
value between function calls
– Consider a function that senses a change in the
crankshaft angle: The function needs to know the
previous angle in order to compute the difference

14

previous angle in order to compute the difference
• If a local variable within a function is declared static, it is
stored in the “heap” (a dedicated pool of memory) instead
of the function “stack” (a temporary storage) and will thus
retain its value between subsequent function calls

• When used with global variables and functions, static
limits the scope of the variable to its file.

• Example: static int x = 2 ;

15

Pointers

• Every variable has an address in memory and a value
• A pointer is a variable that stores an address

– The value of a pointer is the location of another
variable

• The size of a pointer variable is the size of an address

15

• The size of a pointer variable is the size of an address
– 4 bytes (32 bits) for the MPC5553

• Two operators used with pointers
– & operator returns the address of a variable
– * is used to “de-reference” a pointer (i.e., to access
the value at the address stored by a pointer

16

Pointer Example

Address Value Variable

0x100 5 x

0x104 5 y

0x108 0x100 ptr

16

int x, y; /* x is located at address 0x100 */
int *ptr; /* This is how to declare a pointer */

x = 5;
ptr = &x; /* The value of ptr is now 0x100 */
y = *ptr; /* y now has the value 5 */
ptr = 6; / The value at address 0x100 is 6 */

0x108 0x100 ptr

17

More Pointer Examples

• Declare a pointer,
volatile int *p;

• Assign the address of the I/O memory location to the
pointer,
p = (volatile int*) 0x30610000;

/* 4-byte long, address of some memory-
mapped register */

17

mapped register */
• Output a 32-bit value by setting the value of bytes at
0x30610000,
p = 0x7FFFFFFF; / Turn on all but
the highest bit */

• Alternatively,
*((volatile unsigned
short*)(0x30610000)) = 0x7FFF;

18

Structures
• A struct holds multiple variables

– Divides range of memory into pieces that can
be referenced individually

– The following structure creates a variable x of
type rational with members n and d

struct rational { short n;
short d; } x;

0x0002

0x0005

…
…

x

x.n

x.d

18

short d; } x;
x.n = 2;

x.d = 5;

• Recall: We can treat a peripheral’s memory
map as a range of memory.

• Result: We can use a structure and its
member variables to access peripheral
registers.

…

x.d

19

Structures
• Access structure member

variables using “.” and “->”

– . is used with
structures

– -> is used with
pointers-to-structures

/* Definition */

struct student{

char firstnm[32];

char lastnm[32];

int age;

};

void main()
• Example

– bob is a variable of
type student

– Assign firstnm,
lastnm and age

– Increment age

void main()

{
struct student bob;
struct student *pbob;

bob.age = 20;
strcpy(bob.firstnm, “Bob”);
strcpy(bob.lastnm, “Smith”);

pbob = &bob;
pbob->age++;
/* same as (*pbob).age++ */

};

20

Structure bit-fields

Number of bits per data member in structures is
specified with “:n”
struct RGB_color{

unsigned char r:2; /* 2-bits */

unsigned char g:2;

unsigned char b:2;

/* padding */

unsigned char:2; /*don’t need to explicitly do this. */

};

r g b (padding)

8 bits

/* reset g */
struct RGB_color clr; clr.g = 0 ;

21

Bit-Fields Diagram

• But what if we want to
access r,g & b all at
the same time?

0x0000
0x0100
0x0200

the same time?
…

r g b space

22

Unions
• Multiple ways to view memory locations
• Unions contain member variables

– Member variables share same memory
– All variables are overlaid on each other

• Changing one member results in the other

22

members being changed
• Union is as long as longest member

Two ways
To read the
Same memory
location

rgb: 6

r : 2 g : 2 b : 2

padding

padding

Memory Location 0x0716

23

Unions

union RGB_color{

struct {

unsigned char r:2,g:2,b:2;

unsigned char:2;

};r g b space

rgb

clr: };

struct {

unsigned char rgb:6;

unsigned char:2;

}};

union RGB_color clr;

0x00 0x02 0x04 0x06

24

Pros & Cons of Using Structures

•Pros
–Readable code
–Simple way to set or clear individual bits

•Cons

24

•Cons
–Relies on the compiler implementation
–Assembly code for a simple bit-write is
much longer than if registers were directly
written to

25

Constants and Bit Operations

25

Tools for Manipulating Values

26

Integer Constants

• Binary constant: 0bnumber
– Example: 0b10110000

• Octal constant: 0number (prefix is a zero)
– Example: 0775

• Hexadecimal constant: 0xnumber

26

• Hexadecimal constant: 0xnumber
– Example: 0xffff or 0xFFFF

27

Bit Operations
• Bit-shifts

Right shift: num >> shift 0b1001 >> 2 → 0b0010
Left shift: num << shift 0b0011 << 2 → 0b1100

• Masking
Bit-or: num | mask 0b0001 | 0b1000 → 0b1001
Bit-and: num & mask 0b1001 & 0b1000 → 0b1000

27

• Complement
Not: ~ num ~ 0b0101 → 0b1010

• Set bits
set the 5th bit x = x | (1 << 4);
set the 5th bit x |= (1 << 4);

• Clear bits
clear 5th and 6th bit x = x & ~(0b11 << 4);
clear 5th and 6th bit x &= ~(0b11 << 4);

28

Type Conversions
• Explicit Casts

– For specifying the new data type
– Syntax: (type-name)expression
– Example: (int)largeVar

• Integral Promotion
– Before basic operation (+ - * /), both operands converted
to same type

– The smaller type is “promoted” (increased in size) to the larger

28

– The smaller type is “promoted” (increased in size) to the larger
type

– Value of promoted type is preserved
• Implicit Casts

– Assigning a value into a different type
– Widening conversion – preserve value of expression

short x = 10; long y = x;
– Narrowing conversions – do NOT preserve value

unsigned long x = 257;
unsigned char y = x;

29

Integer Division
• When dividing two numbers, may receive unexpected results
• If both operands are integers, then result is integer

– Expected result of division is truncated to fit into an integer

• If one operand is floating-point, then result is floating-point
– Integer operand is promoted to floating-point
– Receive expected result

/* floating-point results */

29

/* floating-point results */
(5.0 / 2.0) → 2.5 /* no promotion, result is float */
(5.0 / 2) → 2.5 /* operand 2 promoted to float */
(5 / 2.0) → 2.5 /* operand 5 promoted to float */

/* integer-valued results */
(5 / 2) → 2 /* no promotion, result is integer */

30

Lab 1
Familiarization and Digital I/O

EECS461 F07 - Special Topics for Embedded Programming 30

Familiarization and Digital I/O

31

Lab 1
• Program the MPC5553 for Digital I/O.

– Write C code that performs low-level bit manipulation and
writes to memory mapped registers

– Write a simple program (lab1.c) to add two 4-bit numbers
specified on the DIP switches on the interface board and
echo the results onto the LED display

31

echo the results onto the LED display
– Modify your program to use serial interface and keyboard
instead of DIP switches

• MPC5553/MPC5554 Microcontroller Reference
Manual (on website – very large: do not print!)
– Chapter 6, Section 6.1.3 System Integration Unit (SIU)
– Chapter 6, Section 6.3, Memory Map/Register Definition

32

Lab 1 GPIO

32

Interface board connects to
pads 122 through 137 for
input from DIP switches, and
28 through 43
for output to LEDs.

33

Lab 1 GPIO

• Three registers for
each pin
– Pad Configuration register

(PCR)
– General Purpose Data Input

register (GPDI)register (GPDI)
– General Purpose Data Output

register (GPDO)
– Many other SIU registers
– Most pins have alternate

function (connected to other
peripherals)

– See SIU memory map, Table
6.2

Memory Map Table 6.2

34

GPIO Registers

• For each pin:
– Pad Configuration Register
(PCR) (6.3.1.12)
• Set pin purpose
• Turn on/off voltage
buffers

– Data Input Register (GPDI)

34

– Data Input Register (GPDI)
(6.3.1.14)
• Read voltage on pin
• On is 1, off is 0

– Data Output Register
(GPDO) (6.3.1.13)
• Set voltage on pin
• On is 1, off is 0

35

SIU Pad Configuration Register

• Section 6.3.1.12, Table 6-15. SIU_PCR Field Descriptions

• PA: Pin assignment (selects the function of a multiplexed pad)

• OBE: Output buffer enable

35

• IBE: Input buffer enable

• DSC: Drive strength control

• ODE: Open drain output enable

• HYS: Input hysteresis enable

• SRC: Slew rate control

• WPE: Weak pull up/down enable (Disable pull up)

• WPS: Weak pull up/down select

36

SIU Pad Configuration Register

typedef union siu_pcr_u {

/* Pad Configuration Registers */

volatile unsigned short REG;

struct {

volatile unsigned short :3;

volatile unsigned short PA:3;

volatile unsigned short OBE:1;

volatile unsigned short IBE:1;

• Union accesses entire
register or individual bit
fields

• Provide one union generic
enough to suit any SIU pad

• There are over 200
configuration registers!

36

volatile unsigned short IBE:1;

volatile unsigned short DSC:2;

volatile unsigned short ODE:1;

volatile unsigned short HYS:1;

volatile unsigned short SRC:2;

volatile unsigned short WPE:1;

volatile unsigned short WPS:1;

} FIELDS;

} SIU_PCR;

configuration registers!
– Address each
configuration register by
declaring your union as a
pointer

– Use pointer indexing (I.e.:
padptr[122]) to access
a specific register

37

MPC5553 Register Definitions

/**************************************/

/* FILE NAME: mpc5553.h
COPYRIGHT (c) Freescale 2005 */

/* VERSION: 1.5
All Rights Reserved */

/*
*/

/* DESCRIPTION:
*/

• freescale/mpc553.h
has registers, bit field
definitions
• Don’t have to write your
own structure (except

37

/* This file contains all of the
register and bit field definitions
for */

/* MPC5553.
*/

/*====================================*/

/*>>>>NOTE! this file is auto-generated
please do not edit it!<<<<*/

own structure (except
for lab #1)

• Register addresses at
the bottom of
mpc553.h

• Register definitions use
freescale/typedefs.h

38

#include<eecs461.h> /* Typedefs and processor initialization */

#include “my_siu_pcr.h“ /* Your SIU PCR configuration goes here */

void main()

{

int i;

unsigned char op1, op2;

int result;

int temp;

Read and Write GPIO

int temp;

volatile SIU_PCR *siu_pcr_ptr; /* pointers to registers */

volatile unsigned char *siu_gpdi_ptr;

volatile unsigned char *siu_gpdo_ptr;

siu_pcr_ptr = (SIU_PCR*)(0Xc3f90040); /* SIU_BASE + 0X40 for pcr */

siu_gpdo_ptr = (unsigned char*)(0Xc3f90600); /* SIU_BASE + 0X600 for gpdo */

siu_gpdi_ptr = (unsigned char*)(0Xc3f90800); /* SIU_BASE + 0X800 for gpdi */

/* See Table 6.2 */

39

/* configure input dipswitches */

for(i=122; i<130; i++)

{

siu_pcr_ptr[i].FIELDS.PA = 0; /* GPIO */

siu_pcr_ptr[i].FIELDS.IBE = 1; /* Input */

siu_pcr_ptr[i].FIELDS.WPE = 0; /* Weak pull up disabled */

}

Read and Write GPIO (continued)

/* configure output leds */

for(i=28; i<33; i++)

{

siu_pcr_ptr[i].FIELDS.PA = 0; /* GPIO */

siu_pcr_ptr[i].FIELDS.OBE = 1; /* Output */

siu_pcr_ptr[i].FIELDS.WPE = 0;

}

init_EECS461(1); /* Call this function with lab number = 1 to init processor */

40

while(1)

{

/* get the number contained on DIP 126-129 and 122-125 */

/* read the bit

shift left 1

read the next bit and continue */

/* calculate the sum */

Read and Write GPIO (continued)

/* calculate the sum */

/* display the result on LED 28-32 */

/* write result LSB

shift right 1

write the next bit and continue */

}

41

• Use keyboard input instead of DIP switches

• Input 2 digits (0-9), calculate sum and output binary result to
LEDs

•serial.c, serial.h provided

• ASCII to binary conversion

Read Serial Port and Write GPIO

ASCII Binary Decimal

011 0001 0001 1

011 0010 0010 2

… … …

011 1001 1001 9

Binary = ASCII & 0xF

42

Lab 1 GPIO

• Read the lab 1 documentation
• Organize your file structure as described in
section 2.3

• Pre-lab
– Read the manual and answer the questions

• In-lab
• Post-lab

– Summarize the concepts learned in lab 1

