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Which brings us to a process for model-based systems development




Topics

§ Code Generation from Models 

§ Model-based Software 
Engineering
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Engineering

§ Lab 8

Reference: “Simulink Models for Autocode 
Generation,” J. S. Freudenberg, EECS 461, 
Fall 2006



Model-based SW Engineering: 
Process

§ Control law validated by 
simulation and rapid 
prototyping

§ Executable software 
specification (algorithm 
model)
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model)
§ Software Development (or 

automatic generation)
§ HIL verification of embedded 

implementation
§ Models permit V&V at every 

step of the process from 
requirements to implemented 
code.

How do we do model-based systems engineering in this environment?
Like this (waterfall diagram). 
It begins with system requirements, and relies on modeling, simulation and rapid prototype implementation for control law validation and verification.
And results in an executable software specification – that is, a model of the embedded code containing not just the control law, but all of the necessary implementation baggage that goes with it.
So now we have a specification against which the code can be functionally verified. Or, for that matter, we have a specification from which we might automatically generate code using a couple of commercially available tools which – one would hope – would guarantee that the code meets the specification.
Finally, the embedded implementation – that is, the actual strategy operating in the control microprocessor – is verified using hardware-in-the-loop real time simulation. In other words, we have a real-time model of the engine hooked up to the actual powertrain controller and we can verify that a correct implementation before it goes in a car – even before a car is available.
The picture is a simple hardware in the loop system. The control computer is on the left. The powertrain model is running on the computer on the right. Data acquisition and I/O interfaces in between.
The idea is that with verification and validation throughout the process from requirements to embedded code, nobody should be de-bugging software in the car. And code changes shouldn't be bug fixes, but changes because the requirements on the system have changed – which they do quite regularly throughout the development of a new car.




Examples: Automatic Code 
Generation

§ Deep Space 1
§ Deep Impact
§ Pluto-Kuiper Belt
§ MER
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§ MER
§ MRO
§ MESSENGER
§ X-37
§ DAWN

Report on the Utility of the MAAB Style Guide for 
V&V/IV&V of NASA Simulink/Stateflow Models, 
NASA 2004



Advantages of Automatic Code 
Generation (dSPACE website 
with editorial comments in red)

§ Less time-consuming and error-prone 
than hand coding

§ Shorter development times, often 
reduced by more than 40%
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reduced by more than 40%
§ Model and C code always consistent 

(really?)
§ Uniform standard for coding (really?)
§ No implementation errors (assuming the 

model is correct!)
§ Code documentation always up-to-date 

(really?)



Disadvantages of Automatic 
Code Generation

§ Code size (not as big a problem 
as it once was)

§ Integration with legacy code
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§ Integration with legacy code

§ Consistency between model and 
code (temptation to tweek the 
code rather than revise the 
model and re-generate)



Model-based Software 
Engineering: Statistics
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Does the system work?
Here are some results for a fairly substantial powertrain development program that compare the model-based approach with some historical data.
The historical process being, essentially, write the code, put it in a car and see if it works; if it doesn't – fix it.
On the left is a timing comparison.
And you can see that our model-based process imposes a substantial penalty at the start of the project. It takes about twice as long to get to the first software release.
On the other hand, if you look at the time it takes to get functional software in the car, we can claim almost a 50% reduction in the time required. In fact, the model-based code worked right the first time in the car.
Some more data that show how the system reacts to changes. These are requirements changes or modifications to the hardware that result in changes to the control software, or bugs that show up after the first release. And here again, there's a substantial advantage in time and quality.




Automatic Code Generation 
Tools

§ dSPACE Targetlink
§ Code generation from Simulink/Stateflow
§ Extended Targetlink block set for fixed-point code generation and 

implementation specific information
§ http://www.dspaceinc.com/ww/en/inc/home.cfm

§ ETAS ASCET
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§ ETAS ASCET
§ Code generation from ETAS graphical modeling environment
§ New product supports translation from Simulink/Stateflow
§ http://en.etasgroup.com/index.shtml

§ National Instruments LabVIEW
§ FPGA code generation from LabVIEW “Virtual Instrument” modeling 

environment
§ http://www.ni.com/

§ The MathWorks
§ Code generation from Simulink/Stateflow
§ Real-time Workshop (RTW) and RTW with Embedded Coder
§ http://www.mathworks.com/



Lab #8: Automatic Code 
Generation from SimulinK 
Models

§ Adding program from LAB #1
§ Implement as Simulink model and code 

generate

§ Spring-mass-damper virtual world
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§ Spring-mass-damper virtual world

§ Double spring-mass-damper
§ Fast and slow systems

§ Multitasking

§ Please read through the full lab document 
since the format has changed for this lab



Lab #8: Hardware Specific 
Functions and Low Level 
Operations

§ Lab #1 adder requires low level (“bit 
pushing”) operations in Simulink –
how do we do this?
§ Simulink block set
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§ Simulink block set
§ S-functions

§ Hardware I/O and processor 
initialization?
§ Special Simulink blocks from Freescale

§ Real-time Workshop and Embedded 
Coder from TMW for code generation



Lab #8 Part 1: Bit Manipulation - 32 
bit unsigned integer into four 8 bit 
unsigned integers
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Bit Manipulation and Low-
level Operations

§ Signal 
Attributes/Data 
Type Conversion
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§ Logic and Bit 
Operations/Bitwise 
Operator

§ Logic and Bit 
Operations/Shift 
Arithmetic



Lab #8 Part 2: Virtual Mass-
Spring System

§ Simulation model: 
§ Select k, Jω, b, and T

§ C code to implement on the µP has hardware 
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§ C code to implement on the µP has hardware 
specific tasks:
§ Get wheel position from QD function of eTPU 
§ Convert wheel position from eTPU in encoder counts to 

degrees 
§ Convert calculated torque in N-mm to duty cycle 
§ Update duty cycle and send to PWM function of eMIOS 
§ Do data type conversions
§ Initialize eTPU and eMIOS

§ How do we do all these things in a model?



Freescale 
RAppID

§ Special Freescale 
block set in Simulink 
Library Browser

§ Move from simulation 

14J.A. Cook 07March08

§ Move from simulation 
environment to 
implementation 
without writing low-
level C code

§ Microprocessor 
initialization and 
peripheral device set-
up blocks 



Freescale RAppID Toolbox for 
µP and Peripheral 
Initialization
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Top Level Spring-Mass-Damper 
Model: Execution Timing
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Triggered subsystem 
executes at the periodic 
rate specified by the 
function call



Top Level Spring-Mass-Damper 
Model: Execution Timing
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Inside the triggered subsystem, we need functions to read wheel 
position and convert counts->degrees, and output torque as PWM 
signal 



Freescale 
RAppID
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Device Driver Blocks: 
Quadrature Decode
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§ Special Simulink blocks from Freescale

§ Configure eTPU for QD

§ Encoder counts to wheel angle, degrees



Device Driver Blocks: eMIOS 
PWM
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DC = T*18/(773.4*128) + 0.5



Some Other Details Before 
We can Code Generate

§ Update rate

§ Parameter initialization
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Function
Generator
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Model Parameter Initialization

§ From the Simulink 
model window

§ File/Model 
Properties/Callbacks/

23J.A. Cook 07March08

Properties/Callbacks/
InitFcn

§ Assign values in an 
M-file specified in 
the initialization 
window without the 
.m suffix



Triggered 
Subsystem

Simulink/signal routing/environment controller
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Lab#8 Part 3: Tasks, 
Priorities and Shared Data

§ Spring-Mass-
Damper

§ Single task rate
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§ No shared data

§ Real system

§ Multiple tasks

§ Rate monotonic 
priority scheme

§ RTOS

§ Shared data

Double Spring-Mass-
Damper System: 2 
tasks with different 
sample rates



Multi-rate System: 
2 S-M-D

§ Fast S-M-D is 10 
times faster than 
slow system
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§ Separate tasks at 
different rates

§ Fast and slow 
systems have 
different integration 
time steps



Rate Transition 
Blocks

§ Deterministic transfer 
of data with data 
integrity between 
blocks operating at 
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blocks operating at 
different speeds at the 
cost of maximum 
latency of data transfer
§ ZOH for fast-to-slow 

transitions

§ Unit delay for slow-to-
fast transitions



Code 
Generation

§ Processor initialization at highest level
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§

§ Device driver blocks inside the fast 
system

§ RTW code generation

§ Tools->Real-Time Workshop ->Build 
Model



Real Embedded Software

§ Large, complex, developed by 
many people, integrated at the 
end, and expected to work.

§ Typical automotive control 
“feature” 
§ Much more than just the control 
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§ Much more than just the control 
law

§ Multiple versions address 
program-to-program variability

§ Average feature has
• 1-2 execution contexts

• 20 inputs

• 14 outputs

§ ~60-100 features per vehicle with 
more than 2000 connections 
among features

And the embedded software is a lot more than what we generally think of as "controls."
 
Consider a typical control feature. This might be idle speed control, or fuel injector control or something.
 
 
It includes not only the control law, but all the input and output processing, initialization and shut-down routines, diagnostics and failure management.
 
First of all, it will be used in lots of different vehicles, but it might be slightly different from one vehicle line to another, so there will be several versions of it. And different versions may run at different sample rates.
 
Typically there are about 20 inputs and 14 outputs per feature.
 
And there are about 60 features per application, so when you put them all together to run a car, there's about 2000 connections to manage.




Model-based Software 
Engineering

§ Modeling environment 
requires
§ Flexible, interchangeable 

and reusable model 
components

§ Seamless process for 
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§ Seamless process for 
component “plug-and-
play”

§ Data and complexity 
management

§ Systems and software 
analysis tools

HIDDEN



Style Matters

§ Models must be clear, readable, modular, 
documented and precise 

§ Automatic code generation does not eliminate 
human error – just moves it higher in the 
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human error – just moves it higher in the 
process 

§ Order of execution, execution context, data 
types – must be specified in the model!

§ Naming conventions, data scoping, annotations 
and comments, …

Reference: “Style Matters  - Applying the lessons from the software industry to 
Autocoding with Simulink” by Peter Gilhead, Ricardo Tarragon



Hatley-Pirbhai Model 
Methodology

§ Simulink diagrams model data 
flow; Stateflow diagrams model 
control flow

§ Process specifications (P-specs) 
modeled using Simulink blocks 
and/or Stateflow diagrams, 
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and/or Stateflow diagrams, 
depending on the nature of the 
algorithm

§ Control specifications (C-specs) 
are modeled using Stateflow

§ One Simulink subsystem per 
execution context (10ms, 
100ms, etc.)

Reference: D. J. Hatley and I. A. Pirbhai, Strategies for Real Time System Specification. New York: 
Dorset House, 1988.



Style Matters

§ Attempt to form 
diagrams that have 
no crossing signal 
lines
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lines

§ Use consistent style 
for readability and 
documentation


