
Automatic Code Generation

1J.A. Cook 07March08

EECS 461

Winter 2008

jeffcook@eecs.umich.edu

Which brings us to a process for model-based systems development

Topics

§ Code Generation from Models

§ Model-based Software
Engineering

2J.A. Cook 07March08

Engineering

§ Lab 8

Reference: “Simulink Models for Autocode
Generation,” J. S. Freudenberg, EECS 461,
Fall 2006

Model-based SW Engineering:
Process

§ Control law validated by
simulation and rapid
prototyping

§ Executable software
specification (algorithm
model)

3J.A. Cook 07March08

model)
§ Software Development (or

automatic generation)
§ HIL verification of embedded

implementation
§ Models permit V&V at every

step of the process from
requirements to implemented
code.

How do we do model-based systems engineering in this environment?
Like this (waterfall diagram).
It begins with system requirements, and relies on modeling, simulation and rapid prototype implementation for control law validation and verification.
And results in an executable software specification – that is, a model of the embedded code containing not just the control law, but all of the necessary implementation baggage that goes with it.
So now we have a specification against which the code can be functionally verified. Or, for that matter, we have a specification from which we might automatically generate code using a couple of commercially available tools which – one would hope – would guarantee that the code meets the specification.
Finally, the embedded implementation – that is, the actual strategy operating in the control microprocessor – is verified using hardware-in-the-loop real time simulation. In other words, we have a real-time model of the engine hooked up to the actual powertrain controller and we can verify that a correct implementation before it goes in a car – even before a car is available.
The picture is a simple hardware in the loop system. The control computer is on the left. The powertrain model is running on the computer on the right. Data acquisition and I/O interfaces in between.
The idea is that with verification and validation throughout the process from requirements to embedded code, nobody should be de-bugging software in the car. And code changes shouldn't be bug fixes, but changes because the requirements on the system have changed – which they do quite regularly throughout the development of a new car.

Examples: Automatic Code
Generation

§ Deep Space 1
§ Deep Impact
§ Pluto-Kuiper Belt
§ MER

4J.A. Cook 07March08

§ MER
§ MRO
§ MESSENGER
§ X-37
§ DAWN

Report on the Utility of the MAAB Style Guide for
V&V/IV&V of NASA Simulink/Stateflow Models,
NASA 2004

Advantages of Automatic Code
Generation (dSPACE website
with editorial comments in red)

§ Less time-consuming and error-prone
than hand coding

§ Shorter development times, often
reduced by more than 40%

5J.A. Cook 07March08

reduced by more than 40%
§ Model and C code always consistent

(really?)
§ Uniform standard for coding (really?)
§ No implementation errors (assuming the

model is correct!)
§ Code documentation always up-to-date

(really?)

Disadvantages of Automatic
Code Generation

§ Code size (not as big a problem
as it once was)

§ Integration with legacy code

6J.A. Cook 07March08

§ Integration with legacy code

§ Consistency between model and
code (temptation to tweek the
code rather than revise the
model and re-generate)

Model-based Software
Engineering: Statistics

7J.A. Cook 07March08

Does the system work?
Here are some results for a fairly substantial powertrain development program that compare the model-based approach with some historical data.
The historical process being, essentially, write the code, put it in a car and see if it works; if it doesn't – fix it.
On the left is a timing comparison.
And you can see that our model-based process imposes a substantial penalty at the start of the project. It takes about twice as long to get to the first software release.
On the other hand, if you look at the time it takes to get functional software in the car, we can claim almost a 50% reduction in the time required. In fact, the model-based code worked right the first time in the car.
Some more data that show how the system reacts to changes. These are requirements changes or modifications to the hardware that result in changes to the control software, or bugs that show up after the first release. And here again, there's a substantial advantage in time and quality.

Automatic Code Generation
Tools

§ dSPACE Targetlink
§ Code generation from Simulink/Stateflow
§ Extended Targetlink block set for fixed-point code generation and

implementation specific information
§ http://www.dspaceinc.com/ww/en/inc/home.cfm

§ ETAS ASCET

8J.A. Cook 07March08

§ ETAS ASCET
§ Code generation from ETAS graphical modeling environment
§ New product supports translation from Simulink/Stateflow
§ http://en.etasgroup.com/index.shtml

§ National Instruments LabVIEW
§ FPGA code generation from LabVIEW “Virtual Instrument” modeling

environment
§ http://www.ni.com/

§ The MathWorks
§ Code generation from Simulink/Stateflow
§ Real-time Workshop (RTW) and RTW with Embedded Coder
§ http://www.mathworks.com/

Lab #8: Automatic Code
Generation from SimulinK
Models

§ Adding program from LAB #1
§ Implement as Simulink model and code

generate

§ Spring-mass-damper virtual world

9J.A. Cook 07March08

§ Spring-mass-damper virtual world

§ Double spring-mass-damper
§ Fast and slow systems

§ Multitasking

§ Please read through the full lab document
since the format has changed for this lab

Lab #8: Hardware Specific
Functions and Low Level
Operations

§ Lab #1 adder requires low level (“bit
pushing”) operations in Simulink –
how do we do this?
§ Simulink block set

10J.A. Cook 07March08

§ Simulink block set
§ S-functions

§ Hardware I/O and processor
initialization?
§ Special Simulink blocks from Freescale

§ Real-time Workshop and Embedded
Coder from TMW for code generation

Lab #8 Part 1: Bit Manipulation - 32
bit unsigned integer into four 8 bit
unsigned integers

11J.A. Cook 07March08

Bit Manipulation and Low-
level Operations

§ Signal
Attributes/Data
Type Conversion

12J.A. Cook 07March08

§ Logic and Bit
Operations/Bitwise
Operator

§ Logic and Bit
Operations/Shift
Arithmetic

Lab #8 Part 2: Virtual Mass-
Spring System

§ Simulation model:
§ Select k, Jω, b, and T

§ C code to implement on the µP has hardware

13J.A. Cook 07March08

§ C code to implement on the µP has hardware
specific tasks:
§ Get wheel position from QD function of eTPU
§ Convert wheel position from eTPU in encoder counts to

degrees
§ Convert calculated torque in N-mm to duty cycle
§ Update duty cycle and send to PWM function of eMIOS
§ Do data type conversions
§ Initialize eTPU and eMIOS

§ How do we do all these things in a model?

Freescale
RAppID

§ Special Freescale
block set in Simulink
Library Browser

§ Move from simulation

14J.A. Cook 07March08

§ Move from simulation
environment to
implementation
without writing low-
level C code

§ Microprocessor
initialization and
peripheral device set-
up blocks

Freescale RAppID Toolbox for
µP and Peripheral
Initialization

15J.A. Cook 07March08

Top Level Spring-Mass-Damper
Model: Execution Timing

16J.A. Cook 07March08

Triggered subsystem
executes at the periodic
rate specified by the
function call

Top Level Spring-Mass-Damper
Model: Execution Timing

17J.A. Cook 07March08

Inside the triggered subsystem, we need functions to read wheel
position and convert counts->degrees, and output torque as PWM
signal

Freescale
RAppID

18J.A. Cook 07March08

Device Driver Blocks:
Quadrature Decode

19J.A. Cook 07March08

§ Special Simulink blocks from Freescale

§ Configure eTPU for QD

§ Encoder counts to wheel angle, degrees

Device Driver Blocks: eMIOS
PWM

20J.A. Cook 07March08

DC = T*18/(773.4*128) + 0.5

Some Other Details Before
We can Code Generate

§ Update rate

§ Parameter initialization

21J.A. Cook 07March08

Function
Generator

22J.A. Cook 07March08

Model Parameter Initialization

§ From the Simulink
model window

§ File/Model
Properties/Callbacks/

23J.A. Cook 07March08

Properties/Callbacks/
InitFcn

§ Assign values in an
M-file specified in
the initialization
window without the
.m suffix

Triggered
Subsystem

Simulink/signal routing/environment controller

24J.A. Cook 07March08

Lab#8 Part 3: Tasks,
Priorities and Shared Data

§ Spring-Mass-
Damper

§ Single task rate

25J.A. Cook 07March08

§ No shared data

§ Real system

§ Multiple tasks

§ Rate monotonic
priority scheme

§ RTOS

§ Shared data

Double Spring-Mass-
Damper System: 2
tasks with different
sample rates

Multi-rate System:
2 S-M-D

§ Fast S-M-D is 10
times faster than
slow system

26J.A. Cook 07March08

§ Separate tasks at
different rates

§ Fast and slow
systems have
different integration
time steps

Rate Transition
Blocks

§ Deterministic transfer
of data with data
integrity between
blocks operating at

27J.A. Cook 07March08

blocks operating at
different speeds at the
cost of maximum
latency of data transfer
§ ZOH for fast-to-slow

transitions

§ Unit delay for slow-to-
fast transitions

Code
Generation

§ Processor initialization at highest level

28J.A. Cook 07March08

§

§ Device driver blocks inside the fast
system

§ RTW code generation

§ Tools->Real-Time Workshop ->Build
Model

Real Embedded Software

§ Large, complex, developed by
many people, integrated at the
end, and expected to work.

§ Typical automotive control
“feature”
§ Much more than just the control

29J.A. Cook 07March08

§ Much more than just the control
law

§ Multiple versions address
program-to-program variability

§ Average feature has
• 1-2 execution contexts

• 20 inputs

• 14 outputs

§ ~60-100 features per vehicle with
more than 2000 connections
among features

And the embedded software is a lot more than what we generally think of as "controls."

Consider a typical control feature. This might be idle speed control, or fuel injector control or something.

It includes not only the control law, but all the input and output processing, initialization and shut-down routines, diagnostics and failure management.

First of all, it will be used in lots of different vehicles, but it might be slightly different from one vehicle line to another, so there will be several versions of it. And different versions may run at different sample rates.

Typically there are about 20 inputs and 14 outputs per feature.

And there are about 60 features per application, so when you put them all together to run a car, there's about 2000 connections to manage.

Model-based Software
Engineering

§ Modeling environment
requires
§ Flexible, interchangeable

and reusable model
components

§ Seamless process for

30J.A. Cook 07March08

§ Seamless process for
component “plug-and-
play”

§ Data and complexity
management

§ Systems and software
analysis tools

HIDDEN

Style Matters

§ Models must be clear, readable, modular,
documented and precise

§ Automatic code generation does not eliminate
human error – just moves it higher in the

31J.A. Cook 07March08

human error – just moves it higher in the
process

§ Order of execution, execution context, data
types – must be specified in the model!

§ Naming conventions, data scoping, annotations
and comments, …

Reference: “Style Matters - Applying the lessons from the software industry to
Autocoding with Simulink” by Peter Gilhead, Ricardo Tarragon

Hatley-Pirbhai Model
Methodology

§ Simulink diagrams model data
flow; Stateflow diagrams model
control flow

§ Process specifications (P-specs)
modeled using Simulink blocks
and/or Stateflow diagrams,

32J.A. Cook 07March08

and/or Stateflow diagrams,
depending on the nature of the
algorithm

§ Control specifications (C-specs)
are modeled using Stateflow

§ One Simulink subsystem per
execution context (10ms,
100ms, etc.)

Reference: D. J. Hatley and I. A. Pirbhai, Strategies for Real Time System Specification. New York:
Dorset House, 1988.

Style Matters

§ Attempt to form
diagrams that have
no crossing signal
lines

33J.A. Cook 07March08

lines

§ Use consistent style
for readability and
documentation

