Automatic Code Generation

EECS 461
Winter 2008
jeffcook@eecs.umich.edu

J.A. Cook 07March08 1

Which brings us to a process for model-based systems development

Topics

= Code Generation from Models

= Model-based Software
Engineering

= Lab 8

Reference: “"Simulink Models for Autocode
Generation,” J. S. Freudenberg, EECS 461,
Fall 2006

J.A. Cook 07March08 2

Model-based SW Engineering:

Process

= Control law validated by
simulation and rapid
prototyping

= Executable software
specification (algorithm
model)

= Software Development (or
automatic generation)

= HIL verification of embedded
implementation

= Models permit V&V at every
step of the process from
re%uirements to implemented
code.

Systems Development Process

Requirements
Capture
Control Law
Development

Requirements ypdate

Customer Validation

Control System Requirements

Modeling, Simulation, Prototyping
Executable, structured model
. Software verification

Development

Executable
code

J.A. Cook 07March08 3

How do we do model-based systems engineering in this environment?
Like this (waterfall diagram).
It begins with system requirements, and relies on modeling, simulation and rapid prototype implementation for control law validation and verification.
And results in an executable software specification – that is, a model of the embedded code containing not just the control law, but all of the necessary implementation baggage that goes with it.
So now we have a specification against which the code can be functionally verified. Or, for that matter, we have a specification from which we might automatically generate code using a couple of commercially available tools which – one would hope – would guarantee that the code meets the specification.
Finally, the embedded implementation – that is, the actual strategy operating in the control microprocessor – is verified using hardware-in-the-loop real time simulation. In other words, we have a real-time model of the engine hooked up to the actual powertrain controller and we can verify that a correct implementation before it goes in a car – even before a car is available.
The picture is a simple hardware in the loop system. The control computer is on the left. The powertrain model is running on the computer on the right. Data acquisition and I/O interfaces in between.
The idea is that with verification and validation throughout the process from requirements to embedded code, nobody should be de-bugging software in the car. And code changes shouldn't be bug fixes, but changes because the requirements on the system have changed – which they do quite regularly throughout the development of a new car.

Examples: Automatic Code

u
G e I I e I a l I O I I First Look. Ingide A Comet - July 2005

= Deep Space 1

= Deep Impact

= Pluto-Kuiper Belt
= MER

= MRO

= MESSENGER

= X-37

= DAWN

Wi}

Report on the Utility of the MAAB Style Guide for
V&V/IV&V of NASA Simulink/Stateflow Models,
NASA 2004

J.A. Cook 07March08 4

Advantages of Automatic Code
Generation (dSPACE website
with editorial comments in red)

Less time-consuming and error-prone
than hand coding

Shorter development times, often
reduced by more than 40%

Model and C code always consistent
(really?)
Uniform standard for coding (really?)

No implementation errors (assuming the
model is correct!)

Code documentation always up-to-date
(really?)

J.A. Cook 07March08 §

Disadvantages of Automatic
Code Generation

= Code size (not as big a problem
as it once was)

= Integration with legacy code

= Consistency between model and
code (temptation to tweek the
code rather than revise the
model and re-generate)

J.A. Cook 07March08 6

Model-based Software
Engineering: Statistics

Model-based Software Development Model-based Software Development
vs. Historical vs. Historical
for Major Powertrain Control Project . ') .
for Major Powertrain Control Project

T W
Model-based software
works "first time" \
~43%
More time on modeling,
validation, verification r\
w
A ‘6
ol
—
0 o
> et
. -—
= E
: E
) T
& = based
S O ae¥

o
Start of Project Start of Project W
to to
First Release Fully Functional

Software 1St Release Time

J.A. Cook 07March08 7

Does the system work?
Here are some results for a fairly substantial powertrain development program that compare the model-based approach with some historical data.
The historical process being, essentially, write the code, put it in a car and see if it works; if it doesn't – fix it.
On the left is a timing comparison.
And you can see that our model-based process imposes a substantial penalty at the start of the project. It takes about twice as long to get to the first software release.
On the other hand, if you look at the time it takes to get functional software in the car, we can claim almost a 50% reduction in the time required. In fact, the model-based code worked right the first time in the car.
Some more data that show how the system reacts to changes. These are requirements changes or modifications to the hardware that result in changes to the control software, or bugs that show up after the first release. And here again, there's a substantial advantage in time and quality.

Automatic Code Generation
Tools

= dSPACE Targetlink
= Code generation from Simulink/Stateflow

= Extended Targetlink block set for fixed-point code generation and
implementation specific information

= http://www.dspaceinc.com/ww/en/inc/home.cfm

= ETAS ASCET
= Code generation from ETAS graphical modeling environment
= New product supports translation from Simulink/Stateflow
= http://en.etasgroup.com/index.shtml

= National Instruments LabVIEW

= FPGA code generation from LabVIEW “Virtual Instrument” modeling
environment

= http://www.ni.com/
= The MathWorks
= Code generation from Simulink/Stateflow
= Real-time Workshop (RTW) and RTW with Embedded Coder
= http://www.mathworks.com/

J.A. Cook 07March08 8

Lab #8: Automatic Code
Generation from SimulinK
Models

= Adding program from LAB #1

= Implement as Simulink model and code
generate

= Spring-mass-damper virtual world

= Double spring-mass-damper
= Fast and slow systems
= Multitasking

= Please read through the full lab document
since the format has changed for this lab

J.A. Cook 07March08 9

Lab #8: Hardware Specific
Functions and Low Level
Operations

= Lab #1 adder requires low level ("bit

Rushing”) operations in Simulink -
ow do we do this?

= Simulink block set
= S-functions

= Hardware I/O and processor
initialization?
= Special Simulink blocks from Freescale

= Real-time Workshop and Embedded
Coder from TMW for code generation

J.A. Cook 07March08 10

Lab #8 Part 1: Bit Manipulation - 32
bit unsigned integer into four 8 bit
unsighed integers

Cy =y ——P w3

Loy =0y =2 10 — wintd

Duj-.‘s 8 W uintd

Ciata Type Conwersion

Cata Type Conwersicn

i

Czta Type Conversion

— uintd

Bitwizs Wy =Wu
—» M
OuFF Ey=Eu
Least significant & hits Shifz
Arithmetic
Bitwse Wy =Vu™2*-B
3 a0 —— | Oy
=R Ey=Eu
Bitwse Shift
Tperatori Right & Bits
Bitwise Vg =Vu " 2*-14
— AND —#
TocFEODDD Ey=Eu
Eitwse Shefl
Operator? Fight 16 Bits
Bitwizs ViyysWu " 2*-24
—— ANC —— | Ly = Clu == 24
JwFFOO00DD Ey = Eu
PR i Chif
Most vificant B bit
ost significs ifs Right 24 Bits

Caia Type Conwersion

2
u

J.A. Cook 07March08 11

Bit Manipulation and Low-

level Operations

[Simulink Library Browser

File Edit “ew Help

0 & 4 b |

= Signal

Bit Clear: Clear ith bit of the stored integer to 0. Scaling is igr

Attributes/Dat
Type Conversi

= Logic and Bit
Operations/Bit
Operator

= Logic and Bit

Operations/Shif

Arithmetic

- gl Sirnulink

..... #| Commonly Used Blocks
..... | Continuous

..... 2| Discontinuities

..... Dizcrete

..... ¥ Logic and Bit Dperations
..... # Lockup Tables

..... 2| Math Dperations

..... 2 Model Verification

..... 2| Model'wide Utiities

----- | Portz & Subspstems

= W, Tibutes
----- quting
----- | Sinks

----- 2 Sources

----- 2 UserDefined Functions

= y Additional kath & Dizcrete
W@ Control Systemn Tookbox

& MPCE500 SIMD Optimized Blocks
§| RépplD

B RAppID-Toolbox

Real-Time Workzhop

Simulink Control Design

Simulink Extras
Stateflow
§| Syztem [dentification Toolbox

Ready

=10

E! Simulink Library Browser ==
File Edit Wew Help
O & & |
Data Type Conversion: Convert the input to the data type and scaling of the output. -
The converzion has twa possible goals. One goal iz to have the Real world Values of the

input and the output be equal. The other goal is to have the Stored Integer Yalues of the
input and the output be equal. Overflows and quantization errors can prevent the goal from LI

Fzivm Pl seduisoed

- N Simulink,

-----] Commonly Used Blocks
..... | Continuous

..... | Discontinuities

..... 2 Diserete

----- #+ Logic and Bit Operations
.....] Lookup Tables

..... | Math Operations

.....] Model Verification

..... | Modelwide Utilities

..... 2 Ports & Subspstems

..... m =1 Luttribu

..... % Signal Routing
.....] Sinks

----- 2 Sources

----- 1 UserDefined Functions

- 2] Additional Math & Discrete

.. i Cortral Spstem Tealbox

E MPCE500 SIMD Optimized Blocks
-\ RapplD

- N RAppID-T aalbos

- W Real Time Workshop

- gl Simulink Control Design

- gl Simulink Extras

- T Stateflow

- N System |dentification T oolbox

o OO e OO e O g IO e IO
(i iy e g e

[l

Ready

[ata Type Conversion

/| Data Type Conversion Inhented

Data Type Duplicate

[ata Tpe Propagation

[ata Type Propagation Examples

[ata Type Scaling Strip

IC

Evamples
Scaling
Strip
[
]
-

=)
=]

Fate Transition

Signal Corverziot

Signal Specification

Ts Wieighted Sample Time

width

FElatonal TRerarar

Shift Arithratic

S [

J.A. Cook 07March08

12

Lab #8 Part 2: Virtual Mass-

Spring System AMTﬂ’ﬂ' }

Di-:-.'l'< te Simulatior of Virtual Wheel sand Torsicnal Spring with Dawmping (vi-

= Simulation model: «isiicmma)

Select k, Jo, b, and T

= C code to implement on the uP has hardware
specific tasks:

Get wheel position from QD function of eTPU

Convert wheel position from eTPU in encoder counts to
degrees

Convert calculated torque in N-mm to duty cycle
Update duty cycle and send to PWM function of eMIOS
Do data type conversions

Initialize eTPU and eMIOS

= How do we do all these things in a model?

J.A. Cook 07March08 13

Freescale
RAppID

ecial Freescale
block set in Simulink
Library Browser

Move from simulation
environment to
implementation
without writing low-
level C code

Microprocessor
initialization and
peripheral device set-
up blocks

1] Simulink Library Browser

File Edit %iew Help

O S 4 @ |

RApplID-EC: RapplD EC

MPCEE54 PowerPC Embedded Controller Initialization Block, this block will etup the initailization
canfiquration frarm the GUI with interaction fram and blocks placed into the model.

L——_IEJ Simulinik.

..... | Commanly Used Blocks
..... | Continuous

----- m Dizcontinuities

..... 2 Discrete

----- 2 Logic and Bit Operations
..... | Lookup Tables

..... #| Math Operations

----- m b odel Werification

----- m M odelwide Utilities

..... y Ports & Subsysterns

..... | Signal Attributes

..... - Signal Routing

..... 2 Sinks

..... B Sources

..... | User-Defined Functiors
- m Additional Math & Discrete
..... W@ Control Spstem Toolbos
- W MPCHR00 SIMD Optirized Blocks
= ¥l RépplD

RapplD Initiahization Block.s
= W@ RépplD-Toolbo

- 2] 0SEKburbo Blocks

2| Peripheral Driver Blocks
- 2] Utiity Blacks

E]"'E_l Real-Time Warkzhop

- W Simulink Control Design
- W Simulink Extras

..... B Stateflow

- W] Swstem |dentification Toolbox

Feady

RpplD-EC

J.A. Cook 07March08 14

Freescale RAppID Toolbox for
uP and Peripherasme

OEEHE | ErEs &=y =

File Edit “iew Simulation Format Tool: Help
Initializati

<} RAppID : RAppIDinit |
File “iew CodeMeport Gererstion Corfigurstion Help Documerts &hbout o RApplD MPCSSSS Target Setup
[n" o -

=[O | % L] _ System Clock : 128 MHz
T Target : MPC555
e Compiler : metrome ks
Revision Murmber:1.83 _ Target Type : IntRAN

" . =" freescals Operating Systam : simpletarget
FlexCAN !
- RépplD-EC
Hy | 1003 |FivedStepDiscrete oz

4

@ » eTPU

J.A. Cook 07March08 15

Top Level Spring-Mass-Damper
Model: Execution Timing

RApplD MPCEEES Target Setup

Systern Clock : 128 MHz
Target : MPCEERY
Compiler : metrowerks
Target Type : IntRAM —
Operating System : simpletargst fil

Ll
Function—-Call
El Generator
RAppID-EC
Triggen]
1 ol [1]
Triggered subsystem ___ "Empe
. . rigoer
executes at the periodic Subsystem

rate specified by the
function call

J.A. Cook 07March08 16

Top Level Spring-Mass-Damper

Model: Execution Timing

Writs Reaction Torqus

Read Wheel Angle

KTs

-1

thet=wddat thetawdol
10 K Ts
Haplic Wheel Angls (degreas) e g - i
1fvirtual inertia Discrate—Time
constant Integrator

damping

Dizscrete—-Time
Integratori

Reacion Tomus

thetaw

signal

Inside the triggered subsystem, we need functions to read wheel
position and convert counts->degrees, and output torque as PWM

J.A. Cook 07March08 17

Freescale

RAppID

[Simulink Library Browser
File Edit “iew Help

E! Simulink Library Browser
Eile Edit View Help

= £

O 4= @

eMI05 Blocks: rappid_ec_lib/Peripheral Driver Blocks/etI0S Blocks

O 5 - @ |

eTPU Output PWMF: Generates 1. 2 or 3 phase FWM signals typicaly used for controlling DC
motors. Right-click on the block and see block help for uzage details

!Iil ’3 & Simulink

munlitled =
File Edit “iew Simulation Format Tools Help 5 g Commonly Used Blocks
----- Continuous
0= 0= » o= o 1 o [9) i o
| H&| & B[e 1| | i B& (Bl 2+ Discontinvities
----- # Discrete
----- 2+ Logic and Bit Operations
=TFU Quadrature Decader | ||} i E Lookup T ables
Set? functions DG Motor Controls Position Counth i e m o ath Dpe[alions
eTPLO I Model Verification
Channel: 4 j)
nf:fs"pd:erﬂ (cr;ranr;p;guso anguarvelootygprob |F 2+ ModelWide Utiliies
Position Counter Increments per Rewolution (4 % lines on motery 4026 | i 77 y Ports & SUbS}IStemS
Fozition Counts Sealing): PozitionCounts <1 | s i y Signal Attributes
FUNCTION NUMBER: F5_ETPU_QD_FUNCTION_N S . .
ENTRY TABLE ENCODING: FS_ETPU_DD_TABLE_LSBéiﬁE%E@%nm pesibmedy 2+ Signal Routing
eTPU Quadiature Decoder i 7 m Sinks
----- 1 Sources
----- 2 UserDefined Functions
- y Additional Math & Discrete
Read [100z | | fodedE . I Contral Systern Toolbow
o - — L. W MPCS500 5IMD Optimized Blocks
E1Source Block Parameters: eTPU Quadrature Decoder eI El FiésppiD

—SFunc_eTPU_quadraturedecoder [maszk] [link)]

Implements the quadrature decoder functionality based on phase & and phase B
encoder signals typicaly uzed for contraling DC motors, Outputs Position Counts
[24-bit counter which rallz aver on overflow). Angular Velocity in rpm and Direction of
motor at every time-step. Right-click on the block and see block help for usage
details

—Parameter
=T P O |
Ehannell 4 LI
Max Speed [rpm)
|000
Poszition Counter |ncrements per Revaolution [4 % lines on motor)
|4095
Position Caunt Scalingl 1 LI

- ¥ RépplD-Toolbos

-2+ DSEKtubo Blocks
- #+ Peripheral Driver Blocks
2+ eMIOS Blocks
% eQADC Blocks
2+ S0 Blocks

% eTPU Blocks
23] FlesCANZ Blocks
% GPID Blocks

[2 Utility Blocks

- W Real Time Workshop

ST = N N P PRI [Ry

Ready

eTPU Output

eTPU Quadrature Decoder
eTPU Quadrature Decoder Intermupt
Trigger

“ treazegie- | 8ADC Blacks

_r+|. R
i
b
i

treeemie | €501 Blocks

=

]

2z [eTPU Blocks

= treeszie- | FlenCaM2 Blocks

“ treezgzie- | GFIO Blocks

ok I Lancel | Help |

J.A. Cook 07March08 18

Device Driver Blocks:
Quadrature Decode

FiFE e g i 0] =
Eai oS ot ol Count B uictiE P) singlz
=TFE Cata Type Comarsion Diafa Ty Come=rsicni
Cha
(x Bt) =i i £ (=
Spesed {ner: BI200 - R 'la |
Cioi &5 peer Rescluson (4 X TermEn g
Fosllion Counts Soal PositionCounts =
FLUMCTICH HUMNSER: F5._ETFLU_GD_FURCTICH_MUMEER D=y e T
ENTHY TAZ DING: FE_ETPL_ QD TABLE _SELECT Dirszlion [D-pe: 1-req ———————= L&k a——
Terminaiori T
=5 e Dego
» .-'_h_':. | ———
— e

Uil

= Special Simulink blocks from Freescale
= Configure eTPU for QD
= Encoder counts to wheel angle, degrees

J.A. Cook 07March08 19

Device Driver Blocks: eMIOS
PWM

" 1)Reachon Tomue

single

i |- =i i3z ,
B0 ﬂl’lf E’EL’ DutyCyele output Pulse Width and Frequancy Modulation
EMICSE Chanmnel Mumbsr: O

GEn Bias 2aluraiion Oata Tl'l:E' conversion Iritial DlJl.'!.' C!.-l:la B0
Initial Frequency 20000Hz
P ey ALLLER M Fraquancy Intarmal Counler Bus
Carstant (1

EMICE Output PWH

DC = T*18/(773.4%128) + 0.5

J.A. Cook 07March08 20

Some Other Details Before
We can Code Generate

= Update rate
= Parameter initialization

pppppppppppppppppppppppp

Operating System - simpletargat

ppppppppp

g

mmmmmm

J.A. Cook 07March08 21

]
E! Simulink Library Browser
u I I C I O I I File Edit ¥iew Help

O 5 4o b |

Function-Call Generator: Thiz block implements an iterator operation. On each time-step &
az defined by the zample time field, this block. will execute the function-call subsystem(s] that it 7

drivesz for the gpecified number of iterations.
Demus the block's autput to execute multiple function-call subszyztems in a prescnbed order. -
Tha sicharn movmantad bo biret dare e ek s avaebad freb Haa snebarn moeeactad bo soeed _I

E- Rl Sirulink . =
..... 2 Commonly Used Blocks v |Fonfiguiable Subsystem
----- | Continuous
----- # Discontinuitiss D Atomic Subspstem
----- # Discrete
----- y Logic and Bit Operations D CodeR euseSubzystem
. S e R y Lookup Tables
[Source Block Parameters: Fast Task Trigger E3 '
----- 2 Math Operations
. . Enable
—Function-Call Generatar [mask] (ink]——— —+— ————— | | | #] Model Verification
Thiz block implements an iteratar operation. On each tme-step a3 defined by the || | 0 # Modslwide Utiities I:TI Enabled and Triggered
zample time field, thiz block will execute the funchion-call subsystem(z] that it drivez | | | | Ports & Subspstemns Subsystem
far the specified nurber of teratons. # Signal Attributes
_____ # Signal Routing E Enabled Subsystem
Demu the Block's output to execute multiple function-call subsystems ina preseribed | | | 0] Sinks
order. The system connected to first demus port iz executed first, the syztem
i LR [[I R y S ources For Iterator Subsystem
cohnected to gecond demuy port is executed second. and 20 an.))
----- | User-Defined Functions
—Parameters - B Additional Math & Digcrete III
----- B Cortrol System Toolbox
Sample time: - imi
p - | MPCES00 SIMD Optimized Blocks D Function-Call Subsysten
T - Tl RappID -
o - Nl RapplD-Tookbox
Number of iterations: - | Real-Time Warkshop l:l I
I-I E]---El Simulink. Control Design T
(- | Simulink Extras i o | If Action Subsystem
----- & Stateflow
ak Cancel Help E]---El System |dentification Toolbox 11
aun -
Ready v

J.A. Cook 07March08 22

Model Parameter Initialization

= From the Simulink

model window
= File/Model

kModel zallbacks

b odel initialization function;

- PreLoadFch

- |nitFor®
-~ StartFon

Properties/Callbacks/ | s

InitFcn

= Assign values in an
M-file specified in
the initialization

- PreSaveFch

-~ ClozeFon

- PogtLoadFcn

- Pazts aveFeon

b wirtuial_wheel_params

window without the

.m suffix

Ay

J.A. Cook 07March08 23

Triggered
Subsystem

E! Simulink. Library Browszer

File Edit “iew Help

I S

O 4 @ |

Triggered Subsystem: A subsystem block termplate containing a tigger port, inpark and
outport block.

EIE Simulink,

----- % Commonly Used Blacks
.....] Continuous

..... # Discontinuities

Function-Call Generator

Lo]
D Function-Call Subzsystem

----- #| Discrete If
-----] Logic and Bit Operations
. . . . Y N TN I e 2] Lookup Tables I T ontl| If Action Subsystern
Simulink/signal routing/environment controller| | - o et - P
..... odel Venhcation
In1

..... # ModelWide Utilities
..... # Ports & Subsysterns
.....] Sigral Attributes

Outl

I:l Subspztenm

Subsystemn

Examples

Switch Caze

Readion Tarqua

Subspztem Examples

WWiite Reachon Torgue

] hatzwdot Irectzw
daubla Ihatawddol
|doble e cnge b sinle KTs |=in K Ts | sigle
Slep Dala Type Corvers 1 1 Cul nt st | Switch Case Action
Entdranmet 1#riual nertia Discreke-Tmea Discrete-Timea Subspztenm
Conlnaller Intaoraior Intesgratar]
Trigger
Haptic Wheal Ange (degmas) b
sngla
o ["]
Read Whesl Angle pirg
| i |'|‘-A-"hi|e Iterator Subsystem
|
Feady

[|

J.A. Cook 07March08 24

Lab#8 Part 3: Tasks,
Priorities and Shared Data

= Spring-Mass-
Damper 0
= Single task rate
= No shared data

= Real system
= Multiple tasks

= Rate monotonic Double Spring-Mass-
priority scheme Damper System: 2

= RTOS tasks with different

= Shared data sample rates

J.A. Cook 07March08 25

Multi-rate System:

2 S-M-D N =

= Fast S-M-D is 10 P -
times faster than -
slow system v

= Separate tasks at N j
different rates V \ f |

= Fast and slow) ,m { PO LI |
systems have m | |J m ﬂ
different integration .| | |
time steps —]

mmmmmmmmmm

J.A. Cook 07March08 26

Rate Transition
Blocks

= Deterministic transfer
of data with data
integrity between
blocks operating at
different speeds at the
cost of maximum
latency of data transfer

= ZOH for fast-to-slow
transitions

= Unit delay for slow-to-
fast transitions

[N Simulink Library Browser

File Edit

Wi

Help

s 3

O & 4 ¢ |

Rate Transition: Handle transfer of data between ports operating at different rates.
Configuration options allow wou to trade off transfer delay and code efficiency for zafety and
determinizm of data transfer. The default configuration assures safe and deterministic data
tranzfer. The black's behavior depends on option settings and/ar the zample times of its input
and output ports. Updating the block diagram cauzes test on the block's icon o indicate its
behavior as follows;

----- | Commonly Used Blocks
..... # Continuous

..... 2 Discontiruities

..... # Discrete

----- ¥ Logic and Bit Operations
..... 2 Lookup Tables

..... # Math Operations

2 Model Verification

..... # Modelwide Utiities

..... 2 Ports & Subsysterns

----- #+ Signal Attributes

----- 2 Signal Routing

----- # Sinks

..... 2 Sources

..... # User-Defined Functions
- B Additional Math & Discrete
----- B Control System Toolbox

El MPCE500 SIMD Optimized Blocks
- | RapplD

- T RapplD-Toolbox

- B Rieal-Time Workshop

- g Simulink Control Diesign

- W] Simulink Extras

..... B Stateflow

i OO o O e OO e IO OO
il R o .l R oy

.. Bl Snetern |denbification Tanlhoe
Ready

Z0H: Zero Order Hold

1/z Linit Celay

Buf: Copy input bo output under semaphore control

Db_buf: Copy input to output, uging double butfers

Copy: Unprotected copy from input to autput b

Maolp: Mo Operation -
E- gl Simulink, =) 1=

[]

Data Type Conversion

| Data Type Cornversion

"| Inherited
Same Data Type Duplizate
oT
Rett
Rafz [ata Type Propagation
Frop
Oata Type .
Fmpag;ip::nn [ata Type Propagation
. Examples
Scaling . .
Stip D ata Type Scaling Stip

Signal Canversion

Signal Specifization

T walminbbad ©zrnele Tire LI

i

J.A. Cook 07March08 27

Code — =
Generation |

= Processor initialization at highest level

= Device driver blocks inside the fast
system
= RTW code generation

= Tools->Real-Time Workshop ->Build
Model

J.A. Cook 07March08 28

Real Embedded Software

Large, complex, developed by

many people, integrated at the
end, and expected to work.

Feature "A"

Version "x.y.z"

(2 Rates)

Scheduler
and
Mode Selection

= Multiple versions address
program-to-program variability
= Average feature has
e 1-2 execution contexts
e 20 inputs

Typical automotive control 4
“feature” .
= Much more than just the control o
law ©

=t

w

3

3

N

Failure Mode

} Management

' Initialization
Mode 1
b Mode 2
Controller
“Mode n
Diagnostics

Actuator Signal Processing

e 14 outputs
~60-100 features per vehicle with
more than 2000 connections
among features

J.A. Cook 07March08 29

And the embedded software is a lot more than what we generally think of as "controls."

Consider a typical control feature. This might be idle speed control, or fuel injector control or something.

It includes not only the control law, but all the input and output processing, initialization and shut-down routines, diagnostics and failure management.

First of all, it will be used in lots of different vehicles, but it might be slightly different from one vehicle line to another, so there will be several versions of it. And different versions may run at different sample rates.

Typically there are about 20 inputs and 14 outputs per feature.

And there are about 60 features per application, so when you put them all together to run a car, there's about 2000 connections to manage.

Model-based Software
Engineering

Feature "Bookshelf"

= Modeling environment
requires
= Flexible, interchangeable

and reusable model
components Feature Development

= Seamless process for o
Component \\plug-and- \lequirements ,
play"

Application Development

Program

Requirements Applfcation

Soffware

. S/IW Synthesis S/W
u Data an d com p I exi ty Verification ||| & Validation Verification
m a n a g e m e n t Model-based Sirr?ulation-t.)qseq
u Syste ms an d Softw are Fi\ygﬁdgﬁign Functlonaallr:/jrlflcatlom

Technology and
Methodology
Research

analysis tools

S/W S/W HIL Imp_lt_ame_ntation
Realization Build Verification

J.A. Cook 07March08 30

HIDDEN

Cost of Correcting Defects

Codng

Fegrmts [r2sign Taating haint.
Software Development Lilscyclke Phass

-
[=]
1

$228

Style Matters

228

3 8

Cost of corracting defects
(bassline = costs at rqmts phass)

=k
[l
1

= Models must be clear, readable, modular,
documented and precise

= Automatic code generation does not eliminate
human error — just moves it higher in the
process

= Order of execution, execution context, data
types — must be specified in the model!

= Naming conventions, data scoping, annotations
and comments, ...

Reference: "Style Matters - Applying the lessons from the software industry to
Autocoding with Simulink” by Peter Gilhead, Ricardo Tarragon

J.A. Cook 07March08 31

Hatley-Pirbhai Model
Methodology

i feat_bg B B3
Eile: Edit Sirwlaticer Farmat

= Simulink diagrams model data —
flow; Stateflow diagrams model ‘l ~
control flow { {3]—

= Process specifications (P-specs) T
modeled usi nP Simulink blocks D SIG A s 6C Sn e in S s At
and/or Stateflow diagrams,
depending on the nature of the . e | o
algorithm = input3 goes here outputs =

= Control specifications (C-specs)

In addition, the baclkgrou architecturally decomposed

a re m Od e I e d u S i n g Sta tefl OW Into it's majorfur:ctao_nai bloc they are P-Specs undemeath,

the "do_feat_proc()' con toimvoke it from the C-Spec
It there is additional hisrarc bsystem, the "ing_feal proc(]”

) O n e S i m u | i n k S u b S Ste m p e r EWCL}?QY:S’;IT:;nagssl;rgérwzfgoc‘gmrg :trzlglllzl-gge?-lg\fglcbefore
execution context (10ms,

¥

100ms, etc.)

Reference: D. J. Hatley and I. A. Pirbhai, Strategies for Real Time System Specification. New York:
Dorset House, 1988.

J.A. Cook 07March08 32

File- Edit Sirulation Faormat

1 ;
O trig_connactol rs

trig_connector

Style Matters (

connectors
[do_pragt] m [do_pioc3]
o o_proc

= Attempt to form

diagrams that have
no crossing signal
lines

= Use consistent style
for readability and
documentation

J.A. Cook 07March08 33

