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Abstract

Decision support applications involve complex queries on very large databases. Since response
times should be small, query optimization is critical. Users typically view the data as multi-
dimensional data cubes. Each cell of the data cube is a view consisting of an aggregation of
interest, like total sales. The values of many of these cells are dependent on the values of other
cells in the data cube. A common and powerful query optimization technique is to materialize
some or all of these cells rather than compute them from raw data each time. Commercial
systems differ mainly in their approach to materializing the data cube. In this paper, we in-
vestigate the issue of which cells (views) to materialize when it is too expensive to materialize
all views. A lattice framework is used to express dependencies among views. We then present
greedy algorithms that work off this lattice and determine a good set of views to materialize.
The greedy algorithm performs within a small constant factor of optimal under a variety of
models. We then consider the most common case of the hypercube lattice and examine the
choice of materialized views for hypercubes in detail, giving some good tradeoffs between the
space used and the average time to answer a query.

1 Introduction

Decision support systems (DSS) are rapidly becoming a key to gaining competitive advantage for
businesses. DSS allow businesses to get at data that is locked away in operational databases and
turn that data into useful information. Many corporations have built or are building new unified
decision-support databases called data warehouses on which users can carry out their analysis.

While operational databases maintain state information, data warehouses typically maintain
historical information. As a result, data warehouses tend to be very large and to grow over time.
Users of DSS are typically interested in identifying trends rather than looking at individual records
in isolation. Decision-support queries thus make heavy use of aggregations and are much more
complex than OLTP queries.

The size of the data warehouse and the complexity of queries can cause queries to take very
long to complete. This delay is unacceptable in most DSS environments, as it severely limits
productivity. The usual requirement is query execution times of a few seconds or a few minutes at
the most.

There are many ways to achieve such performance goals. Query optimizers and query evaluation
techniques can be enhanced to handle aggregations better [CS94], [GHQ95], [YL95], to use different
indexing strategies like bit-mapped indexes and join indexes [0G95], and so on.
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A commonly used technique is to materialize (precompute) frequently-asked queries. The data
warehouse at the Mervyn’s department-store chain, for instance, has a total of 2400 precomputed
tables [Rad95] to improve query performance. Picking the right set of queries to materialize is a
nontrivial task, since by materializing a query we may be able to answer other queries quickly. For
example, we may want to materialize a query that is relatively infrequently asked if it helps us
answer many other queries quickly. In this paper, we present a framework and algorithms that
enable us to pick a good set of queries to materialize. Our framework also lets us infer in what
order these queries are to be materialized.

1.1 The Data Cube

Users of data warehouses work in a graphical environment and data are usually presented to them
as a multidimensional “data cube” whose 2-D, 3-D, or even higher-dimensional sub cubes they
explore trying to discover interesting information. The values in each cell of this data cube are
some “measures” of interest. As an example consider the TPC-D decision-support benchmark.

EXAMPLE 1.1 The TPC-D benchmark models a business warehouse. Parts are bought from
suppliers and then sold to customers at a sale price SP. The database has information about each
such transaction over a period of 6 years.

There are three dimensions we are interested in: part, supplier, and customer. The “mea-
sure” of interest is the total sales. So for each cell (p,s,c) in this 3-D data cube, we store
the total sales of part p that was bought from supplier s, and sold to customer c¢. We use
the terms dimension and attribute interchangeably in this section. In the general case, a given
dimension may have many attributes as we shall see in Section 2.

Users are also interested in consolidated sales: for example, what is the total sales of a given
part p to a given customer ¢? [GBLP95] suggest adding an additional value “ALL” to the domain
of each dimension to achieve this. In the question above we want the total sales of a given part p
to a given customer ¢ for “ALL” suppliers. The query is answered by looking up the value in cell
(p, ALL,c).

O

We use the TPC-D database of size 1GB as a running example throughout this paper. For
more details on this benchmark refer to [TPCD].

We have only discussed the presentation of the data set as a multi-dimensional data cube to
the user. The following implementation alternatives are possible:

1. Physically materialize the whole data cube. This approach gives the best query response
time. However, precomputing and storing every cell is not a feasible alternative for large data
cubes, as the space consumed becomes excessive. It should be noted that the space consumed
by the data cube is also a good indicator of the time it takes to create the data cube, which
is important in many applications. The space consumed also impacts indexing and so adds
to the overall cost.

2. Materialize nothing. In this case we need to go to the raw data and compute every cell on
request. This approach punts the problem of quick query response to the database system
where the raw data is stored. No extra space beyond that for the raw data is required.

3. Materialize only part of the data cube. We consider this approach in this paper. In a data
cube, the values of many cells are computable from those of other cells in the data cube.
This dependency is similar to a spreadsheet where the value of cells can be expressed as a



function of the values of other cells. We call such cells “dependent” cells. For instance, in
Example 1.1, we can compute the value of cell (p, ALL,c) as the sum of the values of cells of
(p7 51, 6)7 sy (p7 SNSllpplieI"
we materialize, the better query performance is. For large data cubes however, we may be

c), where Nsupplier is the number of suppliers. The more cells

able to materialize only a small fraction of the cells of the data cube, due to space and other
constraints. It is thus important that we pick the right cells to materialize. Our approach is
very scalable and can handle large data cubes well.

Any cell that has an “ALL” value as one of the components of its address is a dependent
cell. The value of this cell is computable from those of other cells in the data cube. If a cell has
no “ALL”s in its components, its value cannot be computed from those of other cells, and we
must query the raw data to compute its value. The number of cells with “ALL” as one of their
components is usually a large fraction of the total number of cells in the data cube. In the TPC-D
database with the dimensions as in Example 1.1, seventy percent of all the cells in the data cube
are dependent.

The problem of what cells of the data cube to materialize, is a very real one. There are different
commercial systems which pick one of the different strategies given above. Clearly, each strategy
has its benefits. For example, for applications where performance is of paramount importance and
scalability is not important we can go with the materialize-everything strategy. The Essbase sys-
tem [ESS], for example, materializes the whole data cube, while BusinessObjects [X94] materializes
nothing, and the MetaCube system [STG] materializes part of the cube.

There is also the issue of where the materialized data cube is stored: in a relational system
or a proprietary MDDB (multi-dimensional database) system. In this paper, we assume that the
data cube is stored in “summary” tables in a relational system. Sets of cells of the data cube are
assigned to different tables.

The cells of the data cube are organized into different sets based on the positions of “ALL” in
their addresses. Thus, for example, all cells whose addresses match the address (_,ALL,_) are placed
in the same set. Here, “_” is a placeholder that matches any value. Each of these sets corresponds
to a different SQL query. The values in the set of cells (,,ALL,.) is output by the SQL query:

SELECT Part, Customer, SUM(SP) AS TotalSales
FROM R
GROUP BY Part, Customer;

Here, R refers to the raw-data relation. The queries corresponding to the different sets of cells,
differ only in the GROUP-BY clause. In general, attributes with “ALL” values in the description
of the set of cells, do not appear in the GROUP-BY clause of the SQL query above. For example,
supplier has an “ALL” value in the set description (,,ALL, ). Hence it does not appear in the
GROUP-BY clause of the SQL query. Since the SQL queries of the various sets of cells differ only in
the grouping attributes, we use the grouping attributes to identify queries uniquely.

Deciding which sets of cells to materialize is equivalent to deciding which of the corresponding
SQL queries (views) to materialize. In the rest of this paper we thus work with views rather than
with sets of cells.

1.2 Motivating Example

The TPC-D database we considered in Example 1.1 has 3 attributes: part, supplier, customer.
We thus have 8 possible groupings of the attributes. We list all the queries (views) possible below



with the number of rows in their result. Note again it suffices to only mention the attributes in the
GROUP-BY clause of the view.

1. part, supplier, customer (6M, i.e., 6 million rows)
2. part, customer (6M)

3. part, supplier (0.8M)

4. supplier, customer (6M)

5. part (0.2M)

6. supplier (0.01M)

7. customer (0.1M)

8. none (1)

none indicates that there are are no attributes in the GROUP-BY clause. Figure 1 shows these eight
views organized as a lattice of the type we shall discuss in Section 2. In naming the views in this
diagram, we use the abbreviation p for part, s for supplier, and ¢ for customer.

ps|c 6M
/ \
p|c 6M ps 0.8M s|c 6M
Tt
p 0.2M 8| 0.01M c 0.1M
\ /
none 1

Figure 1: The eight views constructible by grouping on some of part, supplier, and customer

One possible user query is a request for an entire view. For example, the user may ask for the
sales grouped by part. If we have materialized the view that groups only by part (view 5), we
only need scan the view and output the answer. We can also answer this query using the view
that groups by part and customer (view 2). In this case, since we have the total sales for each
customer, for each part we need to sum the sales across all customers to get the result.

In this paper we assume the cost of answering a query is proportional to the number of rows
examined. Thus, the cost of finding the total sales grouped by part, if (view 5) is materialized, is
the cost of processing 0.2 million rows (the size of this view). To answer the same query using the
part, customer view we would need to process 6 million rows.

Another kind of user query would ask only for the sales for a single part, say “widgets.” If the
views have no indexes, then we still have to scan the entire view (or half on the average) to answer
this question. Thus, the same comparison, 0.2M rows for view 5 versus 6M rows for view 2, would
apply to this query. If, however, the appropriate indexes are available in both views, finding sales
of widgets requires only one row access from view 5, while in view 2 we would have to access an



average of 6M/0.2M = 30 rows.! However, regardless of whether or not the materialized views are
indexed, we expect that the cost of answering each of these queries — whole view or a single cell —
would be proportional to the size of the view from which we answered the query. We shall discuss
the cost model in more detail in Section 3.

There are some interesting questions we can now ask:

1. How many views must we materialize to get reasonable performance?

2. Given that we have space S, what views do we materialize so that we minimize average query
cost?

3. If we’re willing to tolerate an X % degradation in average query cost from a fully materialized
data cube, how much space can we save over the fully materialized data cube?

In this paper, we provide algorithms that help us answer the above questions and provide near
optimal results.

In the above example, a fully materialized data cube would have all the views materialized and
thus have slightly more than 19 million rows.

Now let us see if we can do better. To avoid going to the raw data, we need to materialize the
view grouping by part, supplier, and customer (view 1), since that view cannot be constructed
from any of the other views. Now consider the view grouping by part and customer (view 2).
Answering any query using this view will require us to process 6 million rows. The same query
can always be answered using the view grouping by part, supplier, and customer, which again
requires processing of 6 million rows. Thus there is no advantage to materializing the view grouping
by part and customer. By similar reasoning, there is no advantage materializing the view grouping
by supplier and customer (view 4). Thus we can get almost the same average query cost using
only 7 million rows, an improvement of more than 60% in terms of space consumed and thus in the
cost of creating the data cube.

Thus by cleverly choosing what parts of the data cube to materialize, we can reap dramatic
benefits.

1.3 Related Work

Multi-dimensional data processing (also known as OLAP) has enjoyed spectacular growth of late.
There are two basic implementation approaches that facilitate OLAP. The first approach is to
eschew SQL and relational databases and to use proprietary multi-dimensional database (MDDB)
systems and APIs for OLAP. So while the raw data is in relational data warehouses, the data cube is
materialized in an MDDB. Users query the data cube, and the MDDB efficiently retrieves the value
of a cell given its address. To allocate only space for those cells present in the raw data and not
every possible cell of the data cube, a cell-address hashing scheme is used. Arbor’s Essbase [ESS]
and many other MDDBs are implemented this way. Note, this approach still materializes all the
cells of the data cube present in raw data, which can be very large.

The other approach is to use relational database systems and let users directly query the raw
data. The issue of query performance is attacked using smart indexes and other conventional
relational query optimization strategies. There are many products like BusinessObjects and Mi-
crostrategy’s DSS Agent that take this tack. However, MDDBs retain a significant performance
advantage. Performance in relational database systems though can be improved dramatically by
materializing the data cube into summary tables.

"Here we disregard the number of index nodes accessed.



The relational approach is very scalable and can handle very large data warehouses. MDDBs
on the other hand have much better query performance, but are not very scalable. By materializing
only selected parts of the data cube, we can improve performance in the relational database, and
improve scalability in MDDBs. There are products in both the relational world [STG], and the
MDDB world (Sinper’s Spreadsheet Connector) that materialize only parts of the data cube. We
believe however that this paper is the first to investigate this fundamental problem in such detail.

[GBLP95] discusses generalizing the SQL GROUP-BY operator to a data cube operator. They
introduce the notion of “ALL” that we mention. However, they also claim the size of the entire
data cube is not much larger than the size of the corresponding GROUP-BY. We believe differently.?
As we saw in the TPC-D database, the data cube is usually much larger: more than three times
larger than the corresponding GROUP-BY (part, supplier, customer).

1.4 Paper Organization

The paper is organized as follows. In Section 2 we introduce the lattice framework to model
dependency among views. We also show how the lattice framework models more complex groupings
that involve arbitrary hierarchies of attributes. Then in Section 3, we present the query-cost model
that we use in this paper. Section 4 presents a general technique for producing near-optimal
selections of materialized views for problems based on arbitrary lattices. In Section 5, we consider
the important special case of a “hypercube” lattice, where the views are each associated with a set
of attributes on which grouping occurs. The running example of Section 1.2 is such a hypercube.

2 The Lattice Framework

In this section we develop the notation for describing when one data-cube query can be answered
using the results of another. As an example, in Section 1.2 we saw that for the data-cube, queries
that we might wish to materialize are completely specified by giving the attributes in their GROUP-BY
clause. We may thus denote a view or a query (which are the same thing) by giving its grouping
attributes inside parenthesis. For example the query with grouping attributes part and customer
is denoted by (part, customer). We also saw that views defined by supersets can be used to answer
queries involving subsets.

2.1 The Dependence Relation on Queries

We may generalize the observations of Section 1.2 as follows. Consider two queries ()7 and @)s.
We say Q1 < Q2 if and only if @1 can be answered using only the results of query (2. We then
say that @1 is dependent on Q3. For example, in Section 1.2, the query (part), can be answered
using only the results of the query (part, customer). Thus (part) < (part, customer). There
are certain queries that are not comparable with each other using the < operator. For example:
(part) A (customer) and (customer) A (part).

The < operator imposes a partial ordering on the queries. We shall talk about the views of a
data-cube problem as forming a lattice [TM75]. In order to be a lattice, any two elements (views
or queries) must have a least upper bound and a greatest lower bound according to the < ordering.
However, in practice, we only need the assumptions that

2The analysis in [GBLP95], assumes that every possible cell of the data cube exists. However, in most cases, data
cubes are sparse: only a small fraction of all possible cells are present. In such cases, the size of the data cube can
be much larger than the corresponding GROUP-BY. In fact, the sparser the data cube, the larger is the ratio of the size
of the data cube to the size of the corresponding GROUP-BY.



1. <is a partial order, and

2. There is a top element, a view upon which every view is dependent.

2.2 Lattice Notation

We denote a lattice with set of elements (queries or views in this paper) L and dependence relation
< by (L, <). For elements « and b of a lattice (L, <), @ < b means that @ < b and a # b.
The ancestors and descendants of an element of a lattice (I, <), are defined as follows:

ancestor(a) = {b| a < b}

descendant(a) = {b| b < a}

Note that every element of the lattice is its own descendant and its own ancestor. The immediate
proper ancestors of a given element a in the lattice belong to a set we shall call nezt(a). Formally,

next(a) ={b|a <b, Ac,a < c,c < b}

2.3 Lattice Diagrams

It is common to represent a lattice by a lattice diagram, a graph in which the lattice elements are
nodes and there is an edge from a below to b above if and only if b is in nezt(a). Thus, for any two
lattice elements z and y, the lattice diagram has a path downward from y to z if and only if z < y.

EXAMPLE 2.1 The hypercube of Fig. 1 is the lattice diagram of the set of views discussed in
Section 1.2. O

2.4 Hierarchies

In most real-life applications, dimensions of a data cube consist of more than one attribute, and
the dimensions are organized as hierarchies of these attributes. A simple example is organizing
the time dimension into the hierarchy: day, month, and year. Hierarchies are very important, as
they form a basis of two very commonly used querying operations: “drill-down” and “roll-up.”
Drill-down is the process of viewing data at progressively more detailed levels. For example, a user
drills down by first looking at the total sales per year and then total sales per month and finally,
sales on a given day. Roll-up is just the opposite: it is the process of viewing data in progressively
less detail. In roll-up, a user starts with total sales on a given day, then looks at the total sales in
that month and finally the total sales in that year.

In the presence of hierarchies, the dependency lattice (L, <) is more complex than a hypercube
lattice. For example, consider a query that groups on the time dimension and no other. When we
use the time hierarchy given earlier, we have the following three queries possible: (day), (month),
(year), each of which groups at a different granularity of the time dimension. Further,

(year) < (month) < (day).

In other words, if we have total sales grouped by month, for example, we can use the results to
compute the total sales grouped by year. Hierarchies introduce query dependencies that we must
account for when determining what queries to materialize.

To make things more complex, hierarchies often are not total orders but partial orders on
the attributes that make up a dimension. Consider the time dimension with the hierarchy day,



week, month, and year. Since months and years cannot be divided evenly into weeks, if we do
the grouping by week we cannot determine the grouping by month or year. In other words:
(month) £ (week), (week) A (month), and similarly for week and year. When we include the none
view corresponding to no time grouping at all, we get the lattice for the time dimension shown in
the diagram of Fig. 2.

Day
/ \
Week Month

U

none

Figure 2: Hierarchy of time attributes

2.5 Composite Lattices for Multiple, Hierarchical Dimensions

We are faced with query dependencies of two types:

1. Query dependencies caused by the interaction of the different dimensions with one another.
The example in Section 1.2 and the corresponding lattice in Fig. 1 is an example of this sort
of dependency.

2. Query dependencies within a dimension caused by attribute hierarchies.

If we are allowed to create views that independently group by any or no member of the hierarchy
for each of n dimensions, then we can represent each view by an n-tuple (a1, ag, ..., a,), where each
a; is a point in the hierarchy for the ith dimension. This lattice is called the direct product of the
dimensional lattices [TM75]. We directly get a < operator for these views by the rule

(a1, az,...,a,) = (b1, ba,...,by,) if and only if a; < b; for all i

We illustrate the building of this direct-product lattice in the presence of hierarchies using an
example based on the TPC-D benchmark.

EXAMPLE 2.2 In Example 1.1, we mentioned the TPC-D benchmark database. In this example
we focus further on two dimensions: part and customer. Each of these dimensions is organized into
hierarchies. The dimensional lattices for the dimension queries are given in Fig. 3. These dimension
lattices have already been modified to include the attribute (none) as the lowest element.

The customer dimension is organized into the following hierarchy: individual customers, de-
noted by attribute ¢, are grouped together based on their country of residence, denoted by attribute
n. The coarsest level of grouping is none at all, and this grouping is denoted by the attribute none.

For the part dimension, the individual parts are denoted by attribute p. These individual parts
are grouped together based on their size denoted by attribute s. They are also grouped together
based on their types, denoted by attribute t. Note neither of s and ¢ is < the other. Finally, we
have the attribute none as the smallest element in this lattice. The direct-product lattice is shown
in Fig. 4. Note, when a dimension’s value is none in a query, we do not specify the dimension in
the query. Thus for example, (s,none) is written as (s). O
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Figure 3: Hierarchies for the customer and part dimensions
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Figure 4: Combining two hierarchical dimensions

The lattice framework, we present and advocate in this paper, is advantageous for several
reasons:

1. It provides a clean framework to reason with dimensional hierarchies, since hierarchies are
themselves lattices. As can be seen in Fig. 4, the direct-product lattice is not always a hyper-
cube when hierarchies are not simple. Current data cube approaches are unable to integrate
dependencies caused by dimensional hierarchies cleanly with the dependencies caused by in-
ter dimensional interaction, as we do. As we shall see shortly in Section 4, doing so is very
important in deciding which views need to be materialized for best query performance.

2. We can model the common queries asked by users better using a lattice framework. Users
usually don’t jump between unconnected elements in this lattice, they move along the edges



of the lattice. In fact, drill-down is going up (going from a lower to higher level) a path in
this lattice, while roll-up is going down a path.

3. The lattice approach also tells us in what order to materialize the views. Thus for example,
let us decide to materialize views S = {@1,...,@n}. Since some queries in set S may be
dependent on others, we need not go to the raw data to materialize every view. By using
views that are already materialized to materialize other views in S, we can reduce the total
materialization time dramatically. Doing so translates to reducing the time required to create
the data cube. Consider the lattice, (S, <), in which all the views in S are elements. Perform
a topological sort of S based on the < operator. Arrange the elements of S in descending
order with respect to operator <. Let the order be @QF,...,Q%. We materialize the views in
this order. The first few views have no proper-ancestor elements in S. To materialize these
views we must access raw data. Thereafter, all the views can be materialized from views
materialized earlier. In materializing a view )7, we use its proper-ancestor in S, @3, j < 1,
with the smallest number of rows.

3 The Cost Model

In this section, we review and justify our assumptions about the “linear cost model,” in which the
time to answer a query is taken to be equal to the space occupied by the view from which the query
is answered. We then consider some points about estimating sizes of views without materializing
them and give some experimental validation of the linear cost model.

3.1 The Linear Cost Model

Let (L, <) be a lattice of queries (views). To answer a query ) we choose an ancestor of @), say
()4, that has been materialized. We thus need to process the table corresponding to @ 4 to answer
(). The cost of answering ) is a function of the size of the table for ) 4. In this paper, we choose
the simplest cost-model:

e The cost of answering () is the number of rows present in the table for that query )4 used
to construct Q).

As we discussed in Section 1.2, not all queries ask for an entire view, such as a request for the
sales of all parts. It is at least as likely that the user would like to see sales for a particular part
or a few parts. If we have the appropriate index structure, and the view (part) is materialized,
then we can get our answer in O(1) time. If there is not an appropriate index structure, then we
would have to search the entire (part) view, and the query for a single part takes almost as long
as producing the entire view.

If, for example, we need to answer a query about a single part from some ancestor view such
as (part, supplier) we need to examine the entire view. It can be seen that a single scan of the
view is sufficient to get the total sales of a particular part. Now on the other hand if we wish
to find the total sales for each part from the ancestor view (part, supplier), we need to do an
aggregation over this view. We can use either hashing or sorting (with early aggregation) [G93]
to do this aggregation. The cost of doing the aggregation is a function of the amount of memory
available and the ratio of the number of rows in the input to that in the output. In the best case,
a single pass of the input is sufficient (for example, when the hash table fits in main memory). In
practice, it has been observed that most aggregations take between one and two passes of the input
data.
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While the actual cost of queries that ask for single cells, or small numbers of cells, rather than
a complete view, is thus complex, we feel it is appropriate to make an assumption of uniformity.
That is, either the data structure used to store views supports efficient access to the desired cell,
in which case the time required is proportional to the number of rows that must be aggregated
to compute the value in the cell, or the data structure does not, in which case the behavior of
single-cell and full-view queries are essentially the same.

In the first case, where a suitable data structure exists, we shall make the further assumption
that, over time, many queries asking for (different) cells of the same view @) will occur. Some
number of these queries, as a group, will have performance equivalent to that of a single query for
the full view ). That is, either their total time will equal that of reading @), if it is materialized, or
the time will be that of reading view ) 4, the preferred, materialized ancestor of ). Thus, we may
avoid the question of whether full-view or single-cell queries predominate, and treat all queries as
full-view queries. Thus:

e We assume that all queries are identical to some element (view) in the given lattice.

Clearly there are other factors, not considered here, that influence query cost. Among them are
the clustering of the materialized views on some attribute, and the indexes that may be present.
More complicated cost models are certainly possible, but we believe the cost model we pick, being
both simple and realistic, enables us to design and analyze powerful algorithms. We believe that
our analysis of the algorithms we develop in Sections 4 and 5 reflects their performance under other
cost models as well as under the model we use here.

3.2 Experimental Examination of the Linear Cost Model

A substantial validation of our cost model is shown in Fig. 5. On the TPC-D data, we asked for the
total sales for a single supplier, under four conditions, using views of different granularities. We find
an almost linear relationship between size and running time of the query. This linear relationship
can be expressed by the formula:

T=mxS+c

Here T is the running time of the query on a view of size S. ¢ gives the fixed cost: the overhead
of running this query on a view of negligible size. In this case, the first row of the table in Fig. 5,
gives the fixed cost of 2.07 seconds. m is the ratio of the query time to the size of the view, after
accounting for the fixed cost. As can be seen in Fig. 5 this ratio is almost the same for the different
views.

Source ‘ Size ‘ Time (sec.) ‘ Ratio
From cell itself 1 2.07 | not applicable
From view (supplier) 10,000 2.38 .000031
From view (part, supplier) 800,000 20.77 .000023
From view (part, supplier, customer) | 6,000,000 226.23 .000037

Figure 5: Growth of query response time with size of view
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3.3 Determining View Sizes

Our algorithms require knowledge of the number of rows present in each view. There are many
ways of estimating the sizes of the views short of materializing all the views. One commonly used
approach is to run our algorithms on a statistically significant but small subset of the raw data.
In such a case, we can get the sizes of the views by actually materializing the views. We use this
subset of raw data to determine which views we want to materialize. And we only materialize a
few views from the entire raw data.

We can use sampling and analytical methods to compute the sizes of the different views if we
only materialize the largest element v; in the lattice (the view that groups by the largest attribute in
each dimension). For a view, if we know that the grouping attributes are statistically independent,
we can estimate the size of the view analytically, given the size of v;. Otherwise we can sample v;
(or the raw data) to estimate the size of the other views. The size of a given view is the number of
distinct values of the attributes it groups by. Thus for example, the size of the view that groups by
part and supplier is the number of distinct values of part and supplier in the raw data. There
are many well-known sampling techniques that we can use to determine the number of distinct
values of attributes in a relation [HNSS95].

4 Optimization of Data-Cube Lattices

Our most important objective is to develop techniques for optimizing the space-time tradeoff when
implementing a lattice of views. The problem can be approached from many angles, since we may
in one situation favor time, in another space, and in a third be willing to trade time for space as
long as we get good “value” for what we trade away. In this section, we shall begin with a simple
optimization problem, in which

1. We wish to minimize the average time taken to evaluate a view.

2. We are constrained to materialize a fixed number of views, regardless of the space they use.

Evidently item (2) does not minimize space, but in Section 4.6 we shall show how to adapt our
techniques to a model that does optimize space utilization.

Even in this simple setting, the optimization problem is NP-complete; there is a straightforward
reduction from Set-Cover. Thus, we are motivated to look at heuristics to produce approximate
solutions. The obvious choice of heuristic is a “greedy” algorithm, where we select a sequence of
views, each of which is the best choice given what has gone before. We shall see that this approach
is always fairly close to optimal and in some cases can be shown to produce the best possible
selection of views to materialize.

4.1 The Greedy Algorithm

Suppose we are given a data-cube lattice with space costs associated with each view. In this paper,
the space cost is the number of rows in the view. Let C'(v) be the cost of view v. Suppose also that
there is a limit £ on the number of views, in addition to the top view, that we may select. After

selecting some set S of views (which surely includes the top view), the benefit of view v relative to
S, which we denote B(v,.5), is defined as follows.

1. For each w < v, define the quantity B, by:

12



(a) Let u be the view of least cost in S such that w < u. Note that since the top view is in
S, there must be at least one such view in S.

(b) If C'(v) < C(u), then B,, = C(v) — C(u). Otherwise, B,, = 0.
2. Define B(v,S) = 3",,<, Bu-

In perhaps simpler terms, we compute the benefit of v by considering how it can improve the
cost of evaluating views, including itself. For each view w that v covers, we compare the cost of
evaluating w using v and using whatever view from S offered the cheapest way of evaluating w. If
v helps, i.e., the cost of v is less than the cost of its competitor, then the difference represents part
of the benefit of selecting v as a materialized view. The total benefit B(v,s) is the sum over all
views w of the benefit of using v to evaluate w, providing that benefit is positive.

Now, we can define the Greedy Algorithm for selecting a set of k& views to materialize. The
algorithm is shown in Fig. 6.

= {top view};
for i=1 to k do begin
select that view v not in S such that B(v,S) is maximized;
S = S union {v};
end;
resulting S is the greedy selection;

Figure 6: The Greedy Algorithm

EXAMPLE 4.1 Consider the lattice of Fig. 7. Eight views, named a through A have space costs
as indicated on the figure. The top view a, with cost 100, must be chosen. Suppose we wish to
choose three more views.

100

/M%
’ >)</

1 10

Figure 7: Example lattice with space costs

To execute the greedy algorithm on this lattice, we must make three successive choices of view
to materialize. The column headed “First Choice” in Fig. 8 gives us the benefit of each of the views
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besides a. When calculating the benefit, we begin with the assumption that each view is evaluated
using a, and will therefore have a cost of 100.

If we pick view b to materialize first, then we reduce by 50 its cost and that of each of the views
d, e, g, and h below it. The benefit is thus 50 times 5, or 250, as indicated in the row b and first
column of Fig. 8. As another example, if we pick e first then it and the views below it — ¢ and
h — each have their costs reduced by 70, from 100 to 30. Thus, the benefit of e is 210.

‘ First Choice ‘ Second Choice ‘ Third Choice

b | 50 x 5 =250

c | 25xH5=125| 25x2=50 25 x1=25
d | 80x2=160| 30x2=60 30 x 2 =160

e | 7T0x3=210| 20x3=60 20+ 20+ 10 =50
f160x2=120| 604+ 10=70

g | 99x1=299 49 x1=49 49x1=49
h | 90x1=90 40 x 1 =40 30 x1=30

Figure 8: Benefits of possible choices at each round

Evidently, the winner in the first round is &, so we pick that view as one of the materialized
views. Now, we must recalculate the benefit of each view V| given that the view will be created
either from b, at a cost of 50, if b is above V', or from «a at a cost of 100, if not. The benefits are
shown in the second column of Fig. 8.

For example, the benefit of ¢ is now 50, 25 each for itself and f. Choosing ¢ no longer improves
the cost of e, g, or h, so we do not count an improvement of 25 for those views. As another example,
choosing f yields a benefit of 60 for itself, from 100 to 40. For h, it yields a benefit of 10, from 50
to 40, since the choice of b already improved the cost associated with h to 50. The winner of the
second round is thus f, with a benefit of 70. Notice that f wasn’t even close to the best choice at
the first round.

Our third choice is summarized in the last column of Fig. 8. As an example of the most complex
calculation, the benefit of e is 50. That number consists of 20 for each of e and g, which would
reduce their costs of 50 (using d) to 30 (using e), plus 10 for the reduction of the cost of A from 40
(using f) to 30 (using €). The winner of the third round is d, with a benefit of 60, gained from the
improvement to its own cost and that of g.

The greedy selection is thus b, d, and f. These, together with a, reduces the total cost of
evaluating all the views from 800, which would be the case if only ¢ was materialized, to 420. That
cost is actually optimal.

O

EXAMPLE 4.2 Let us now examine the lattice suggested by Fig. 9. This lattice is, as we shall
see, essentially as bad as a lattice can be for the case £ = 2. The greedy algorithm, starting with
only the top view a, first picks ¢, whose benefit is 4141. That is, ¢ and the 40 views below it are
each improved from 200 to 99, when we use ¢ in place of a.

For our second choice, we can pick either b or d. They both have a benefit of 2100. Specifically,
consider b. It improves itself and the 20 nodes at the far left by 100 each. Thus, with k£ = 2, the
greedy algorithm produces a solution with a benefit of 6241.

However, the optimal choice is to pick b and d. Together, these two views improve by 100 each,
themselves and the 80 views of the four chains. Thus, the optimal solution has a benefit of 8200.
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Figure 9: A lattice where the greedy algorithm does poorly

the ratio of greedy/optimal is 6241/8200, which is about 3/4. In fact, by making the cost of ¢
closer to 100, and by making the four chains have arbitrarily large numbers of views, we can find
examples for £ = 2 with ratio arbitrarily close to 3/4, but no worse. a

4.2 An Experiment With the Greedy Algorithm

We ran the greedy algorithm on the lattice of Fig. 4, using the TPC-D database described earlier.
Figure 10 shows the resulting order of views, from the first (top view, which is mandatory) to the
twelfth and last view. The units of Benefit, Total Time and Total Space are number of rows. Note,
the average query time is the total time divided by the number of views (12 in this case).

Number ‘ Selection | Benefit | Total Time ‘ Total Space
1. | ep infinite 72M 6M
2. | ns 24M 48M 6M
3. | nt 12M 36M 6M
4. | ¢ 5.9M 30.1M 6.1M
5.0 p 5.8M 24.3M 6.3M
6. | cs 1M 23.3M 11.3M
7. | np 1M 22.3M 16.3M
8. | ct 0.01M 22.3M 22.3M
9.t small 22.3M 22.3M
10 | » small 22.3M 22.3M
11. | s small 22.3M 22.3M
12. | none small 22.3M 22.3M

Figure 10: Greedy order of view selection for TPC-D-based example

This example shows why it is important to materialize some views and also why materializing
all views is not a good choice. The graph in Fig. 11 has the total time taken and the space consumed
on the Y-axis, and the number of views picked on the X-axis. It is clear that for the first few views
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Figure 11: Time and Space for the greedy view selection for the TPC-D-based example.

we pick, with minimal addition of space, the query time is reduced substantially. After we have
picked 5 views however, we cannot improve total query time substantially even by using up large
amounts of space. For this example, there is a clear choice of when to stop picking views. If we
pick the first five views — ¢p, ns, nt, ¢, and p — (i.e., k = 4, since the top view is included in the
table), then we get almost the minimum possible total time, while the total space used is hardly
more than the mandatory space used for just the top view.

4.3 A Performance Guarantee for the Greedy Algorithm

We can show that no matter what lattice we are given, the greedy algorithm never performs too
badly. Specifically, the benefit of the greedy algorithm is at least 63% of the benefit of the optimal
algorithm. The precise fraction is (e — 1)/e, where e is the base of the natural logarithms.

To begin our explanation, we need to develop some notation. Let vy, vq,..., v be the k views
selected in order by the greedy algorithm. Let a; be the benefit achieved by the selection of v;, for
1=1,2,..., k. That is, a; is the benefit of v;, with respect to the set consisting of the top view and
U1,U2y...,0;—1-

Let wy, wo, ..., wg be the optimal set of k views, i.e., those that give the maximum total benefit.
The order in which these views appear is arbitrary, but we need to pick an order. Given the w’s in
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order wy, woy, ..., wy, define b; to be the benefit of w; with respect to the set consisting of the top
view plus wq, wq, ..., w;_1. Define A = Ele a; and B = Zle b;.

Now we must put an upper bound on the b’s in terms of the a’s. In the greedy solution, we
can look at any view and see how much that view’s cost has improved. We can also attribute its
improvement to various of the v;’s.

EXAMPLE 4.3 In Example 4.1, the cost associated with g improved from 100 to 20. Of that
improvement, 50 is attributed to the selection of b for the greedy solution and 30 to the subsequent
selection of d. |

Next, we want to compare the improvement to an arbitrary view u effected by the v’s and by
the w’s. Figure 12 suggests how the improvement in the cost of some u might be partitioned among
the v’s (top bar) and w’s (lower bar). We have suggested that the improvement in u is due to vy,
vs, and w7, in the amounts suggested. Likewise, the larger improvement in u due to the w’s is
divided among ws, ws, ws, and wg, as shown.

U1 U3 v7

In Greedy

In Optimal

Figure 12: The improvement to any view u can be attributed to v’s or w’s

To show the upper bound on B/A we need to attribute each piece of the benefits b; either to
none of the v’s or to one particular v;. To do so, we examine the improvements to each view u as
suggested in Fig. 12.

EXAMPLE 4.4 We can attribute the contribution of ws wholly to vy, because the region for wy
is contained within the region for v;. The contribution of ws is divided among vy, vs, and v7, in
the proportions shown. The contribution of wg is not attributed to any of the v’s, while part of
ws’s contribution is attributed to v; and part is not attributed. a

In general, order the improvements in the same sequence that the views are chosen. Define
z;; to be the sum over all views u in the lattice of the amount of the benefit b; (from w;) that is
attributed to v;. An important inequality that holds for each j is

k
® > Tij < aj

That is, the sum of the pieces of the benefit of v; that is attributed to the various w’s cannot exceed
the benefit of v;.

We can observe several inequalities from the fact that none of the w’s was picked in place of
one of the v’s (except in the case where w; = v;). Our first observation:

e Forall 7: b; < ay.

For if not, then w; would have been picked first by the greedy algorithm instead of v;. Similarly,
considering the second choice by the greedy algorithm tells us:
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e Forall 7: b; — z;1 < ay.

The reason is that the benefit w; brings to the competition for second choice is b; minus the amount
of benefit of w; that was covered by wvy; the latter is z;;. The benefit a; must be at least as great
as any competing choice. Generalizing the above, for each 7 we can write:

o Forall &: b; —2zy —2j0— - — 251 < aj.
If we sum each of the above equations over 7 and remember that
k _
2' Zf:l ai = A
3. Y v <q
we get, the family of inequalities in Fig. 13.
(1) B S ka1

(2) B S ka2 + aq
(3) BSIC(Lg—I—al—}—(ZQ

(k) B<kar+a+ar+---+ar

Figure 13: Inequalities bounding the benefit of the optimal solution

We thus conclude that B is no greater than the minimum of the right sides of the inequalities
of Fig. 13. It is easy to show that if for a given aqy, as, ..., a; the right sides are unequal, then we
can transfer some quantity from some a; to a;_; or a;41, resulting in no change to A but a looser
bound on B. Our conclusion is that

e For a fixed A, the tightest bound on B occurs when all the right sides in Fig. 13 are equal.

Notice, however, that the difference between the ith right side and the (¢ 4 1)st right side is
ka;+1 — (k — 1)a;. Since this difference must be 0, we conclude that a; = kleaZ'+1. For these values
of the a’s, we observe:

o A= Zf;ol(kkj)iak, because the terms of the sum are a1, aq, ..., ag.

e B< k(kf—l)k_lak. This bound comes most easily from the first inequality of Fig. 13, but it
could come from any of the inequalities, since they have equal right sides.

Our conclusion, taken from the ratio of the above formulas, is:
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For example, for k = 2 we get A/B > 3/4; i.e., the greedy algorithm is at least 3/4 of optimal.
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4.4 Matching the Worst Possible Ratio for the Greedy Algorithm

We saw in Example 4.2 that for £ = 2 there were specific lattices that approached 3/4 as the ratio
of the benefits of the greedy and optimal algorithms. In fact,

e For any k, the ratio A/B =1 — (£21)¥ can be reached.

We omit the detailed construction of the sequence of bad cases, one for each k, from this paper.
However, the intuitive idea is as follows. Construct a lattice with k£ identical subtrees, each of whose
roots gives the same, large benefit B. These k& nodes will be the optimal choice.

Now add to the lattice one node vy that includes among its descendants 1/kth of each of these
subtrees, plus something extra so v1’s benefit is just slightly higher than B. Thus, vy will be the first
greedy choice. Then, add to the lattice a node vy that covers 1/kth of that portion of each subtree
that was not covered by vy, plus something extra, so vy’s benefit is just higher than B(k — 1)/k.
Note that after v; was picked, the benefit of each of the subtree roots shrinks to B(k —1)/k, so vy
becomes the second greedy choice. Continue in this manner, with each of the greedy-choice nodes
covering 1/kth of that portion of the subtrees that was not covered by any of the previous greedy
choices. It is then possible to show that, while the optimal choice has benefit kB, the benefit of
the greedy choices is just (1 — (£71)%)B. We conclude that

e Lor all k£, the lower bound on the ratio of the greedy and optimal benefits is exact. That is,

the ratio 1 — (kk;l)k, shown in Section 4.3 actually occurs for at least one lattice for each £.

As k — oo, (kk;l)k approaches 1/e, so A/B > 1 — % = (e — 1)/e = 0.63. That is, for no
lattice whatsoever does the greedy algorithm give a benefit less than 63% of the optimal benefit.
Conversely, the sequence of bad examples suggested by Section 4.4 shows that this ratio cannot be

improved upon.

4.5 Cases Where Greedy is Optimal

The analysis of Section 4.3 also lets us discover certain cases when the greedy approach is optimal,
or very close to optimal. Here are two situations where we never have to look further than the
greedy solution.

1. If a; is much larger than the other a’s, then greedy is close to optimal. To see why, consider
the last inequality in Fig. 13. It essentially says that B < a;. Since A is approximately a; in
this case, we have B < A (approximately).

2. If all the a’s are equal then greedy is optimal. In proof, consider the first inequality of
Fig. 13. It says that B < kaq, but since all the a’s are equal, ka; = A. Similarly, if the a’s are
approximately equal, then B is approximately A, and the greedy approach is near-optimal.

4.6 Extensions to the Basic Model

There are at least two ways in which our model fails to reflect reality.

1. The views in a lattice are unlikely to have the same probability of being requested in a query.
Rather, we might be able to associate some probability with each view, representing the
frequency with which it is queried.
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2. Instead of asking for some fixed number of views to materialize, we might instead allocate a
fixed amount of space to views (other than the top view, which must always be materialized).

Point (1) requires little extra thought. When computing benefits, we weight each view by its
probability. The greedy algorithm will then have exactly the same bounds on its performance: at
least 63% of optimal.

Point (2) presents an additional problem. If we do not restrict the number of views selected,
but fix their total space, then we need to consider the benefit of each view per unit space used by
a materialization of that view. The greedy algorithm again seems appropriate, but there is the
additional complication that we might have a very small view with a very high benefit per unit
space, and a very large view with almost the same benefit per unit space. Choosing the small view
excludes the large view, because there is not enough space available for the large view after we
choose the small.

On the other hand, if no view’s space is more than some fraction f of the total space allowed,
then the same analysis as given above says that the ratio of the benefits of the greedy and optimal
algorithms is no less than 0.63 — f.

5 The Hypercube Lattice

Arguably, the most important class of lattices are the hypercubes, in which the views are vertices
of an n-dimensional cube for some n. The intuition is that there are n attributes Ay, Ao,..., 4,
on which grouping may occur and an (n+ 1)st attribute B whose value is aggregated in each view.
That is, each view is of the form

SELECT C1, €2,...,Cp, SUM(B)
FROM R
GROUP BY C1, C2,...,Cp;

where the C’s are some subset of the A’s. Figure 1 was an example of a hypercube lattice with
n = 3, taken from the TPC-D benchmark database.

The top view groups on all n attributes. We can visualize the views organized by ranks, where
the ith rank from the bottom is all those views in which we group on i attributes. There are (7)
views in rank z.

5.1 The Equal-Domain-Size Case

We can, of course, apply the greedy algorithm to hypercube lattices, either looking for a fixed
number of views to materialize, or looking for a fixed amount of space to allocate to views. However,
because of the regularity of this lattice, we would like to examine in more detail some of the options
for selecting a set of views to materialize.

In our investigations, we shall first make an assumption that is unlikely to be true in practice:
all attributes Aq, Ag,..., A, have the same domain size, which we shall denote r. The consequence
of this assumption is that we can easily estimate the size of any view. In Section 5.4, we shall
consider what happens when the domain sizes vary. It will be seen that the actual views selected
to materialize will vary, but the basic techniques do not change to accommodate this more general
situation.

When each domain size is r, and data in the data cube is distributed randomly, then there is a
simple way to estimate the sizes of views. The combinatorics involved is complex, but the intuition
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should be convincing. Suppose only m cells in the top element of our lattice appear in the raw
data. If we group on i attributes, then the number of cells in the resulting cube is r*. To a first
approximation, if * > m, then each cell will contain at most one data point, and m of the cells will
be nonempty. We can thus use m as the size of any view for which r* > m. On the other hand, if
rt < m, then almost all r* cells will have at least one data point. Since we may collapse all the data
points in a cell into one aggregate value, the space cost of a view with r* < m will be approximately
ri. The view size as a function of the number of grouped attributes is shown in Fig. 14.

log, m

Size of
View

3

A
Y

n

Number of group-by
Attributes

Figure 14: How the size of views grows with number of grouped attributes

The size of views grows exponentially, until it reaches the size of the raw data, and then ceases
to grow. Notice that the actual data taken from Fig. 1 almost matches this pattern. The top view
and the views with two grouping attributes have the same, maximum size, except that the view ps
(part, supplier) has somewhat fewer rows, due to the fact that the benchmark explicitly sets it
to have fewer rows.

5.2 The Space-Optimal Solution

One natural question to ask when investigating the time/space tradeoff for the hypercube is what
is the average time for a query when the space is minimal. Space is minimized when we materialize
only the top view. Then every query takes time m, and the total time cost for all 2" queries is
m2”.

5.3 The Time-Optimal Solution

At the other extreme, we could minimize time by materializing every query. Then, the time to
execute each query would be equal to its own size, and the total space needed to store the data
cube would equal the time taken to execute each query once. However, under our model, the views
whose size is m, which will be all those queries that group by at least k& = log, m attributes, will
have the maximum size m, and these may as well be executed through the top view.

Define the rank of a query or view to be the number of attributes on which it is grouped. Queries
organize themselves into ranks as suggested in Fig. 15. There are two parameters of the problem
whose relationship determines what the time and space are for this case.
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Figure 15: The ranks of the hypercube lattice

1. The rank k at which the “cliff” in Fig. 14 occurs. That is, k = log, m, or r* = m.

2. The rank j such that r/ (7;) is maximized. This quantity is the sum of the sizes of the queries
of rank j, provided that j is still in the growing portion of the curve in Fig. 14. It is not hard
to show that at the maximum, r = j5/(n—j), or j = nr/(r + 1).

If £ > 7, then the bulk of the space and time are used for queries that have rank approximately
4. That is, to a first approximation, all 2" queries use space ri = r*/(+1) "and the total space and
time are both (2r7/("+1)",

On the other hand, if k£ < j, then almost all the time and space is consumed executing queries
in the flat part of the curve of Fig. 14. Thus, except for some materialized queries in ranks less
than k, whose total space is negligible, we can execute all the queries using the top view. Thus, the
space used is little more than m (recall that we do not have to materialize views in ranks between
kand n—1).

Now, let us consider the time requirements. It is again possible to neglect the “small” queries
of rank below k. Each of the queries of rank & or more requires time m, so we have only to estimate
the total number of these queries. there are two subcases.

1. k < 7 and k < n/2. Here, at least half the views take m space and time, so the the time is
approximately m2™. Thus, in this case the time and space are both approximately that of
the space-optimal solution.

2. k < jand k > n/2. Now, most of the space (and therefore time) is concentrated around rank
J, but there are relatively few of these views. The total time is approximated by >/’ ; (7;) r'
Since the total time per rank decreases as ¢ grows above j, we can approximate this sum by

its first term: ()7,
J
Figure 16 summarizes the time and space used for the three tradeoff points studied.

5.4 Extension to Varying Domain Sizes

Suppose now that the domains of each attribute do not each have r equally-likely values. The next
simplest model is to assume that for each dimension, values are equally likely, but the number of
values varies, with r; values in the 7th dimension for 7 =1,2,...,n.
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Figure 16: Summary of time- and space- optimal strategies for hypercube

Now, the “cliff” suggested in Fig. 14 does not occur at a particular rank, but rather the cliff is
distributed among ranks. If a view groups by a set of attributes whose domain sizes multiply to
something less than m, the total number of rows in the raw data, then that view behaves as if it
is “below the cliff,” i.e., of rank less than k. If the product of the domain sizes for the grouping
attributes of a view exceeds m, then this view is “on top of the cliff.” However, the fundamental
behavior suggested by Fig. 14 is unchanged. As we “drill down” by grouping on progressively more
attributes, our views stay fixed at the maximum size, until at some point the size drops, whereupon
the size of views decreases exponentially.

The analysis of the space-optimal case does not change. For the time-optimal case, we need to
replace the condition & < 7 by “most of the space used by the various queries is among those views
whose product of domain sizes for grouped attributes is less than m.” Likewise, & < n/2 becomes
“most views have a product of domain sizes for their grouped attributes that exceeds m.”

6 Conclusions

In this paper we have investigated the problem of deciding which set of cells (views) in the data cube
to materialize in order to minimize query response times. Materialization of views is an essential
query optimization strategy for decision-support applications. In this paper, we make the case that
the right selection of the views to materialize is critical to the success of this strategy. We use the
TPC-D benchmark database as an example database in showing why it is important to materialize
some part of the data cube but not all of the cube.

Our second contribution is a lattice framework that models multidimensional analysis very well.
Our greedy algorithms work on this lattice and pick the right views to materialize, subject to various
constraints. The greedy algorithm we give performs within a small constant factor of the optimal
solution for many of the constraints considered. Finally, we looked at the most common case of the
hypercube lattice and investigated the time-space trade-off in detail.

6.1 Future Work

We are investigating the following topics.

e Progressively more realistic cost models. Models that capture indexing and clustering are the
first step in this direction.

e Data cubes that are stored in MDDB systems. The poor scalability of many MDDB systems
is due to the fact that they materialize the entire data cube. Thus the selection of the right
cells to materialize is very important here too.
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e Dynamic materialization. The views, in some sense, form a memory hierarchy with differing
access times. In conventional memory hierarchies, data is usually assigned to different memory
stores (like cache, or main memory) dynamically based on the run time accesses. It would
be interesting to compare dynamic materialization with the static materialization scheme we
investigate in this paper.
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