
Concurrency Control Performance Modeling:
Alternatives and Implications

RAKESH AGRAWAL
AT&T Bell Laboratories
MICHAEL J. CAREY and MIRON LIVNY
University of Wisconsin

A number of recent studies have examined the performance of concurrency control algorithms for
database management systems. The results reported to date, rather than being definitive, have tended
to be contradictory. In this paper, rather than presenting “yet another algorithm performance study,”
we critically investigate the assumptions made in the models used in past studies and their implica-
tions. We employ a fairly complete model of a database environment for studying the relative
performance of three different approaches to the concurrency control problem under a variety of
modeling assumptions. The three approaches studied represent different extremes in how transaction
conflicts are dealt with, and the assumptions addressed pertain to the nature of the database system’s
resources, how transaction restarts are modeled, and the amount of information available to the
concurrency control algorithm about transactions’ reference strings. We show that differences in the
underlying assumptions explain the seemingly contradictory performance results. We also address
the question of how realistic the various assumptions are for actual database systems.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems-transaction process-
ing; D.4.8 [Operating Systems]: Performance-simulation, modeling and prediction

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Concurrency control

1. INTRODUCTION

Research in the area of concurrency control for database systems has led to the
development of many concurrency control algorithms. Most of these algorithms
are based on one of three basic mechanisms: locking [23,31,32,44,48], timestamps
[8,36,52], and optimistic concurrency control (also called commit-time validation
or certification) [5, 16, 17, 271. Bernstein and Goodman [9, 101 survey many of

A preliminary version of this paper appeared as “Models for Studying Concurrency Control Perform-
ance: Alternatives and Implications, ” in Proceedings of the International Conference on Management
of Data (Austin, TX., May 28-30, 1985).
M. J. Carey and M. Livny were partially supported by the Wisconsin Alumni Research Foundation
under National Science Foundation grant DCR-8402818 and an IBM Faculty Development Award.
Authors’ addresses: R. Agrawal, AT&T Bell Laboratories, Murray Hill, NJ 07974; M. J. Carey and
M. Livny, Computer Sciences Department, University of Wisconsin, Madison, WI 53706.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1987 ACM 0362~5915/87/1200-0609 $01.50

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987, Pages 609-654.

610 l R. Agrawal et al.

the algorithms that have been developed and describe how new algorithms may
be created by combining the three basic mechanisms.

Given the ever-growing number of available concurrency control algorithms,
considerable research has recently been devoted to evaluating the performance
of concurrency control algorithms. The behavior of locking has been investigated
using both simulation [6, 28, 29, 39-41, 471 and analytical models [22,24, 26,35,
37,50,51,53]. A qualitative study that discussed performance issues for a number
of distributed locking and timestamp algorithms was presented in [7], and an
empirical comparison of several concurrency control schemes was given in [34].
Recently, the performance of different concurrency control mechanisms has been
compared in a number of studies. The performance of locking was compared with
the performance of basic timestamp ordering in [21] and with basic and multi-
version timestamp ordering in [30]. The performance of several alternatives for
handling deadlock in locking algorithms was studied in [6]. Results of experi-
ments comparing locking to the optimistic method appeared in [42 and 431, and
the performance of several variants of locking, basic timestamp ordering, and the
optimistic method was compared in [12 and 151. Finally, the performance of
several integrated concurrency control and recovery algorithms was evaluated in
[l and 21.

These performance studies are informative, but the results that have emerged,
instead of being definitive, have been very contradictory. For example, studies
by Carey and Stonebraker [15] and Agrawal and Dewitt [2] suggest that an
algorithm that uses blocking instead of restarts is preferable from a performance
viewpoint, but studies by Tay [50, 511 and Balter et al, [6] suggest that restarts
lead to better performance than blocking. Optimistic methods outperformed
locking in [20], whereas the opposite results were reported in [2 and 151. In this
paper, rather than presenting “yet another algorithm performance study,” we
examine the reasons for these apparent contradictions, addressing the models
used in past studies and their implications.

The research that led to the development of the many currently available
concurrency control algorithms was guided by the notion of serializability as the
correctness criteria for general-purpose concurrency control algorithms [11, 19,
331. Transactions are typically viewed as sequences of read and write requests,
and the interleaved sequence of read and write requests for a concurrent execution
of transactions is called the execution log. Proving algorithm correctness then
amounts to proving that any log that can be generated using a particular
concurrency control algorithm is equivalent to some serial log (i.e., one in which
all requests from each individual transaction are adjacent in the log). Algorithm
correctness work has therefore been guided by the existence of this widely
accepted standard approach based on logs and serializability. Algorithm perform-
ance work has not been so fortunate-no analogous standard performance model
has been available to guide the work in this area. As we will see shortly, the
result is that nearly every study has been based on its own unique set of
assumptions regarding database system resources, transaction behavior, and
other such issues.

In this paper, we begin by establishing a performance evaluation framework
based on a fairly complete model of a database management system. Our model
ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Concurrency Control Performance Modeling l 611

captures the main elements of a database environment, including both users (i.e.,
terminals, the source of transactions) and physical resources for storing and
processing the data (i.e., disks and CPUs), in addition to the characteristics
of the workload and the database. On the basis of this framework, we then
show that differences in assumptions explain the apparently contradictory per-
formance results from previous studies. We examine the effects of alternative
assumptions, and we briefly address the question of which alternatives seem
most reasonable for use in studying the performance of database management
systems.

In particular, we critically examine the common assumption of infinite re-
sources. A number of studies (e.g., [20, 29, 30, 50, 511) compare concurrency
control algorithms under the assumption that transactions progress at a rate
independent of the number of active transactions. In other words, they proceed
in parallel rather than in an interleaved manner. This is only really possible in a
system with enough resources so that transactions neuer have to wait before
receiving CPU or I/O service-hence our choice of the phrase “infinite resources.”
We will investigate this assumption by performing studies with truly infinite
resources, with multiple CPU-I/O devices, and with transactions that think while
holding locks. The infinite resource case represents an “ideal” system, the
multiple CPU-I/O device case models a class of multiprocessor database ma-
chines, and having transactions think while executing models an interactive
workload.

In addition to these resource-related assumptions, we examine two modeling
assumptions related to transaction behavior that have varied from study to study.
In each case, we investigate how alternative assumptions affect the performance
results. One of the additional assumptions that we address is the fake restart
assumption, in which it is assumed that a restarted transaction is replaced by a
new, independent transaction, rather than running the same transaction over
again. This assumption is nearly always used in analytical models in order to
make the modeling of restarts tractable. Another assumption that we examine
has to do with write-lock acquisition. A number of studies that distinguish between
read and write locks assume that read locks are set on read-only items and that
write locks are set on the items to be updated when they are first read. In reality,
however, transactions often acquire a read lock on an item, then examine the
item, and only then request that the read lock be upgraded to a write lock-
because a transaction must usually examine an item before deciding whether or
not to update it [B. Lindsay, personal communication, 19841.

We examine three concurrency control algorithms in this study, two locking
algorithms and an optimistic algorithm, which represent extremes as to when
and how they detect and resolve conflicts. Section 2 describes our choice of
concurrency control algorithms. We use a simulator based on a closed queuing
model of a single-site database system for our performance studies. The structure
and characteristics of our model are described in Section 3. Section 4 discusses
the performance metrics and statistical methods used for the experiments, and
it also discusses how a number of our parameter values were chosen. Section 5
presents the resource-related performance experiments and results. Section 6
presents the results of our examination of the other modeling assumptions

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

612 l R. Agrawal et al.

described above. Finally, in Section 7 we summarize the main conclusions of this
study.

2. CONCURRENCY CONTROL STRATEGIES

A transaction T is a sequence of actions {ai, u2, . . . , a,], where ci is either read
or write. Given a concurrent execution of transactions, action oi of transaction
Ti and action aj of Tj conflict if they access the same object and either (1) oi is
read and aj is write, or (2) ai is write and aj is read or write. The various
concurrency control algorithms basically differ in the time when they detect
conflicts and the way that they resolve conflicts [9]. For this study we have chosen
to examine the following three concurrency control algorithms that represent
extremes in conflict detection and resolution:

Blocking. Transactions set read locks on objects that they read, and these
locks are later upgraded to write locks for objects that they also write. If a lock
request is denied, the requesting transaction is blocked. A waits-for graph of
transactions is maintained [23], and deadlock detection is performed each time
a transaction blocks.’ If a deadlock is discovered, the youngest transaction in the
deadlock cycle is chosen as the victim and restarted. Dynamic two-phase locking
[23] is an example of this strategy.

Immediate-Resturt. As in the case of blocking, transactions read-lock the
objects that they read, and they later upgrade these locks to write locks for
objects that they also write. However, if a lock request is denied, the requesting
transaction is aborted and restarted after a restart delay. The delay period, which
should be on the order of the expected response time of a transaction, prevents
the same conflict from occurring repeatedly. A concurrency control strategy
similar to this one was considered in [50 and 511.

Optimistic. Transactions are allowed to execute unhindered and are validated
only after they have reached their commit points. A transaction is restarted at
its commit point if it finds that any object that it read has been written by
another transaction that committed during its lifetime. The optimistic method
proposed by Kung and Robinson [27] is based on this strategy.

These algorithms represent two extremes with respect to when conflicts are
detected. The blocking and immediate-restart algorithms are based on dynamic
locking, so conflicts are detected as they occur. The optimistic algorithm, on the
other hand, does not detect conflicts until transaction-commit time. The three
algorithms also represent two different extremes with respect to conflict resolu-
tion. The blocking algorithm blocks transactions to resolve conflicts, restarting
them only when necessary because of a deadlock. The immediate-restart and
optimistic algorithms always use restarts to resolve conflicts.

One final note in regard to the three algorithms: In the immediate-restart
algorithm, a restarted transaction must be delayed for some time to allow the
conflicting transaction to complete; otherwise, the same lock conflict will occur
repeatedly. For the optimistic algorithm, it is unnecessary to delay the restarted

’ Blocking’s performance results would change very little if periodic deadlock detection were assumed
instead [4].

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Concurrency Control Performance Modeling l 623

C

o R 4

n a

f t

I i

i 0

c 5

t

0
/

/
/

/
/

50 100 150 200
Multiprogramming Level

Fig. 6. Conflict ratios (m resources).

whereas the throughput keeps increasing for the optimistic algorithm. These
results agree with predictions in [20] that were based on similar assumptions.
Figure 6 shows the blocking and restart ratios for the three concurrency control
algorithms. Note that the thrashing in blocking is due to the large increase in
the number of times that a transaction is blocked, which reduces the number of
transactions available to run and make forward progress, rather than to an
increase in the number of restarts. This result is in agreement with the assertion
in [6, 50 and 511 that under low resource contention and a high level of
multiprogramming, blocking may start thrashing before restarts do. Although
the restart ratio for the optimistic algorithm increases quickly with an increase
in the multiprogramming level, new transactions start executing in place of the
restarted ones, keeping the effective multiprogramming level high and thus
entailing an increase in throughput.

Unlike the other two algorithms, the throughput of the immediate-restart
algorithm reaches a plateau. This happens for the following reason: When a
transaction is restarted in the immediate-restart strategy, a restart delay is
invoked to allow the conflicting transaction to complete before the restarted
transaction is placed back in the ready queue. As described in Section 4, the
duration of the delay is adaptive, equal to the running average of the response

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

624 . R. Agrawal et al.

R

e

S T

P i

0 m

” e
s

e

20

15

10

5

1

50 100 150 200
Multiprogramming Level

Fig. 7. Response time (00 resources).

time. Because of this adaptive delay, the immediate-restart algorithm reaches a
point beyond which all of the transactions that are not active are either in a
restart delay state or else in a terminal thinking state (where a terminal is pausing
between the completion of one transaction and submitting a new transaction).
This point is reached when the number of active transactions in the system is
such that a new transaction is basically sure to conflict with an active transaction
and is therefore sure to be quickly restarted and then delayed. Such delays
increase the average response time for transactions, which increases their average
restart delay time; this has the effect of reducing the number of transactions
competing for active status and in turn reduces the probability of conflicts. In
other words, the adaptive restart delay creates a negative feedback loop (in the
control system sense). Once the plateau is reached, there are simply no transac-
tions waiting in the ready queue, and increasing the multiprogramming level is a
“no-op” beyond this point. (Increasing the allowed number of active transactions
cannot increase the actual number if none are waiting anyway.)

Figure 7 shows the mean response time (solid lines) and the standard deviation
of response time (dotted lines) for each of the three algorithms. The response
times are basically what one would expect, given the throughput results plus the
fact that we have employed a closed queuing model. This figure does illustrate
ACM Transactions on Database Systems, Vol. 12, No. 4, December 198’7.

Concurrency Control Performance Modeling 625

one interesting phenomenon that occurred in nearly all of the experiments
reported in this paper: The standard deviation of the response time is much
smaller for blocking than for the immediate-restart algorithm over most of the
multiprogramming levels explored, and it is also smaller than that of the opti-
mistic algorithm for the lower multiprogramming levels (i.e., until blocking’s
performance begins to degrade significantly because of thrashing). The
immediate-restart algorithm has a large response-time variance due to its
restart delay. When a transaction has to be restarted because of a lock conflict
during its execution, its response time is increased by a randomly chosen restart
delay period with a mean of one entire response time, and in addition the
transaction must be run all over again. Thus, a restart leads to a large response
time increase for the restarted transaction. The optimistic algorithm restarts
transactions at the end of their execution and requires restarted transactions to
be run again from the beginning, but it does not add a restart delay to the time
required to complete a transaction. The blocking algorithm restarts transactions
much less often than the other algorithms for most multiprogramming levels,
and it restarts them during their execution (rather than at the end) and without
imposing a restart delay. Because of this, and because lock waiting times tend to
be quite a bit smaller than the additional response time added by a restart,
blocking has the lowest response time variance until it starts to thrash signifi-
cantly. A high variance in response time is undesirable from a user’s standpoint.

5.2 Experiment 2: Resource-Limited Situation

In Experiment 2 we analyzed the impact of limited resources on the performance
characteristics of the three concurrency control algorithms. A database system
with one resource unit (one CPU and two disks) was assumed for this experiment.
The throughput results are presented in Figure 8.

Observe that for all three algorithms, the throughput curves indicate
thrashing-as the multiprogramming level is increased, the throughput first
increases, then reaches a peak, and then finally either decreases or remains
roughly constant. In a system with limited CPU and I/O resources, the
achievable throughput may be constrained by one or more of the following
factors: It may be that not enough transactions are available to keep the system
resources busy. Alternatively, it may be that enough transactions are available,
but because of data contention, the “useful” number of transactions is less than
what is required to keep the resources “usefully” busy. That is, transactions
that are blocked due to lock conflicts are not useful. Similarly, the use of
resources to process transactions that are later restarted is not useful. Finally, it
may be that enough useful, nonconflicting transactions are available, but that
the available resources are already saturated.

As the multiprogramming level was increased, the throughput first increased
for all three concurrency control algorithms since there were not enough trans-
actions to keep the resources utilized at low levels of multiprogramming.
Figure 9 shows the total (solid lines) and useful (dotted lines) disk utilizations
for this experiment. As one would expect, there is a direct correlation between
the useful utilization curves of Figure 9 and the throughput curves of Figure 8.
For blocking, the throughput peaks at mpl = 25, where the disks are being

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

626 l Ft. Agrawal et al.

T

h 4

r

0

”

6
h

P
” 2
t

6

Multiprogramming Level

Fig. 8. Throughput (1 resource unit).

97 percent utilized, with a useful utilization of 92 percent.’ Increasing the
multiprogramming level further only increases data contention, and the through-
put decreases as the amount of blocking and thus the number of deadlock-induced
restarts increase rapidly. For the optimistic algorithm, the useful utilization of
the disks peaks at mpl = 10, and the throughput decreases with an increase in
the multiprogramming level because of the increase in the restart ratio. This
increase in the restart ratio means that a larger fraction of the disk time is spent
doing work that will be redone later. For the immediate-restart algorithm, the
throughput also peaks at mpl = 10 and then decreases, remaining roughly
constant beyond 50. The throughput remains constant for this algorithm for the
same reason as described in the last experiment: Increasing the allowable number
of transactions has no effect beyond 50, since all of the nonactive transactions
are either in a restart delay state or thinking.

With regard to the throughput for the three strategies, several observations
are in order. First, the maximum throughput (i.e., the best global throughput)
was obtained with the blocking algorithm. Second, immediate-restart performed

‘The actual throughput peak may of course be somewhere to the left or right of 25, in the 10-50
range, but that cannot be determined from our data.

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Concurrency Control Performance Modeling 627

1.0

0.8

U

t

i

I 0.G

i

7.

a

t 0.4
i

0

n

0.2
- total

- -- - useful

as well as or better than the optimistic algorithm. There were more restarts with
the optimistic algorithm, and each restart was more expensive; this is reflected
in the relative useful disk utilizations for the two strategies. Finally, the through-
put achieved with the immediate-restart strategy for mpl = 200 was somewhat
better than the throughput achieved with either blocking or the optimistic
algorithm at this same multiprogramming level.

Figure 10 gives the average and the standard deviation of response time
for the three algorithms in the limited resource case. The differences are even
more noticeable than in the infinite resource case. Blocking has the lowest
delay (fastest response time) over most of the multiprogramming levels. The
immediate-restart algorithm is next, and the optimistic algorithm has the worst
response time. As for the standard deviations, blocking is the best, immediate-
restart is the worst, and the optimistic algorithm is in between the two. As in
Experiment 1, the immediate-restart algorithm exhibits a high response time
variance.

One of the points raised earlier merits further discussion. Should the perform-
ance of the immediate-restart algorithm at mpl = 200 lead us to conclude that
immediate-restart is a better strategy at high levels of multiprogramming? We
believe that the answer is no, for several reasons. First, the multiprogramming

ACM Transactions cm Database Systems, Vol. 12, No. 4, December 1987.

50 100 150 200
Multiprogramming Level

Fig. 9. Disk utilization (1 resource unit).

628 l FL Agrawal et al.

120

100

R
e 80

S T
P i
0 m

60
” e
S

e

40

0 blocking

0 immediate-restart
- average

- - - - std. dev.
A oplhstic A

/

50 100 150 200
Multiprogramming Level

Fig. 10. Response time (1 resource unit).

level is internal to the database system, controlling the number of transactions
that may concurrently compete for data and resources, and has nothing to do
with the number of users that the database system may support; the latter is
determined by the number of terminals. Thus, one should configure the system
to keep multiprogramming at a level that gives the best performance. In this
experiment, the highest throughput and smallest response time were achieved
using the blocking algorithm at mpl = 25. Second, the restart delay in the
immediate-restart strategy is there so that the conflicting transaction can com-
plete before the restarted transaction is placed back into the ready queue.
However, an unintended side effect of this restart delay in a system with a finite
population of users is that it limits the actual multiprogramming level, and hence
also limits the number of conflicts and resulting restarts due to reduced data
contention. Although the multiprogramming level was increased to the total
number of users (200), the actual average multiprogramming level never exceeded
about 60. Thus, the restart delay provides a crude mechanism for limiting the
multiprogramming level when restarts become overly frequent, and adding a
restart delay to the other two algorithms should improve their performance at
high levels of multiprogramming as well.

To verify this latter argument, we performed another experiment in which the
adaptive restart delay was used for restarted transactions in both the blocking
ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

6

T

h 4

r

0

u

6
h

P
u 2
t

Concurrency Control Performance Modeling 629

,

50 100 150 200
Multiprogramming Level

Fig. 11. Throughput (adaptive restart delays).

and optimistic algorithms as well. The throughput results that we obtained are
shown in Figure 11. It can be seen that introducing an adaptive restart delay
helped to limit the multiprogramming level for the blocking and optimistic
algorithms under high conflicts, as it does for immediate-restart, reducing data
contention at the upper range of multiprogramming levels. Blocking emerges as
the clear winner, and the performance of the optimistic algorithm becomes
comparable to the immediate-restart strategy. The one negative effect that we
observed from adding this delay was an increase in the standard deviation of the
response times for the blocking and optimistic algorithms. Since a restart delay
only helps performance for high multiprogramming levels, it seems that a better
strategy is to enforce a lower multiprogramming level limit to avoid thrashing
due to high contention and to maintain a small standard deviation of response
time.

5.3 A Brief Aside

Before discussing the remainder of the experiments, a brief aside is in order. Our
concurrency control performance model includes a time delay, ext-think-time,
between the completion of one transaction and the initiation of the next trans-
action from a terminal. Although we feel that such a time delay is necessary in a

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

630 l R. Agrawal et al.

realistic performance model, a side effect of the delay is that it can lead the
database system to become “starved” for transactions when the multiprogram-
ming level is increased beyond a certain point. That is, increasing the multipro-
gramming level has no effect on system throughput beyond this point because
the actual number of active transactions does not change. This form of starvation
can lead an otherwise increasing throughput to reach a plateau when viewed as
a function of the multiprogramming level. In order to verify that our conclusions
were not distorted by the inclusion of a think time, we repeated Experiments 1
and 2 with no think time (i.e., with e&-think-time = 0).

The throughput results for these experiments are shown in Figures 12 and 13,
and the figures to which these results should be compared are Figures 5 and 8. It
is clear from these figures that, although the exact performance numbers are
somewhat different (because it is now never the case that the system is starved
for transactions while one or more terminals is in a thinking state), the relative
performance of the algorithms is not significantly affected. The explanations
given earlier for the observed performance trends are almost all applicable here
as well. In the infinite resource case (Figure 12), blocking begins thrashing
beyond a certain point, and the immediate-restart algorithm reaches a plateau
because of the large number of restarted transactions that are delaying (due to
the restart delay) before running again. The only significant difference in the
infinite resource performance trends is that the throughput of the optimistic
algorithm continues to improve as the multiprogramming level is increased,
instead of reaching a plateau as it did when terminals spent some time in a
thinking state (and thus sometimes caused the actual number of transactions in
the system to be less than that allowed by the multiprogramming level). Franaszek
and Robinson predicted this [20], predicting logarithmically increasing through-
put for the optimistic algorithm as the number of active transactions increases
under the infinite resource assumption. Still, this result does not alter the general
conclusions that were drawn from Figure 5 regarding the relative performance of
the algorithms. In the limited resource case (Figure 13), the throughput for each
of the algorithms peaks when resources become saturated, decreasing beyond this
point as more and more resources are wasted because of restarts, just as it did
before (Figure 8). Again, fewer and/or earlier restarts lead to better performance
in the case of limited resources. On the basis of the lack of significant differences
between the results obtained with and without the external think time, then, we
can safely conclude that incorporating this delay in our model has not distorted
our results. The remainder of the experiments in this paper will thus be run
using a nonzero external think time (just like Experiments 1 and 2).

5.4 Experiment 3: Multiple Resources

In this experiment we moved the system from limited resources toward infinite
resources, increasing the level of resources available to 5, 10, 25, and finally 50
resource units. This experiment was motivated by a desire to investigate perform-
ance trends as one moves from the limited resource situation of Experiment 2
toward the infinite resource situation of Experiment 1. Since the infinite resource
assumption has sometimes been justified as a way of investigating what perform-
ance trends to expect in systems with many processors [20], we were interested
ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Concurrency Control Performance Modeling l 631

120

100

T

h 80

r

0

”
60

6
h

P

” 40
1

20

I

50 100 150 200
Multiprogramming Level

Fig. 12. Throughput (m resources, no external think time).

6

T

h 4.

r

0

0

6
I1

P
” 2
I

30 100 150 200
hlulliprogrsmming Level

Fig. 13. Throughput (1 resource unit, no external think time).

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

632 l R. Agrawal et al.

in determining where (i.e., at what level of resources) the behavior of the system
would begin to approach that of the infinite resource case in an environment
such as a multiprocessor database machine.

For the cases with 5 and 10 resource units, the relative behavior of the three
concurrency control strategies was fairly similar to the behavior in the case of
just 1 resource unit. The throughput results for these two cases are shown in
Figures 14 and 16, respectively, and the associated disk utilization figures are
given in Figures 15 and 17. Blocking again provided the highest overall through-
put. For large multiprogramming levels, however, the immediate-restart strategy
provided better throughput than blocking (because of its restart delay), but not
enough so as to beat the highest throughput provided by the blocking algorithm.
With 5 resource units, where the maximum useful disk utilizations for blocking,
immediate-restart, and the optimistic algorithm were 72, 60, and 58 percent,
respectively, the results followed the same trends as those of Experiment 2. Quite
similar trends were obtained with 10 resource units, where the maximum useful
utilizations of the disks for blocking, immediate-restart, and optimistic were 56,
45, and 47 percent, respectively. Note that in all cases, the total disk utilizations
for the restart-oriented algorithms are higher than those for the blocking algo-
rithm because of restarts; this difference is partly due to wasted resources. By
wasted resources here, we mean resources used to process objects that were later
undone because of restarts-these resources are wasted in the sense that they
were consumed, making them unavailable for other purposes such as background
tasks.

With 25 resource units, the maximum throughput obtained with the optimistic
algorithm beats the maximum throughput obtained with blocking (although not
by very much). The throughput results for this case are shown in Figure 18, and
the utilizations are given in Figure 19. The total and the useful disk utilizations
for the maximum throughput point for blocking were 34 and 30 percent (respec-
tively), whereas the corresponding numbers for the optimistic algorithm were 81
and 30 percent. Thus, the optimistic algorithm has become attractive because a
large amount of otherwise unused resources are available, and thus the waste of
resources due to restarts does not adversely affect performance. In other words,
with useful utilizations in the 30 percent range, the system begins to behave
somewhat like it has infinite resources. As the number of available resources is
increased still further to 50 resource units, the results become very close indeed
to those of the infinite resource case; this is illustrated by the throughput and
utilizations shown in Figures 20 and 21. Here, with maximum useful utilizations
down in the range of 15 to 25 percent, the shapes and relative positions of the
throughput curves are very much like those of Figure 5 (although the actual
throughput values here are still not quite as large).

Another interesting observation from these latter results is that, with blocking,
resource utilization decreases as the level of multiprogramming increases and
hence throughput decreases. This is a further indication that blocking may thrash
due to waiting for locks before it thrashes due to the number of restarts
[6, 50, 511, as we saw in the infinite resource case. On the other hand, with the
optimistic algorithm, as the multiprogramming level increases, the total utiliza-
tion of resources and resource waste increases, and the throughput decreases
ACM Transections on Database Systems, Vol. 12, No. 4, December 1987.

T

h

i-

0

”

8

h

P
”

t

U

t

i

I

I

z

a

t
i

0

”

Concurrency Control Performance Modeling - 633

50 100 150 200
Multiprogramming Level

Fig. 14. Throughput (5 resource units).

1.0

0.8

0.6

0.4

0.2

50 100 150 200
hlolliproCr:lrllnlinp Lcwl

Fig. 15. Disk utilization (5 resource units).

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

634 0 R. Agrawal et al.

32

21

T

h

r

0

”
16

6

h

P

u

I

Ii

so 100 IS0 200
hfultiprogramming Level

Fig. 16. Throughput (10 resource units).

1.0

0.8

U

t

I
I 0.6

I

2

P

t 0.J
I

0

n

0.2

SO 100 IS0 200
Multiprogramming Level

Fig. 17. Disk utilization (10 resource units).

ACM Transactions on Database Systems. Vol. 12, No. 4, December 1987.

-30

1.n

0.x

0.6

04

0.2

Concurrency Control Performance Modeling l 635

Fig. 18. Throughput (25 resource units).

A

i” / / 6 /’ @‘,- by --I+ D- - ---- _ --
a

--._
-- .----0 --

-iz

50 100 150 x0
hiulliprogranmling Level

Fig. 19. Disk utilization (25 resource units).

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

636 l R. Agrawal et al.

50
hlulliprogr!Zning Level lj”

200

Fig. 20. Throughput (50 resource units).

50 100 150 200
Multiprogramming Level

Fig. 21. Disk utilization (50 resource units).

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Concurrency Control Performance Modeling l 637

I

m

P
r

0

v

e

m

e

”

1 10 100 .. co

Resource Level

Fig. 22. Improvement over blocking (MPL = 50).

somewhat (except with 50 resource units). Thus, this strategy eventually thrashes
because of the number of restarts (i.e., because of resources). With immediate-
restart, as explained earlier, a plateau is reached for throughput and resource
utilization because the actual multiprogramming level is limited by the restart
delay under high data contention.

As a final illustration of how the level of available resources affects the choice
of a concurrency control algorithm, we plotted in Figures 22 through 24 the
percent throughput improvement of the algorithms with respect to that of the
blocking algorithm as a function of the resource level. The resource level axis
gives the number of resource units used, which ranges from 1 to infinity (the
infinite resource case). Figure 22 shows that, for a multiprogramming level of 50,
blocking is preferable with up to almost 25 resource units; beyond this point the
optimistic algorithm is preferable. For a multiprogramming level of 100, as shown
in Figure 23, the crossover point comes earlier because the throughput for
blocking is well below its peak at this multiprogramming level. Figure 24 compares
the maximum attainable throughput (over all multiprogramming levels) for each
algorithm as a function of the resource level, in which case locking again wins
out to nearly 25 resource units. (Recall that useful utilizations were down in the
mid-20 percent range by the time this resource level, with 25 CPUs and 50 disks,
was reached in our experiments.)

5.5 Experiment 4: Interactive Workloads

In our last resource-related experiment, we modeled interactive transactions that
perform a number of reads, think for some period of time, and then perform their

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

638 l R. Agrawal et al.

%

I

m

P
r

0

Y

e

m

e

”

t

1 10 100
Resource’ Levd

Fig. 23. Improvement over blocking (MPL = 100).

1 10 100 m

Resource Level

Fig. 24. Improvement over blocking (maximum).

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Concurrency Control Performance Modeling 639

writes. This model of interactive transactions was motivated by a large body of
form-screen applications where data is put up on the screen, the user may change
some of the fields after staring at the screen awhile, and then the user types
“enter,” causing the updates to be performed. The intent of this experiment was
to find out whether large intratransaction (internal) think times would be another
way to cause a system with limited resources to behave like it has infinite
resources. Since Experiment 3 showed that low utilizations can lead to behavior
similar to the infinite resource case, we suspected that we might indeed see such
behavior here. The interactive workload experiment was performed for internal
think times of 1, 5, and 10 seconds. At the same time, the external think times
were increased to 3,11, and 21 seconds, respectively, in order to maintain roughly
the same ratio of idle terminals (those in an external thinking state) to active
transactions. We have assumed a limited resource environment with 1 resource
unit for the system in this experiment.

Figure pairs (25, 26), (27, 28), and (29, 30) show the throughput and disk
utilizations obtained for the 1, 5, and 10 second intratransaction think time
experiments, respectively. On the average, a transaction requires 150 milliseconds
of CPU time and 350 milliseconds of disk time, so an internal think time of 5
seconds or more is an order of magnitude larger than the time spent consuming
CPU or I/O resources. Even with many transactions in the system, resource
contention is significantly reduced because of such think times, and the result is
that the CPU and I/O resources behave more or less like infinite resources.
Consequently, for large think times, the optimistic algorithm performs better
than the blocking strategy (see Figures 27 and 29). For an internal think time of
10 seconds, the useful utilization of resources is much higher with the optimistic
algorithm than the blocking strategy, and its highest throughput value is also
considerably higher than that of blocking. For a 5-second internal think time,
the throughput and the useful utilization with the optimistic algorithm are again
better than those for blocking. For a l-second internal think time, however,
blocking performs better (see Figure 25). In this last case, in which the internal
think time for transactions is closer to their processing time requirements, the
resource utilizations are such that resources wasted because of restarts make the
optimistic algorithm the loser.

The highest throughput obtained with the optimistic algorithm was consist-
ently better than that for immediate-restart, although for higher levels of multi-
programming the throughput obtained with immediate-restart was better than
the throughput obtained with the optimistic algorithm due to the mpl-limiting
effect of immediate-restart’s restart delay. As noted before, this high multipro-
gramming level difference could be reversed by adding a restart delay to the
optimistic algorithm.

5.6 Resource-Related Conclusions
Reflecting on the results of the experiments reported in this section, several
conclusions are clear. First, a blocking algorithm like dynamic two-phase locking
is a better choice than a restart-oriented concurrency control algorithm like the
immediate-restart or optimistic algorithms for systems with medium to high

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

640 l FL Agrawal et al.

6

T
h 4

r

0

”

6
h

P

” 2
1

1.0

0.8

u

I

1
I 0.6

i

z

a

t 0.4
i

0

n

0.2

50 100 150 200
Multiprogramming Level

Fig. 25. Throughput (1 second thinking).

50 100 150 200
Multiprogramming Level

Fig. 26. Disk utilization (1 second thinking).

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

T

h

r

0

”

6

h

P

”

t

u

t

I

I

i

7.

a

t

i

0

n

2,

3-

2-

l-

I

Concurrency Control Performance Modeling

50 100 150 200

Multiprogramming Level

Fig. 27. Throughput (5 seconds thinking).

1 .o

0.x

0.6

0.4

0.1

50 100 150 200

Multiprogramming Level

641

Fig. 28. Disk utilization (5 seconds thinking).

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

642 l R. Agrawal et al.

4

3
T

h

r

0

”
2

6
h

P
”

t

1

50 100 150 200
Multiprogramming Level

Fig. 29. Throughput (10 seconds thinking).

1.0

0.8

u

t

I
I 0.6

i

7.

a

t 0.4
i

0

”

0.2

--__
--

--A

-----------”

‘.
El----

---------El

so 100 150 200
Multiprogynming Level

Fig. 30. Disk utilization (10 seconds thinking).

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Concurrency Control Performance Modeling 643

levels of resource utilization. On the other hand, if utilizations are sufficiently
low, a restart-oriented algorithm becomes a better choice. Such low resource
utilizations arose in our experiments with large numbers of resource units and
in our interactive workload experiments with large intratransaction think times.
The optimistic algorithm provided the best performance in these cases. Second,
the past performance studies discussed in Section 1 were not really contradictory
after all: they simply obtained different results because of very different resource
modeling assumptions. We obtained results similar to each of the various studies
[l, 2, 6, 12, 15, 20, 50, 511 by varying the level of resources that we employed in
our database model. Clearly, then, a physically justifiable resource model is a
critical component for a reasonable concurrency control performance model.
Third, our results indicate that it is important to control the multiprogramming
level in a database system for concurrency control reasons. We observed thrashing
behavior for locking in the infinite resource case, as did [6, 20, 50, and 511, but
in addition we observed that a significant thrashing effect occurs for both locking
and optimistic concurrency control under higher levels of resource contention.
(A similar thrashing effect would also have occurred for the immediate-restart
algorithm under higher resource contention levels were it not for the
mpl-limiting effects of its adaptive restart delay.)

6. TRANSACTION BEHAVIOR ASSUMPTIONS

This section describes experiments that were performed to investigate the per-
formance implications of two modeling assumptions related to transaction be-
havior. In particular, we examined the impact of alternative assumptions about
how restarts are modeled (real versus fake restarts) and how write locks are
acquired (with or without upgrades from read locks). Based on the results of the
previous section, we performed these experiments under just two resource set-
tings: infinite resources and one resource unit. These two settings are sufficient
to demonstrate the important effects of the alternative assumptions, since the
results under other settings can be predicted from these two. Except where
explicitly noted, the simulation parameters used in this section are the same as
those given in Section 4.

6.1 Experiment 6: Modeling Restarts

In this experiment we investigated the impact of transaction-restart modeling on
performance. Up to this point, restarts have been modeled by “reincarnating”
transactions with their previous read and write sets and then placing them at
the end of the ready queue, as described in Section 3. An alternative assumption
that has been used for modeling convenience in a number of studies is the fak
restart assumption, in which a restarted transaction is assumed to be replaced
by a new transaction that is independent of the restarted one. In order to model
this assumption, we had the simulator reinitialize the read and write sets for
restarted transactions in this experiment. The throughput results for the infinite
resource case are shown in Figure 31, and Figure 32 shows the associated conflict
ratios. Solid lines show the new results obtained using the fake restart assump-
tion, and the dotted lines show the results obtained previously under the real
restart model. For the conflict ratio curves, hollow points show restart ratios and

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

644 l R. Agrawal et al.

100

75
T
h

r

0

"
50

s

h

P
”

I

25

A

/

-- -4

b-
_---

__--

/
/

/

--*-----------o

-.
-.a

- I*ercrlarls
I 0 immediuc-restart

---- rdrerwu * optimistic

I

50 100 150 200
Multiprogramming Level

Fig. 31. Throughput (fake restarts, m resources).

6

C

’ R 4

” 3
f t
1 i

’ 0
c s
t

2

50 100 150 200
hlultiprogramming Level

Fig. 32. Conflict ratios (fake restarts, m resources).

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Concurrency Control Performance Modeling 645

solid points show blocking ratios. Figures 33 and 34 show the throughput and
conflict ratio results for the limited resource (1 resource unit) case.

In comparing the fake and real restart results for the infinite resource case in
Figure 31, several things are clear. The fake restart assumption produces signif-
icantly higher throughputs for the immediate-restart and optimistic algorithms.
The throughput results for blocking are also higher than under the real restart
assumption, but the difference is quite a bit smaller in the case of the blocking
algorithm. The restart-oriented algorithms are more sensitive to the fake-restart
assumption because they restart transactions much more often. Figure 32 shows
how the conflict ratios changed in this experiment, helping to account for the
throughput results in more detail. The restart ratios are lower for each of the
algorithms under the fake-restart assumption, as is the blocking algorithm’s
blocking ratio. For each algorithm, if three or more transactions wish to concur-
rently update an item, repeated conflicts can occur. For blocking, the three
transactions will all block and then deadlock when upgrading read locks to write
locks, causing two to be restarted, and these two will again block and possibly
deadlock. For optimistic, one of the three will commit, which causes the other
two to detect readset/writeset intersections and restart, after which one of the
remaining two transactions will again restart when the other one commits. A
similar problem will occur for immediate-restart, as the three transactions will
collide when upgrading their read locks to write locks-only the last of the three
will be able to proceed, with the other two being restarted. Fake restarts eliminate
this problem, since a restarted transaction comes back as an entirely new
transaction. Note that the immediate-restart algorithm has the smallest reduction
in its restart ratio. This is because it has a restart delay that helps to alleviate
such problems even with real restarts.

Figure 33 shows that, for the limited resource case, the fake-restart assumption
again leads to higher throughput predictions for all three concurrency control
algorithms. This is due to the reduced restart ratios for all three algorithms (see
Figure 34). Fewer restarts lead to better throughput with limited resources, as
more resources are available for doing useful (as opposed to wasted) work. For
the two restart-oriented algorithms, the difference between fake and real restart
performance is fairly constant over most of the range of multiprogramming levels.
For blocking, however, fake restarts lead to only a slight increase in throughput
at the lower multiprogramming levels. This is expected since its restart ratio is
small in this region. As higher multiprogramming levels cause the restart ratio
to increase, the difference between fake and real restart performance becomes
large. Thus, the results produced under the fake-restart assumption in the limited
resource case are biased in favor of the restart-oriented algorithms for low
multiprogramming levels. At higher multiprogramming levels, all of the algo-
rithms benefit almost equally from the fake restart assumption (with a slight
bias in favor of blocking at the highest multiprogramming level).

6.2 Experiment 7: Write-Lock Acquisition

In this experiment we investigated the impact of write-lock acquisition modeling
on performance. Up to now we have assumed that write locks are obtained by
upgrading read locks to write locks, as is the case in many real database systems.

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

646 - R. Agrawal et al.

6

T

h 4

r

0

”

6
h

P
” 2
t

Fig. 33.

6

C

“R 4

n a

f t
I i

’ 0

c s
t

2

n.

. .
-.

. .
--.

-‘A

so 100 150 200
Multiprogramming Level

Throughput (fake restarts, 1 resource unit).

/ / /
/

so 100 150 200
Mulliprogramming Level

Fig. 34. Conflict ratios (fake restarts, 1 resource unit).

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Concurrency Control Performance Modeling l 647

In this section we make an alternative assumption, the no lock upgrades assump-
tion, in which a write lock is obtained instead of a read lock on each item that is
to eventually be updated the first time the item is read. Figures 35 and 36 show
the throughputs and conflict ratios obtained under this new assumption for the
infinite resource case, and Figures 37 and 38 show the results for the limited
resource case. The line and point-style conventions are the same as those in the
previous experiment. Since the optimistic algorithm is (obviously) unaffected by
the lock upgrade model, results are only given for the blocking and immediate-
restart algorithms.

The results obtained in this experiment are quite easily explained. The upgrade
assumption has little effect at the lowest multiprogramming levels, as conflicts
are rare there anyway. At higher multiprogramming levels, however, the upgrade
assumption does make a difference. The reasons can be understood by considering
what happens when two transactions attempt to read and then write the same
data item. We consider the blocking algorithm first. With lock upgrades, each
transaction will first set a read lock on the item. Later, when one of the
transactions is ready to write the item, it will block when it attempts to upgrade
its read lock to a write lock; the other transaction will block as well when it
requests its lock upgrade. This causes a deadlock, and the younger of the two
transactions will be restarted. Without lock upgrades, the first transaction to
lock the item will do so using a write lock, and then the other transaction will
simply block without causing a deadlock when it makes its lock request. As
indicated in Figures 36 and 38, this leads to lower blocking and restart ratios for
the blocking algorithm under the no-lock upgrades assumption. For the imme-
diate-restart algorithm, no restart will be eliminated in such a case, since one of
the two conflicting transactions must be still restarted. The restart will occur
much sooner under the no-lock upgrades assumption, however.

For the infinite resource case (Figures 35 and 36), the throughput predictions
are significantly lower for blocking under the no-lock upgrades assumption. This
is because write locks are obtained earlier and held significantly longer under
this assumption, which leads to longer blocking times and therefore to lower
throughput. The elimination of deadlock-induced restarts as described above
does not help in this case, since wasted resources are not really an issue with
infinite resources. For the immediate-restart algorithm, the no-lock upgrades
assumption leads to only a slight throughput increase-although restarts occur
earlier, as described above, again this makes little difference with infinite re-
sources.

For the limited resource case (Figures 37 and 38), the throughput predictions
for both algorithms are significantly higher under the no-lock upgrades assump-
tion. This is easily explained as well. For blocking, eliminating lock upgrades
eliminates upgrade-induced deadlocks, which leads to fewer transactions being
restarted. For the immediate-restart algorithm, although no restarts are elimi-
nated, they do occur much sooner in the lives of the restarted transactions under
the no-lock upgrades assumption. The resource waste avoided by having fewer
restarts with the blocking algorithm or by restarting transactions earlier with
the immediate-restart algorithm leads to considerable performance increases for
both algorithms when resources are limited.

ACM Transactions on Database Systems, Vol. 12, No. 4, December 198’7.

648 l R. Agrawal et al.

6C ‘1

1-I
T

h 4c

r

0

”

6
h

P
” 20
t

7

SO 100 150 200
Multiprogramming Level

Fig. 35. Throughput (no lock upgrades, m resources).

6

C

OR 4

” a

f t

’ i

’ 0

c s
t

2

/ /
/ / / / / / / /

50 100 150 200
Multiprogramming Level

Fig. 36. Conflict ratios (no lock upgrades, m resources).

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Concurrency Control Performance Modeling - 649

6

T

h 4

r

0

”

s

h

P

” 2

t

1
so 100 150 200

Multiprogramming Level

Fig. 37. Throughput (no lock upgrades, 1 resource unit).

so 100 150 200
Multiprogramming Level

Fig. 38. Conflict ratios (no lock upgrades, 1 resource unit).

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

650 l R. Agrawal et al.

6.3 Transaction Behavior Conclusions

Reviewing the results of Experiments 6 and 7, several conclusions can be drawn.
First, it is clear from Experiment 6 that the fake-restart assumption does have a
significant effect on predicted throughput, particularly for high multiprogram-
ming levels (i.e., when conflicts are frequent). In the infinite resource case, the
fake-restart assumption raises the throughput of the restart-oriented algorithms
more than it does for blocking, so fake restarts bias the results against blocking
somewhat in this case. In the limited resource case, the results produced under
the fake-restart assumption are biased in favor of the restart-oriented algorithms
at low multiprogramming levels, and all algorithms benefit about equally from
the assumption at higher levels of multiprogramming. In both cases, however,
the relative performance results are not all that different with and without fake
restarts, at least in the sense that assuming fake restarts does not change which
algorithm performs the best of the three. Second, it is clear from Experiment 7
that the no-lock upgrades assumption biases the results in favor of the immediate-
restart algorithm, particularly in the infinite resource case. That is, the perform-
ance of blocking is significantly underestimated using this assumption in the
case of infinite resources, and the throughput of the immediate-restart algorithm
benefits slightly more from this assumption than blocking does in the limited
resource case.

7. CONCLUSIONS AND IMPLICATIONS
In this paper, we argued that a physically justifiable database system model is a
requirement for concurrency control performance studies. We described what we
feel are the key components of a reasonable model, including a model of the
database system and its resources, a model of the user population, and a model
of transaction behavior. We then presented our simulation model, which includes
all of these components, and we used it to study alternative assumptions about
database system resources and transaction behavior.

One specific conclusion of this study is that a concurrency control algorithm
that tends to conserve physical resources by blocking transactions that might
otherwise have to be restarted is a better choice than a restart-oriented algorithm
in an environment where physical resources are limited. Dynamic two-phase
locking was found to outperform the immediate-restart and optimistic algorithms
for medium to high levels of resource utilization. However, if resource utilizations
are low enough so that a large amount of wasted resources can be tolerated, and
in addition there are a large number of transactions available to execute, then a
restart-oriented algorithm that allows a higher degree of concurrent execution is
a better choice. We found the optimistic algorithm to perform the best of the
three algorithms tested under these conditions. Low resource utilizations such as
these could arise in a database machine with a large number of CPUs and disks
and with a number of users similar to those of today’s medium to large time-
sharing systems. They could also arise in primarily interactive applications in
which large think times are common and in which the number of users is such
that the utilization of the system is low as a result. It is an open question whether
or not such low utilizations will ever actually occur in real systems (i.e., whether
ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Concurrency Control Performance Modeling l 651

or not such operating regions are sufficiently cost-effective). If not, blocking
algorithms will remain the preferred method for database concurrency control.

A more general result of this study is that we have reconfirmed results from a
number of other studies, including studies reported in [l, 2, 6, 12, 15, 20, 50, and
511. We have shown that seemingly contradictory performance results, some of
which favored blocking algorithms and others of which favored restarts, are not
contradictory at all. The studies are all correct within the limits of their assump-
tions, particularly their assumptions about system resources. Thus, although it
is possible to study the effects of data contention and resource contention
separately in some models [50,51], and although such a separation may be useful
in iterative approximation methods for solving concurrency control performance
models [M. Vernon, personal communication, 19851, it is clear that one cannot
select a concurrency control algorithm for a real system on the basis of such a
separation-the proper algorithm choice is strongly resource dependent. A rea-
sonable model of database system resources is a crucial ingredient for studies in
which algorithm selection is the goal.

Another interesting result of this study is that the level of multiprogramming
in database systems should be carefully controlled. We refer here to the multi-
programming level internal to the database system, which controls the number
of transactions that may concurrently compete for data, CPU, and I/O services
(as opposed to the number of users that may be attached to the system). As in
the case of paging operating systems, if the multiprogramming level is increased
beyond a certain level, the blocking and optimistic concurrency control strategies
start thrashing. We have confirmed the results of [6, 20, 50, and 511 for locking
in the low resource contention case, but more important we have also seen that
the effect can be significant for both locking and optimistic concurrency control
under higher levels of resource contention. We found that when we delayed
restarted transactions by an amount equal to the running average response time,
it had the beneficial side effect of limiting the actual multiprogramming level,
and the degradation in throughput was arrested (albeit a little bit late). Since
the use of a restart delay to limit the multiprogramming level is at best a crude
strategy, an adaptive algorithm that dynamically adjusts the multiprogramming
level in order to maximize system throughput needs to be designed. Some
performance indicators that might be used in the design of such an algorithm are
useful resource utilization or running averages of throughput, response time, or
conflict ratios. The design of such an adaptive load control algorithm is an open
problem.

In addition to our conclusions about the impact of resources in determining
concurrency control algorithm performance, we also investigated the effects of
two transaction behavior modeling assumptions. With respect to fake versus real
restarts, we found that concurrency control algorithms differ somewhat in their
sensitivity to this modeling assumption; the results with fake restarts tended to
be somewhat biased in favor of the restart-oriented algorithms. However, the
overall conclusions about which algorithm performed the best relative to the
other algorithms were not altered significantly by this assumption. With respect
to the issue of how write-lock acquisition is modeled, we found relative algorithm
performance to be more sensitive to this assumption than to the fake-restarts

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

652 l R. Agrawal et al.

assumption. The performance of the blocking algorithm was particularly sensitive
to the no-lock upgrades assumption in the infinite resource case, with its
throughput being underestimated by as much as a factor of two at the higher
multiprogramming levels.

In closing, we wish to leave the reader with the following thoughts about
computer system resources and the future, due to Bill Wulf:

Although the hardware costs will continue to fall dramatically and machine speeds will
increase equally dramatically, we must assume that our aspirations will rise even more.
Because of this, we are not about to face either a cycle or memory surplus. For the near-
term future, the dominant effect will not be machine cost or speed alone, but rather a
continuing attempt to increase the return from a finite resource-that is, a particular
computer at our disposal. [54, p. 411

ACKNOWLEDGMENTS

The authors wish to acknowledge the anonymous referees for their many insight-
ful comments. We also wish to acknowledge helpful discussions that one or more
of us have had with Mary Vernon, Nat Goodman, and (especially) Y. C. Tay.
Comments from Rudd Canaday on an earlier version of this paper helped us to
improve the presentation. The NSF-sponsored Crystal multicomputer project at
the University of Wisconsin provided the many VAX 111750 CPU-hours that
were required for this study.

REFERENCES

1. AGRAWAL, R. Concurrency control and recovery in multiprocessor database machines: Design
and performance evaluation, Ph.D. Thesis, Computer Sciences Department, University of Wis-
consin-Madison, Madison, Wise., 1983.

2. AGRAWAL, R., AND DEWITT, D. Integrated concurrency control and recovery mechanisms:
Design and performance evaluation. ACM Trans. Database Syst. 10,4 (Dec. 1985), 529-564.

3. AGRAWAL, R., CAREY, M., AND DEWITT, D. Deadlock detection is cheap. ACM-SZGMOD Record
13,2 (Jan. 1983).

4. AGRAWAL, R., CAREY, M., AND MCVOY, L. The performance of alternative strategies for dealing
with deadlocks in database management systems. IEEE Trans. Softw. Eng. To be published.

5. BADAL, D. Correctness of concurrency control and implications in distributed databases. In
Proceedings of the COMPSAC ‘79 Conference (Chicago, Nov. 1979). IEEE, New York, 1979, pp.
588-593.

6. BALTER, R., BERARD, P., AND DECITRE, P. Why control of the concurrency level in distributed
systems is more fundamental than deadlock management. In Proceedings of the 1st ACM SZGACT
SZGOPS Symposium on Principles of Distributed Computing (Ottawa, Ontario, Aug. 18-20,1982).
ACM, New York, 1982, pp. 183-193.

7. BERNSTEIN, P., AND GOODMAN, N. Fundamental algorithms for concurrency control in distrib-
uted database systems. Tech. Rep., Computer Corporation of America, Cambridge, Mass., 1980.

8. BERNSTEIN, P., AND GOODMAN, N. “Timestamp-based algorithms for concurrency control in
distributed database systems. In Proceedings of the 6th International Conference on Very Large
Data Bases (Montreal, Oct. 1980), pp. 285-300.

9. BERNSTEIN, P., AND GOODMAN, N. Concurrency control in distributed database systems. ACM
Comput. Suru. 13,2 (June 1981), 185-222.

10. BERNSTEIN, P., AND GOODMAN, N. A sophisticate’s introduction to distributed database con-
currency control. In Proceedings of the 8th International Conference on Very Large Data Bases
(Mexico City, Sept. 1982), pp. 62-76.

11. BERNSTEIN, P., SHIPMAN, D., AND WONG, S. Formal aspects in serializability of database
concurrency control. IEEE Trans. Softw. Eng. SE-5,3 (May 1979).

ACM Transactions on Database Systems, Vol. 12, No. 4, December 198’7.

Concurrency Control Performance Modeling l 653

12. CAREY, M. Modeling and evaluation of database concurrency control algorithms. Ph.D. disser-
tation, Computer Science Division (EECS), U niversity of California, Berkeley, Sept. 1983.

13. CAREY, M. An abstract model of database concurrency control algorithms. In Proceedings of the
ACM SZGMOD International Conference on Manugement of Data (San Jose, Calif., May 23-26,
1983). ACM, New York, 1983, pp. 97-107.

14. CAREY, M., AND MUHANNA, W. The performance of multiversion concurrency control algo-
rithms. ACM Trans. Comput. Syst. 4,4 (Nov. 1986), 338-378.

15. CAREY, M., AND STONEBRAKER, M. The performance of concurrency control algorithms for
database management systems. In Proceedings of the 10th International Conference on Very Large
Data Eases (Singapore, Aug. 1984), pp. 107-118.

16. CASANOVA, M. The concurrency control problem for database systems. Ph.D. dissertation,
Computer Science Department, Harvard University, Cambridge, Mass. 1979.

17. CERI, S., AND OWICKI, S. On the use of optimistic methods for concurrency control in distributed
databases. In Proceedings of the 6th Berkeley Workshop on Distributed Data Management and
Computer Networks (Berkeley, Calif., Feb. 1982), ACM, IEEE, New York, 1982.

18. ELHARD, K., AND BAYER, R. A database cache for high performance and fast restart in database
systems. ACM Trans. Database Syst. 9,4 (Dec. 1984), 503-525.

19. ESWAREN, K., GRAY, J., LORIE, R., AND TRAIGER, I. The notions of consistency and predicate
locks in a database system. Commun. ACM 19, 11 (Nov. 1976), 624-633.

20. FRANASZEK, P., AND ROBINSON, J. Limitations of concurrency in transaction processing. ACM
Trans. Database Syst. 10, 1 (Mar. 1985), l-28.

21. GALLER, B. Concurrency control performance issues. Ph.D. dissertation, Computer Science
Department, University of Toronto, Ontario, Sept. 1982.

22. GOODMAN, N., SURI, R., AND TAY, Y. A simple analytic model for performance of exclusive
locking in database systems. In Proceedings of the 2nd ACM SZGACT-SZGMOD Symposium on
Principles of Database Systems (Atlanta, Ga., Mar. 21-23,1983). ACM, New York, 1983 pp. 203-
215.

23. GRAY, J. Notes on database operating systems. In Operating Systems: An Advanced Course, R.
Bayer, R. Graham, and G. Seegmuller, Eds. Springer-Verlag, New York, 1979.

24. GRAY, J., HOMAN, P., KORTH, H., AND OBERMARCK, R. A straw man analysis of the probability
of waiting and deadlock in a database system. Tech. Rep. RJ3066, IBM San Jose Research
Laboratory, San Jose, Calif., Feb. 1981.

25. HAERDER, T., AND PEINL, P. Evaluating multiple server DBMS in general purpose operating
system environments. In Proceedings of the 10th International Conference on Very Large Data
Bases (Singapore, Aug. 1984).

26. IRANI, K., AND LIN, H. Queuing network models for concurrent transaction processing in a
database system. In Proceedings of the ACM SZGMOD International Conference on Management
of Data (Boston, May 30-June 1,1979). ACM, New York, 1979.

27. KUNG, H., AND ROBINSON, J. On optimistic methods for concurrency control. ACM Trans.
Database Syst. 6, 2 (June 1981), 213-226.

28. LIN, W., AND NOLTE, J. Distributed database control and allocation: Semi-annual report. Tech.
Rep., Computer Corporation of America, Cambridge, Mass., Jan. 1982.

29. LIN, W., AND NOLTE, J. Performance of two phase locking. In Proceedings of the 6th Berkeley
Workshop on Distributed Data Management and Computer Networks (Berkeley, Feb. 1982), ACM,
IEEE, New York, 1982, pp. 131-160.

30. LIN, W., AND NOLTE, J. Basic timestamp, multiple version timestamp, and two-phase locking.
In Proceedings of the 9th Znternational Conference on Very Large Data Bases (Florence, Oct.
1983).

31. LINDSAY, B., ET AL. Notes on distributed databases, Tech. Rep. RJ2571, IBM San Jose Research
Laboratory, San Jose, Calif., 1979.

32. MENASCE, D., AND MUNTZ, R. Locking and deadlock detection in distributed databases. In
Proceedings of the 3rd Berkeley Workshop on Distributed Data Management and Computer
Networks (San Francisco, Aug. 1978). ACM, IEEE, New York, 1978, pp. 215-232.

33. PAPADIMITRIOU, C. The serializability of concurrent database updates. J. ACM 26, 4 (Oct.
1979), 631-653.

34. PEINL, P., AND REUTER, A. Empirical comparison of database concurrency control schemes. In
Proceedings of the 9th Znternutionul Conference on Very Large Data Bases (Florence, Oct. 1983),
pp. 97-108.

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

654 l Ft. Agrawal et al.

35. POTIER, D., AND LEBLANC, P. Analysis of locking policies in database management systems.
Commun. ACM 23, 10 (Oct. 1980), 584-593.

36. REED, D. Naming and synchronization in a decentralized computer system. Ph.D. dissertation,
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Tech-
nology, Cambridge, Mass., 1978.

37. REUTER, A. An analytic model of transaction interference in database systems. IB 68/83,
University of Kaiserslautern, West Germany, 1983.

38. REUTER, A. Performance analysis of recovery techniques. ACM Trans. Database Syst. 9,4 (Dec.
1984), 526-559.

39. RIES, D. The effects of concurrency control on database management system performance.
Ph.D. dissertation, Department of Electrical Engineering and Computer Science, University of
California at Berkeley, Berkeley, Calif., 1979.

40. RIES, D., AND STONEBRAKER, M. Effects of locking granularity on database management system
performance. ACM Trans. Database Syst. 2,3 (Sept. 1977), 233-246.

41. RIES, D., AND STONEBRAKER, M. Locking granularity revisited. ACM Trans. Database Syst. 4,
2 (June 1979), 210-227.

42. ROBINSON, J. Design of concurrency controls for transaction processing systems. Ph.D. disser-
tation, Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Pa. 1982.

43. ROBINSON, J. Experiments with transaction processing on a multi-microprocessor. Tech. Rep.
RC9725, IBM Thomas J. Watson Research Center, Yorktown Heights, N.Y., Dec. 1982.

44. ROSENKRANTZ, D., STEARNS, R., AND LEWIS, P., II. System level concurrency control for
distributed database systems. ACM Trans. Database Syst. 3, 2 (June 1978), 178-198.

45. ROWE, L., AND STONEBRAKER, M. The commercial INGRES epilogue. In The ZNGRES Papers:
Anatomy of a Relational Database System, M. Stonebraker, Ed. Addison-Wesley, Reading, Mass.
1986.

46. SARGENT, R. Statistical analysis of simulation output data. In Proceedings of the 4th Annual
Symposium on the Simulation of Computer Systems (Aug. 1976), pp. 39-50.

47. SPITZER, J. Performance prototyping of data management applications. In Proceedings of
the ACM ‘76 Annual Conference (Houston, TX., Oct. 20-22, 1976). ACM, New York, 1976,
pp. 287-292.

48. STONEBRAKER, M. Concurrency control and consistency of multiple copies of data in distributed
INGRES. IEEE Trans. Softcu. Eng. 5,3 (May 1979).

49. STONEBRAKER, M., AND ROWE, L. The Design of POSTGRES. In Proceedings of the ACM
SZGMOD International Conference on Management of Data (Washington, D.C., May 28-30,1986).
ACM, New York, 1986, pp. 340-355.

50. TAY, Y. A mean value performance model for locking in databases. Ph.D. dissertation, Computer
Science Department, Harvard University, Cambridge, Mass. Feb. 1984.

51. TAY, Y., GOODMAN, N., AND SURI, R. Locking performance in centralized databases. ACM
Trans. Database Syst. 10,4 (Dec. 1985), 415-462.

52. THOMAS, R. A majority consensus approach to concurrency control for multiple copy databases.
ACM Trans. Database Syst. 4, 2 (June 1979), 180-209.

53. THOMASIAN, A., AND RYU, I. A decomposition solution to the queuing network model of the
centralized DBMS with static locking. In Proceedings of the ACM-SZGMETRZCS Conference on
Measurement and Modeling of Computer Systems (Minneapolis, Minn., Aug. 29-31,1983). ACM,
New York, 1983, pp. 82-92.

54. WULF, W. Compilers and computer architecture. IEEE Computer (July 1981).

Received August 1985; revised August 1986; accepted May 1987

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

