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8.1 Review: Coin Toss
Recall the coin toss experiment, we have Bernoulli random variables Xy, ..., X,,, where:

X, — 1 with probability e
" 10 with probability 1 — e

It’s obvious that:
Pr (ZX = O) (I—er<e™"

where the inequality is given by log(l —€) < —e.
Fact 8.1 Also we have:

Pr <Z X; < ;n> < e /8

=1

You will show this in homework. We can see these two upper bounds are of the same order.

8.2 Review: General PAC Guarantee

Remember from last lecture, we talked about simplest general PAC guarantee. For finite set of concepts or
hypotheses C, you have an algorithm A that selects hg € C. Giving target concept ¢ and sample S~D™,
denote S = (x1,...,Xm), Yh, define:

R(h) = Ex~p[1[h(x) # c(x)]]

.\ 1
Rs(h) = — > 1[h(x) # e(x)]
xES
Note that hg was chosen because ]:Es(hs) =0, we can bound:

Pr (R(hs) >e) <Pr(dheC: Rg(h) =0 and R(h) > €) (8.1)
<> Pr(Rs(h) =0 and R(h) > ¢) (8.2)

hec
< Z(l —€ (8.3)

hec
< Z e~ me (8 4)

hecC
= |Cle™™¢ (and we want this < ¢) (8.5)

This implies SP[I)'M(R(hS) > €) < 0 when m > L(log|C| + log §).
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8.3 Hard Case of General PAC Guarantee

Now we consider |C| = co. This comes in many examples such as the learning rectangles. The first step
is that we only need to know how big C is when restricted to subsets. Denote S = (x1,...,Xm), Cls =

{(h(x1),...,h(xm)) : h € C}.
Definition 8.2 (growth function) The growth function for C is:

Ile(m) = max |C|s]
SCX,|S|=m

We want ¢ (m) = 2°0™) but how should we handle |C| = c0?
Trick 8.3 Take two samples S, S’.

e Step 1: Sample S ~ D™

e Step 2: Find hg such that f%s(hs) =0

e Step 3: For analysis, sample S’ ~ D™

Consider (R(hg) > €). We will look at the performance of hg on the independent sample S’,

Pr
S~Dm S/~ Dm
and consider 2 cases:

o (A) Ri(hs) >

Nl

e (B) Ryg/(hs) <

rolm

so we have:

spPr | (R(hs) > ) (8.6)

< Pr (R(hs) > €N Rs/(hs) < %) +

A €
< P (R(hs) > e A Ry (hs) > 5) (8.7)

Pr
S~Dm S~ Dm

Py P>

It may seem surprising that we separate the probability calculation in this way, but this was done for a very
specific reason: we can apply different tricks to get bounds on P; and P». To start, note that to bound P;
we have the useful fact that S and S’ are uncorrelated. This means that we may as well assume S is fixed
when we calculate the probability that R(hg) > € A Rg:(hs) < §. Then we can use the trick in Section 8.1.
Mathematically, this means:

P, = Pr(R(hs) > e A Rs/(hg) < Ig;[e—"““] = ¢~me/8
where in the last inequality we used Fact 8.1.
How to bound P»? The key is noting that I can sample S and S’ in the following way:
1. First sample a set U ~ D?™;

2. Then randomly partition U into two disjoint sets S,.5" of size m, i.e. U = SU S’ (notationally, let’s
write this as SU S ~ U).
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Why did we do this? First we show that all that matters to bound this probability is to consider the
hypothesis set C when restricted to U. But this is a finite set, so now we can use the union bound! Precisely:

P, = Pr (RS,(hS) > % A Rs(hs) = o) - E [ Pr (RS/(hS) > % A Rs(hs) = 0)}

U~D2m LSUS'~U
<E| Pr (3heC:Rs(h)><ARs(h)=0
_%[SUS'I;U< €C: Ry (h) 2 s(h) = )}
- _ B € B
(need only consider Clo not all ) =T [Sulg;; . (Hh €Clu s Rr(h) > 5 A Rs(h) = 0)}

A € A~
< 7 — =
71[@ gc% SuPS)'rNU (RS (h) > 2 N s (h) 0)
U

We’re almost there. Now we can use a simple balls-and-bins type analysis to get a bound on this probability

value. Let us imagine we are dividing a larget set of blue balls and a small set of red balls into two equally-

sized categories. Assume that there are at least <* red balls and no more than 2m — <* blue balls, and

these two sets are randomly parititioned into two bins of size m. What is the probability that the first bin
got NO red balls? Each time you took a ball to place in the first bin, you had at least ¢/4 chance of getting
a red ball. So after m rounds, you had no more than a chance of (1 — §)™ < e~™¢/% of never seeing a red
ball placed in the first bin. This calculation gives us:

P <E Pr (Ro(h) > S ARs(h) =0) | <ElCly]e ™) < T (2m)e !
U hecl SUS’ ~U 2 U

Putting it all together, and assuming that m is large enough, it’s easy to see that:

< —me/8
SNDWP?’;'/NDm(R(hS) >¢€) < TIle(2m)e )

and we note that the constants can be significantly improved with more care.

8.4 Controlling II(2m)

To control the growth of II¢(2m), we use the following trick.

Trick 8.4 (Vapnik-Chervonenkis dimension)

Definition 8.5 (shatter) C shatters S C X if [C|s| = 2!5

Some examples of shattering and impossible to be shattered are in Figure 8.1.

Definition 8.6 (VC-dimension) The VC-dimension of C ismax{d : 3S C X, |S| = d and C shatters S}

Lemma 8.7 (Sauer-Shelah lemma) If C has VC-dimension d, m > d, then:

Te(m) < Z: ("Z) =O(m?)
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Figure 8.1: 4 points shattered and not shattered
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