EECS 598-005: Theoretical Foundations of Machine Learning

Lecture 6: Risk and PAC-Learnable Class

Lecturer: Jacob Abernethy

Scribes: Sentao Miao Editors: Luke Brandl, Nghia Nguyen, and Shuang Qiu

6.1 Error Bound and Sample Size Requirement

Example 1. Say you receive a sequence random variables $X_1, ..., X_n$ known to be sampled i.i.d. from one of the two distributions:

- \mathcal{D}_0 : $X_i = 0$ always.
- \mathcal{D}_1 : $X_i = 1$ with probability ϵ and $X_i = 0$ with probability 1ϵ .

and our goal is to determine the true underlying distribution. Consider the algorithm \mathcal{A} whose output is:

$$\mathcal{A}(X_1, \dots, X_n) = \begin{cases} \mathcal{D}_0 & \text{if } \sum_{i=1}^n X_i = 0\\ \mathcal{D}_1 & \text{if } \sum_{i=1}^n X_i > 0 \end{cases}$$

If the underlying distribution is \mathcal{D}_0 , this algorithm always returns the correct result; however, if the underlying distribution is \mathcal{D}_1 , the algorithm may get unlucky and not recieve any samples of value 1. We can bound this probability:

$$\mathbb{P}\left[\sum_{i=1}^{n} X_i = 0 \middle| X_i \text{ sampled from } \mathcal{D}_1\right] = (1-\epsilon)^n \le e^{-\epsilon n}.$$

Therefore, in order to guarantee that the mistake happens with probability at most δ , we need the sample size n to satisfy:

$$n \ge \frac{1}{\epsilon} \log(\frac{1}{\delta}).$$

Example 2. Now consider the case where we know that the i.i.d. samples follow one of the two distributions:

- \mathcal{D}_f : $X_i = 1$ w.p. $\frac{1}{2}$ and $X_i = 0$ w.p. $\frac{1}{2}$ (fair coin).
- \mathcal{D}_b : $X_i = 1$ w.p. $\frac{1}{2} + \epsilon$ and $X_i = 0$ w.p. $\frac{1}{2} \epsilon$ (biased coin).

Similarly to the previous example, consider the following simple algorithm:

$$\mathcal{A}(X_1,\ldots,X_n) = \begin{cases} \mathcal{D}_b & \text{if } \sum_{i=1}^n X_i \ge \left(\frac{1+\epsilon}{2}\right) n\\ \mathcal{D}_f & \text{otherwise.} \end{cases}$$

We can apply Hoeffding's concentration inequality on the probability that the algorithm predicts \mathcal{D}_b while the true distribution is \mathcal{D}_f . Similarly, we upper bound the other type of error. It is an easy exercise to show that the sample size has to be $n \geq \Theta(\frac{\log \frac{1}{\delta}}{\epsilon^2})$ in order to bound the error probability with δ .

Remark. In both of the examples above, we want to identify the ϵ gap in the distribution. Interestingly, the sample size requirement scales in $\frac{1}{\epsilon}$ for Example 1, while it scales in $\frac{1}{\epsilon^2}$ for Example 2.

The above two examples give us a question: what class of problems can we learn? How big should the sample size should be? These questions lead us to the so-called **PAC-Learnable class**, to be defined later. Let us first introduce the concept of **risk** and **empirical risk**.

Fall 2015

6.2 Risk and Empirical Risk

Consider that we have a input space X, output space Y, and concept class C which is a set of functions $h: X \longrightarrow Y$. A learning instance includes a distribution $D \in \Delta(X)$ (a distribution on X) and a target concept $c \in C$. We then have the following definitions.

Definition 6.1 (True Risk). True risk (or generalized error) of a concept $h: X \longrightarrow Y$ is defined as:

$$R(h) := E_{x \sim D}[1(h(x) \neq c(x))] = \mathbb{P}_{x \sim D}(h(x) \neq c(x))$$

Definition 6.2 (Empirical Risk). The empirical risk of h for a sample S drawn from X with respect to distribution D is defined as:

$$\hat{R}_n(h) := \frac{1}{n} \sum_{x \in S} \mathbb{1}[h(x) \neq c(x)]$$

where n = |S|.

Remark 6.3. If S is drawn from X with respect to to D, an easy check gives us $E[\hat{R}_n(h)] = R(h)$. Hence, the empirical risk $\hat{R}_n(h)$ is indeed an unbiased estimator.

6.3 PAC-Learnable Class

Now we can define the so-called PAC-Learnable Class.

Definition 6.4 (PAC-Learnable). A class C is said to be PAC-Learnable if there exists an algorithm \mathcal{A} and a polynomial of two variables (denoted as poly(a,b)) such that $\forall \epsilon, \delta > 0, \forall$ distributions $D \in \Delta(X)$, and for any target concept $c \in C$, we have:

$$\mathbb{P}_{S \sim D, |S|=n}(R(h_S) \le \epsilon) \ge 1 - \delta$$

as long as the sample size n is at least $\operatorname{poly}(\frac{1}{\epsilon},\frac{1}{\delta})$. Here, h_S is the output of the algorithm \mathcal{A} on sample S.

We shall have another example which is PAC-Learnable to illustrate this definition.

6.3.1 Learning Axis-Aligned Rectangles

The concept class C is defined as $C := \{[a_1, a_2] \times [b_1, b_2] \subset \mathbb{R}^2 : \forall a_1 \leq a_2, b_1 \leq b_2 \in \mathbb{R}\}$. Note that concepts are now being viewed as rectangular subsets of \mathbb{R}^2 ; that is, points within the subset have label 1, and those outside have label 0.

Consider the following figure.

Here we have points on the x/y plane, where points drawn with a \times have a label of 1, and points drawn with a \circ have label 0.

Consequently our goal is to decide which area is C. Let us analyze an algorithm $\mathcal{A}(S)$ which we will call the "smallest enclosed rectangle algorithm" which given sample S drawn drawn randomly from D, $\mathcal{A}(S)$ outputs the rectangle $\hat{r} = r_S := [\hat{a_1}, \hat{a_2}] \times [\hat{b_1}, \hat{b_2}]$ such that:

- $\hat{a_1} = \min\{x \text{ coordinate of input labelled } 1\}.$
- $\hat{a}_2 = \max\{x \text{ coordinate of input labelled } 1\}.$
- $\hat{b_1} = \min\{y \text{ coordinate of input labelled } 1\}.$
- $\hat{b}_2 = \max\{y \text{ coordinate of input labelled } 1\}.$

How likely is this algorithm to produce an error larger than epsilon? To work toward a bound on this problem, take a look at the following figure.

We see that the real C (defined here as the rectangle r) is larger than our estimate \hat{r} . We are interested in the chance of making mistakes, i.e. $\mathbb{P}_{S\sim D}(R(\hat{r}) > \epsilon)$ for some ϵ .

Note that if $\mathbb{P}_{x \sim D}(x \in r) < \epsilon$, i.e. the probability of x falling to rectangle r is smaller than ϵ , $\mathbb{P}_{S \sim D}(R(\hat{r}) > \epsilon)$ is definitely 0 because \hat{r} cannot be bigger than r.

We shall consider the case that $\mathbb{P}_{x \sim D}(x \in r) \geq \epsilon$. To compute $\mathbb{P}_{S \sim D}(R(\hat{r}) > \epsilon)$, we define the following four regions $r_{bottom}, r_{top}, r_{left}, r_{right}$. r_{bottom} is defined as starting from bottom of r with height chosen such that $\mathbb{P}(x \in r_{bottom}) = \frac{\epsilon}{4}$. The others are similarly defined. The following figure illustrates this construction.

Claim: If $R(\hat{r}) > \epsilon$ then there must be some $i \in \{top, bottom, left, right\}$ for which $r_i \cap \hat{r} = \emptyset$.

Proof: We will prove the contrapositive statement, that if \hat{r} intersects with all four regions (top,bottom,left,right), then the error rate of \hat{r} cannot exceed ϵ . Notice that if the output of our algorithm, the smallest enclosed rectangle is incorrect for some example, i.e. the smallest rectangle \hat{r} disagrees with the true r, then this example must lie in the "error region" $r \setminus \hat{r}$. Indeed, the true risk of \hat{r} is equal to the probability mass in this region; that is, $R(\hat{r}) = \mathbb{P}_{x \sim D}(x \in r \setminus \hat{r})$. However, each region has probability $\frac{\epsilon}{4}$ so the union of the regions has probability no more than ϵ . On the other hand, if each of the regions has a non-empty intersection with \hat{r} , then it is clear from the picture that the union of the regions covers $r \setminus \hat{r}$. So if all four regions has a non-empty intersection with \hat{r} , or right) $\leq \epsilon$ as desired.

Therefore, we can compute $\mathbb{P}_{S \sim D}(R(\hat{r}) > \epsilon)$ as the following:

$$\begin{split} \mathbb{P}_{S\sim D}(R(\hat{h}) > \epsilon) &\leq \mathbb{P}(\exists i \in \{top, bottom, left, right\} : \hat{r} \cap r_i = \emptyset) \\ &\leq \sum_i \mathbb{P}(\hat{r} \cap r_i = \emptyset) \\ &\leq \sum_i (1 - \frac{\epsilon}{4})^n \\ &= 4(1 - \frac{\epsilon}{4})^n \\ &< 4e^{-\frac{\epsilon n}{4}} \end{split}$$

From this result, we see that if we want this probability to be at most δ , then choosing $n \geq \frac{4}{\epsilon} \log(\frac{4}{\delta})$ suffices. Consequently, this shows it is PAC-Learnable via the smallest enclosed rectangle algorithm.