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6.1 Error Bound and Sample Size Requirement

Example 1. Say you receive a sequence random variables X1, ..., Xn known to be sampled i.i.d. from one
of the two distributions:

• D0: Xi = 0 always.

• D1: Xi = 1 with probability ε and Xi = 0 with probability 1− ε.

and our goal is to determine the true underlying distribution. Consider the algorithm A whose output is:

A(X1, . . . , Xn) =

{
D0 if

∑n
i=1Xi = 0

D1 if
∑n
i=1Xi > 0

If the underlying distribution isD0, this algorithm always returns the correct result; however, if the underlying
distribution is D1, the algorithm may get unlucky and not recieve any samples of value 1. We can bound
this probability:

P

[
n∑
i=1

Xi = 0
∣∣∣Xi sampled from D1

]
= (1− ε)n ≤ e−εn.

Therefore, in order to guarantee that the mistake happens with probability at most δ, we need the sample
size n to satisfy:

n ≥ 1

ε
log(

1

δ
).

Example 2. Now consider the case where we know that the i.i.d. samples follow one of the two distribu-
tions:

• Df : Xi = 1 w.p. 1
2 and Xi = 0 w.p. 1

2 (fair coin).

• Db: Xi = 1 w.p. 1
2 + ε and Xi = 0 w.p. 1

2 − ε (biased coin).

Similarly to the previous example, consider the following simple algorithm:

A(X1, . . . , Xn) =

{
Db if

∑n
i=1Xi ≥

(
1+ε
2

)
n

Df otherwise.

We can apply Hoeffding’s concentration inequality on the probability that the algorithm predicts Db while
the true distribution is Df . Similarly, we upper bound the other type of error. It is an easy exercise to show

that the sample size has to be n ≥ Θ(
log 1

δ

ε2 ) in order to bound the error probability with δ.

Remark. In both of the examples above, we want to identify the ε gap in the distribution. Interestingly,
the sample size requirement scales in 1

ε for Example 1, while it scales in 1
ε2 for Example 2.

The above two examples give us a question: what class of problems can we learn? How big should the
sample size should be? These questions lead us to the so-called PAC-Learnable class, to be defined later.
Let us first introduce the concept of risk and empirical risk.
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6.2 Risk and Empirical Risk

Consider that we have a input space X, output space Y , and concept class C which is a set of functions
h : X −→ Y . A learning instance includes a distribution D ∈ ∆(X) (a distribution on X) and a target
concept c ∈ C. We then have the following definitions.

Definition 6.1 (True Risk). True risk (or generalized error) of a concept h : X −→ Y is defined as:

R(h) := Ex∼D[1(h(x) 6= c(x))] = Px∼D(h(x) 6= c(x)).

Definition 6.2 (Empirical Risk). The empirical risk of h for a sample S drawn from X with respect to
distribution D is defined as:

R̂n(h) :=
1

n

∑
x∈S

1[h(x) 6= c(x)]

where n = |S|.

Remark 6.3. If S is drawn from X with respect to to D, an easy check gives us E[R̂n(h)] = R(h). Hence,
the empirical risk R̂n(h) is indeed an unbiased estimator.

6.3 PAC-Learnable Class

Now we can define the so-called PAC-Learnable Class.

Definition 6.4 (PAC-Learnable). A class C is said to be PAC-Learnable if there exists an algorithm A and
a polynomial of two variables (denoted as poly(a, b)) such that ∀ε, δ > 0, ∀ distributions D ∈ ∆(X), and for
any target concept c ∈ C, we have:

PS∼D,|S|=n(R(hS) ≤ ε) ≥ 1− δ

as long as the sample size n is at least poly( 1
ε ,

1
δ ). Here, hS is the output of the algorithm A on sample S.

We shall have another example which is PAC-Learnable to illustrate this definition.

6.3.1 Learning Axis-Aligned Rectangles

The concept class C is defined as C := {[a1, a2]× [b1, b2] ⊂ R2 : ∀a1 ≤ a2, b1 ≤ b2 ∈ R}. Note that concepts
are now being viewed as rectangular subsets of R2; that is, points within the subset have label 1, and those
outside have label 0.

Consider the following figure.
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Here we have points on the x/y plane, where points drawn with a × have a label of 1, and points drawn
with a ◦ have label 0.

Consequently our goal is to decide which area is C. Let us analyze an algorithm A(S) which we will call
the “smallest enclosed rectangle algorithm” which given sample S drawn drawn randomly from D, A(S)

outputs the rectangle r̂ = rS := [â1, â2]× [b̂1, b̂2] such that:

• â1 = min{x coordinate of input labelled 1}.

• â2 = max{x coordinate of input labelled 1}.

• b̂1 = min{y coordinate of input labelled 1}.

• b̂2 = max{y coordinate of input labelled 1}.
How likely is this algorithm to produce an error larger than epsilon? To work toward a bound on this
problem, take a look at the following figure.

We see that the real C (defined here as the rectangle r) is larger than our estimate r̂. We are interested
in the chance of making mistakes, i.e. PS∼D(R(r̂) > ε) for some ε.

Note that if Px∼D(x ∈ r) < ε, i.e. the probability of x falling to rectangle r is smaller than ε, PS∼D(R(r̂) >
ε) is definitely 0 because r̂ cannot be bigger than r.

We shall consider the case that Px∼D(x ∈ r) ≥ ε. To compute PS∼D(R(r̂) > ε), we define the following
four regions rbottom, rtop, rleft, rright. rbottom is defined as starting from bottom of r with height chosen such
that P(x ∈ rbottom) = ε

4 . The others are similarly defined. The following figure illustrates this construction.
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Claim: If R(r̂) > ε then there must be some i ∈ {top, bottom, left, right} for which ri ∩ r̂ = ∅.

Proof: We will prove the contrapositive statement, that if r̂ intersects with all four regions (top,bottom,left,right),
then the error rate of r̂ cannot exceed ε. Notice that if the output of our algorithm, the smallest enclosed rect-
angle is incorrect for some example, i.e. the smallest rectangle r̂ disagrees with the true r, then this example
must lie in the “error region” r\r̂. Indeed, the true risk of r̂ is equal to the probability mass in this region; that
is, R(r̂) = Px∼D(x ∈ r\ r̂). However, each region has probability ε

4 so the union of the regions has probability
no more than ε. On the other hand, if each of the regions has a non-empty intersection with r̂, then it is clear
from the picture that the union of the regions covers r \ r̂. So if all four regions has a non-empty intersection
with r̂ we can conclude thatR(r̂) = Px∼D(x ∈ r\r̂) ≤ Px∼D(x ∈ ri for some i =top,bottom,left, or right) ≤ ε
as desired. �

Therefore, we can compute PS∼D(R(r̂) > ε) as the following:

PS∼D(R(ĥ) > ε) ≤ P(∃i ∈ {top, bottom, left, right} : r̂ ∩ ri = ∅)

≤
∑
i

P(r̂ ∩ ri = ∅)

≤
∑
i

(1− ε

4
)n

= 4(1− ε

4
)n

≤ 4e−
εn
4

From this result, we see that if we want this probability to be at most δ, then choosing n ≥ 4
ε log( 4

δ ) suffices.
Consequently, this shows it is PAC-Learnable via the smallest enclosed rectangle algorithm.


