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4.1 Hoeffding’s Inequality

In this section we present Hoeffding’s Inequality and its proof. To do so, we first go through the Hoeffding’s
Lemma.

Lemma 4.1 (Hoeffding’s Lemma). For a random variable a ≤ X ≤ b such that E[X] = 0, we have

E[exp (λX)] ≤ exp

(
λ2(b− a)2

8

)
.

Hoeffding’s Lemma is related to the concept of subgaussian.

Definition 4.2 (subgaussian). A random variable X is subgaussian with parameter σ2 if

E[exp (λX)] ≤ exp

(
σ2λ2

2

)
.

Note 4.3. If a random variable X follows a normal distribution with mean 0 and variance σ2, then

E[exp (λX)] = exp

(
σ2λ2

2

)
.

We are now ready to get into the Hoeffding’s Inequality and its proof (Chernoff Technique).

Theorem 4.4 (Hoeffding’s Inequality). Let X1, X2, . . . , Xn be independent random variables such that,
ai ≤ Xi ≤ bi and E[Xi] = 0 for all i = 1, 2, . . . , n. Then, for all t > 0

Pr

[
n∑

i=1

Xi ≥ t

]
≤ exp

(
− 2t2∑n

i=1(ai − bi)2

)
.

Proof: First note that for all λ > 0, we have

Pr

[
n∑

i=1

Xi ≥ t

]
= Pr

[
exp

(
λ

n∑
i=1

Xi

)
≥ exp (λt)

]
.

By Markov’s Inequality and the independence of all the Xis,

Pr

[
exp

(
λ

n∑
i=1

Xi

)
≥ exp (λt)

]
≤

E [exp (λ
∑n

i=1Xi)]

exp (λt)

≤ exp (−λt) ·E

[
n∏

i=1

exp (λXi)

]

= exp (−λt) ·
n∏

i=1

E [exp (λXi)] .
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Applying Hoeffding’s Lemma, we have

exp (−λt) ·
n∏

i=1

E [exp (λXi)] ≤ exp (−λt) ·
n∏

i=1

(
exp

(
λ2(ai − bi)2/8

))
= exp

(∑n
i=1(ai − bi)2

8
λ2 − tλ

)
.

The last term achieves the minimum when λ = 4t/
(∑n

i=1(a2i − b2i )
)

so we can conclude that

Pr

[
n∑

i=1

Xi ≥ t

]
≤ exp

(
− 2t2∑n

i=1(ai − bi)2

)
. �

4.2 Martingales

In this section, we introduce the concept of Martingales. Before this, let’s first see a motivating example
from gambling.

Example Each day a bookie offers a bet: you pay $b and you have a 50% chance of receiving $2b and
a 50% chance of losing your money. Let Zi be gambler’s net gain on day i and Xi can be interpreted as
the indicator variable for the outcome of the bet (i.e., the r.v. X takes the values 1 and −1 with equal
probability). We analyze the following two strategies:

• Independent betting strategy: always betting $c, and the gambler’s net gain on day n is

Zn =

n∑
i=1

cXi.

• Martingale strategy: On day n, bet δZn−1, where δ ∈ [0, 1]. The change of wealth on day n can
then be expressed recursively as

Zn = Zn−1 + δZn−1Xn−1

Definition 4.5 (Martingales). A martingale sequence of random variables Z0, Z1, . . . , Zn satisfies

E[Zi+1|Z0, . . . , Zi] = Zi

for all i = 0, 1, . . . , n− 1.

Note 4.6. We call X1, X2, . . . , Xn a martingale difference sequence if Zi =
∑i

j=1Xj is a martingale sequence
of random variables.

One important inequality related to Martingales is Azuma’s Inequality, which is similar to Hoeffding’s
Inequality.

Theorem 4.7 (Azuma’s Inequality). Let Z0, Z1, . . . , Zn be a martingale sequence of random variables such
that for all i, there exists a constant ci such that |Zi − Zi−1| < ci, then

Pr[Zn − Z0 ≥ t] ≤ exp

(
− t2

2
∑n

i=1 c
2
i

)
.
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Proof: The proof is modelled on that of Hoeffding’s Inequality. First, using Markov’s inequality and some
algebra we have

Pr[Zn − Z0 ≥ t] = Pr[exp (λ(Zn − Z0)) ≥ exp (λt)]

≤ exp (−λt) ·E [exp (λ(Zn − Z0))]

= exp (−λt) ·E

[
exp

(
λ

n∑
i=1

(Zi − Zi−1)

)]

= exp (−λt) ·E

[
n∏

i=1

exp (λ(Zi − Zi−1))

]
.

We now we can always include additional conditional expectation so it follows that

Pr[Zn − Z0 ≥ t] ≤ exp (−λt) ·E

[
E

[
n∏

i=1

exp (λ(Zi − Zi−1))|Z0, Z1, . . . , Zn−1

]]
.

Since
∏n

i=1 exp (λ(Zi − Zi−1)) is a constant once we condition on Z0, · · · , Zn−1, we can take it out of the
expectation so

Pr[Zn − Z0 ≥ t] ≤ exp (−λt) ·E

[(
n−1∏
i=1

exp (λ(Zi − Zi−1))

)
E [exp (λ(Zn − Zn−1))|Z0, Z1, . . . , Zn−1]

]

Now, since (Zi) is a Martingale, we know that E[Zn − Zn−1 | Z0, · · · , Zn−1] = 0. Also, |Zn − Zn−1| ≤ cn so
using Hoeffding’s lemma we have

Pr[Zn − Z0 ≥ t] ≤ exp (−λt) exp (λ2c2n/2) ·E

[(
n−1∏
i=1

exp (λ(Zi − Zi−1))

)]
.

It then follows from induction that

Pr[Zn − Z0 ≥ t] ≤ exp

(∑n
i=1 c

2
i

2
λ2 − tλ

)
Finally, letting λ = t∑n

i=1 c2i
we get

Pr[Zn − Z0 ≥ t] ≤ exp

(
− t2

2
∑n

i=1 c
2
i

)
�


