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22.1 The EXP3 Algorithm1

EXP3 was invented in 2001 by Auer, Cesa-Bianchi, Freund, and Schapire [ACBFS02] to handle the non-
stochastic, adversarial multi-arm bandit problem. The EXP3 algorithm has an expected regret bound of√

2Tn log n. In this lecture, we state the algorithm and derive this regret bound.

22.1.1 Algorithm

Let L̃
t

be the cumulative losses up to period t. To be precise, define L̃
t

=
∑t
k=1 l̃

t
, where l̃

t
is defined in the

algorithm description below.

for t = 1, 2, · · · , T-1, T do
Sample It ∼ pt
Observe ltIt

Set l̃
t

=

〈
0, ..., 0,

ltIt
ptIt

, 0, ..., 0

〉
Set L̃

t
= L̃

t−1
+ l̃

t

for i = 1, 2, · · · , n-1, n do

Set pt+1
i =

e−ηL̃
t
i

n∑
j=1

e−ηL̃
t
i

end for
end for

22.1.2 EXP3: Expected Regret

There are two facts that enable the following analysis. First, note that Ei∼pt
[
l̃t
]

= lt, so that Ei∼pt
[
L̃t
]

=

Lt. Moreover, l̃t and pt are uncorrelated.
We analyze the regret of EXP3 by looking at the potential function

Φt = −1

η
log

(
n∑
i=1

e−ηL̃
t−1
i

)

and taking the expected increase in potential across iterations.
The increase in potential from iteration t to t+ 1 is

Φt+1 − Φt = −1

η
log

( ∑n
i=1 e

−ηL̃t
i∑n

i=1 e
−ηL̃t−1

i

)
= −1

η
log

(∑n
i=1 e

−ηL̃t−1
i −ηl̃ti∑n

i=1 e
−ηL̃t−1

i

)
= −1

η
log
(
Ei∼pt

[
e−ηl̃

t
i

])
1Credits: The following section is taken in part from Lecture 20 of EECS 598 in 2013 (Prediction and Learning: It’s Only

a Game): these notes were scribed by Zhihao Chen. The handwritten notes of Anthony Della Pella and Vikas Dhiman were
instrumental in the creation of this document.
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To proceed, we need the following fact:

Lemma 22.1. For all x ≥ 0,

e−x ≤ 1− x+
1

2
x2

Using the fact, we see that

Φt+1 − Φt ≥ −
1

η
log

(
Ei∼pt

[
1− ηl̃ti +

1

2
η2(l̃ti)

2

])
= −1

η
log

(
1− Ei∼pt

[
ηl̃ti +

1

2
η2(l̃ti)

2

])
≥ 1

η
Ei∼pt

[
ηl̃ti +

1

2
η2(l̃ti)

2

]
(because log(1− x) ≤ −x)

=

n∑
i=1

pti l̃
t
i −

η

2

n∑
i=1

pti(l̃
t
i)

2

Taking expectations on both sides of the above equation, we have:

E[Φt+1 − Φt] ≥ E

[
n∑
i=1

pti l̃
t
i −

η

2

n∑
i=1

pti(l̃
t
i)

2

]

=

n∑
i=1

ptil
t
i −

η

2
E

[
ptIt

(
ltIt
ptIt

)2
]

= pt · lt − η

2
E
[

(ltIt)
2

ptIt

]
= pt · lt − η

2

n∑
i=1

(lti)
2

≥ pt · lt − ηn

2

Now, we sum the differences in potential to get

E[ΦT+1 − Φ1] = E

[
T∑
t=1

(Φt+1 − Φt)

]
≥

T∑
t=1

pt · lt − Tηn

2

Moreover,

E[ΦT+1 − Φ1] ≤ E
[
L̃Ti∗ −

(
−1

η
log n

)]
= LTi∗ +

1

η
log n

Combining the two inequalities, we get

E RegretT (EXP3) =

T∑
t=1

pt · lt − LTi∗ ≤
1

η
log n+

Tηn

2
(∗)

Theorem 22.2.
E RegretT (EXP3) ≤

√
2Tn log n

Proof: Choose η =
√

2 logn
Tn in (∗). �
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22.2 Progress after EXP3

22.2.1 Bubeck et al : EXP2 With John’s Exploration [BCBK12]

In the title, ‘John’s Exploration’ refers to the ‘John Ellipsoid’: Given a set of points, we may define their
convex hull K. The ellipsoid of maximal volume contained inside K is the John Ellipsoid. John’s Theorem
characterizes when this ellipsoid is the unit ball in Rn.

Given a learning rate η, mixing coefficient γ, and action set A with distribution µ, we may define the
following algorithm.

Let n = |A| andX+ denote the pseudoinverse of a matrixX.

Set q1 =
(
1
n , · · · ,

1
n

)
∈ Rn

for t = 1, 2, · · · , T-1, T do
Let pt = (1− γ)qt + γµ
Choose an action at ∼ pt
Let Pt be the covariance matrix Ea∼pt

[
aaT

]
and compute P+

T

Estimate the loss l̃t = P+
t (ata

T
t )lt

Update qt+1(a) =
exp(−η〈a,l̃t〉)qt(a)∑

b∈A exp(−η〈b,l̃t〉)qt(b)
end for

When µ, γ, and η are chosen based on the geometry of A, a regret bound of O(
√
nT ) is obtained.

22.2.2 Abernethy et al : GBPA [ALT15]

Consider the following framework: The Gradient-Based Prediction Algorithm (GBPA) for Multi-Armed
Bandits:

Given a differentiable convex function Φ such that∇Φ ∈ ∆N with∇iΦ > 0 for all i,

Initialize Ĝ0 = 0
for t = 1, 2, · · · , T-1, T do

Nature (The Adversary) chooses a loss vector gt ∈ [−1, 0]N

The Learner chooses it according to the distribution p(Ĝt−1 = ∇Φt(Ĝt−1)
The Learner incurs loss gt,it
The Learner predicts ĝt =

gt,it
pit (Ĝt−1)

eit

Ĝt = Ĝt−1 + ĝt
end for

Note that GBPA includes FTRL and FTPL as special cases.
Recall that the negative Shannon Entropy is defined as H(p) =

∑
i pi log pi, and has Fenchel Conjugate

H∗(G) = 1
η log(

∑
i e
ηGi). With these definitions, EXP3 is merely GBPA with Φ chosen as the Fenchel

Conjugate of the Shannon Entropy with update rule pt = ∇H∗(G).
Now, define the Tsallis entropy:

Sα(p) =
1

1− α

(
1−

N∑
i=1

pαi

)
∀α ∈ (0, 1)

Note that the Shannon Entropy is recovered as the limit of the Tsallis entropy as α → 1. If we replace the
Shannon Entropy with the Tsallis in GBPA, we have a regret bound

E Regret ≤ ηN
1−α − 1

1− α
+
NαT

2ηα

Choosing α = 1
2 yields a bound of O(

√
NT ).
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22.2.3 Shamir: Information-Theoretic Lower Bounds [Sha14]

Shamir analyzed the limitations of online algorithms for statistical learning and estimation. In particular,
he analyzed things like memory-sample complexity trade-offs, communication-sample complexity trade-offs,
and various information-theoretic characterizations of online learning. In particular, he gives a lower bound
on the regret of a partial information set-up in an online learning algorithm. In particular, for n-dimensional
loss vectors `t ∈ [0, 1]n at every iteration, assume that only b < n bits are available. Then, there exists some
constant c such that the regret has lower bound

min
i∗

E

[
T∑
t=1

`t(it)−
T∑
t=1

`t(i
∗
t )

]
≥ cmin

{
T,

√
n

b
T

}

22.2.4 Neu: High Probability Regret Bounds [Neu15]

Neu gives regret bounds for general bandit problems that hold with high probability, i.e., with probability
1−δ for some small δ. In particular, one application given is a modification of EXP3. Define some parameter
γ and modify EXP3 as follows: set

l̃
t

=

〈
0, ..., 0,

ltIt
γ + ptIt

, 0, ..., 0

〉

This modification leads to a regret bound of O(
√
NT log N

δ ) with probability 1− δ.
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[BCBK12] Sébastien Bubeck, Nicolo Cesa-Bianchi, and Sham M Kakade. Towards minimax policies for
online linear optimization with bandit feedback. arXiv preprint arXiv:1202.3079, 2012.

[Neu15] Gergely Neu. Explore no more: Improved high-probability regret bounds for non-stochastic
bandits. In Advances in Neural Information Processing Systems, pages 3150–3158, 2015.

[Sha14] Ohad Shamir. Fundamental limits of online and distributed algorithms for statistical learning
and estimation. In Advances in Neural Information Processing Systems, pages 163–171, 2014.


