EECS 598-005: Theoretical Foundations of Machine Learning Fall 2015
Lecture 22: Adversarial Multi-Armed Bandits

Lecturer: Jacob Abernethy Scribes: Arvind Prasadan

22.1 The EXP3 Algorithm!

EXP3 was invented in 2001 by Auer, Cesa-Bianchi, Freund, and Schapire [ACBFS02] to handle the non-
stochastic, adversarial multi-arm bandit problem. The EXP3 algorithm has an expected regret bound of
v2Tnlogn. In this lecture, we state the algorithm and derive this regret bound.

22.1.1 Algorithm

Let it be the cumulative losses up to period t. To be precise, define Et = 22:1 f, where Zt is defined in the
algorithm description below.
fort=1,2,---,T-1, T do
Sample I; ~ pt
Observe I

~ i
Set I =(0,..,0,5-,0,...,0
p

~t ~t—1 f
Set L =L +1
fori=1,2,---,n-1,ndo
—nL!
Set p; ™ =
Z oLt
j=1
end for
end for

22.1.2 EXP3: Expected Regret

There are two facts that enable the following analysis. First, note that E;.,¢ [E] =1, so that E;pt [ﬁ} =

L. Moreover, E and p? are uncorrelated.
We analyze the regret of EXP3 by looking at the potential function

1 2 =
¢y = ——log (Z ek 1)
n i=1

and taking the expected increase in potential across iterations.
The increase in potential from iteration ¢ to ¢t + 1 is

Tt Ft—1_ 7t
1 " e—nL; 1 n e—nL; T —nl; 1 -
Q41— Py = ——log Lﬂ—l = ——log Zz_,l =1 = ——log (Eiwt [e_nliD
N ZT‘L el n E(z e~ nLi n
i=1 i=1
1Credits: The following section is taken in part from Lecture 20 of EECS 598 in 2013 (Prediction and Learning: It’s Only

a Game): these notes were scribed by Zhihao Chen. The handwritten notes of Anthony Della Pella and Vikas Dhiman were
instrumental in the creation of this document.
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To proceed, we need the following fact:

Lemma 22.1. For all z > 0,
—x 1 2
e " <l—-x+ 5-%'

Using the fact, we see that

1
(btJrl (I)t > _UIOg( i~pt |:1 - 771t + 772(lt) :|)

_ _%10 ( Eipt [nlt + 57 2(1h D

E;pt { lt + n lt ] (because log(1l — z) < —x)

= prlf - gzpﬁ(ﬁf
i= i=1

3

Taking expectations on both sides of the above equation, we have:

E[®iy1 — ] > E lZptlt Zpﬁ@f]
=1

F=aB
nn

t gt t\2

=t =I5

-l 2;(z)
> gttt
2p U=

Now, we sum the differences in potential to get

T
E[®ry1 — @1 =E lZ(q}t—H —®y)

t=1

Moreover,

7T 1 r 1

E[®ry1 — @) <E|L;. — | ——logn || =L;. + —logn
n n

Combining the two inequalities, we get

d 1

E Regret(EX P3) = Z T <Zlogn+—2= (%
=1 n

Theorem 22.2.

E Regretp(EXP3) < \/2Tnlogn

Proof: Choose n = \/21;# in (k). [ |
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22.2 Progress after EXP3
22.2.1 Bubeck et al: EXP2 With John’s Exploration [BCBK12]

In the title, ‘John’s Exploration’ refers to the ‘John Ellipsoid’: Given a set of points, we may define their
convex hull K. The ellipsoid of maximal volume contained inside K is the John Ellipsoid. John’s Theorem
characterizes when this ellipsoid is the unit ball in R"™.

Given a learning rate 7, mixing coeflicient v, and action set A with distribution p, we may define the
following algorithm.

Let n = | A| and X T denote the pseudoinverse of a matrix X.

Set g1 = (1,---, 1) eRrn
fort=1,2---,T-1, T do
Let pr = (1 —v)g: + v
Choose an action a; ~ p;

Let P, be the covariance matrix Eqp, [aa
Estimate the loss l; = P, (azal)l;

_exp(=m{a.di))ge(a)
Update ¢i4+1(a) = S pea exp(—n(b,le) ) ge (b)

T] and compute P}'

end for
When p, v, and n are chosen based on the geometry of A, a regret bound of O(v/nT) is obtained.

22.2.2 Abernethy et al: GBPA [ALT15]

Consider the following framework: The Gradient-Based Prediction Algorithm (GBPA) for Multi-Armed
Bandits:
Given a differentiable convex function ® such that V& € AN with V;® > 0 for all 7,
Initialize G’o =0
fort=1,2,---,T-1, T do
Nature (The Adversary) chooses a loss vector g, € [—1,0]"
The Learner chooses i; according to the distribution p(ét_l = Vfbt(ét_l)
The Learner incurs loss g ;,

. A~ 9t iy .
TAhe L?arner predicts g; = piit(ét—l)ezt
Gy =Gi_1+ ¢
end for

Note that GBPA includes FTRL and FTPL as special cases.
Recall that the negative Shannon Entropy is defined as H(p) = >, p; log p;, and has Fenchel Conjugate
H*(G) = %IOg(Zi e"%). With these definitions, EXP3 is merely GBPA with ® chosen as the Fenchel

Conjugate of the Shannon Entropy with update rule p; = VH*(G).
Now, define the Tsallis entropy:

N
Sa(p)zliOé(l_Zp?) VOéE(O,l)

Note that the Shannon Entropy is recovered as the limit of the Tsallis entropy as o — 1. If we replace the
Shannon Entropy with the Tsallis in GBPA, we have a regret bound

Ntz 1 n NeT
l-—a 2na

E Regret <n

Choosing o = % yields a bound of O(vVNT).
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22.2.3 Shamir: Information-Theoretic Lower Bounds [Shal4|

Shamir analyzed the limitations of online algorithms for statistical learning and estimation. In particular,
he analyzed things like memory-sample complexity trade-offs, communication-sample complexity trade-offs,
and various information-theoretic characterizations of online learning. In particular, he gives a lower bound
on the regret of a partial information set-up in an online learning algorithm. In particular, for n-dimensional
loss vectors ¢; € [0, 1]™ at every iteration, assume that only b < n bits are available. Then, there exists some
constant ¢ such that the regret has lower bound

T

min E [Zét(it) - téet(iz)l > cmin {T, ”T}

t=1

S

22.2.4 Neu: High Probability Regret Bounds [Neul5]

Neu gives regret bounds for general bandit problems that hold with high probability, i.e., with probability
1—¢6 for some small §. In particular, one application given is a modification of EXP3. Define some parameter

~ and modify EXP3 as follows: set
~ l§
I =¢(0,..,0, —,0,...,0
v+ P,

This modification leads to a regret bound of O(1/NT log &) with probability 1 — 4.
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