
EECS 598-005: Theoretical Foundations of Machine Learning Fall 2015

Lecture 14: Growth Function Generalization Bound and Online Learning
Lecturer: Jacob Abernethy Scribes: Shun Zhang

14.1 Growth Function Generalization Bound

Recall Massart’s Lemma from the last lecture.

Lemma 14.1. (Massart’s Lemma) Let A be finite. A ⊆ Rn. maxx∈A ||x||2 = r. Then

E[sup
x∈A

m∑
i=1

σixi] ≤
√

2 log |A|r

where σi’s are Rademacher variables.

Corollary 14.2. Let G be a function class taking values in {−1, 1}.

Rm(G) ≤
√

2 log ΠG(m)

m

Recall that
ΠG(m) = max

S⊆X,|S|=m
|{(h(x1), h(x2), · · · , h(xm)) : h ∈ G}|

where S = (x1, x2, · · · , xm).

Proof: By the definition of Rademacher complexity,

Rm(G) = ES∼Dm

[
Eσ[ sup

g∈G|S

1

m

m∑
i=1

g(xi)σi]
]

where σ is a Rademacher vector.
Let AS = {(g(x1), · · · , g(xm)) : g ∈ G}. Define the L-2 norm of a set as ||X||2 = maxx∈X ||x||2. We

notice that ||AS ||2 =
√
m. Therefore,

Rm(G) = ES∼DmEσ[ sup
z∈AS

1

m

m∑
i=1

σizi]

≤ 1

m
ES

[√
m
√

2 log |AS |
]

(Massart’s Lemma)

≤ 1√
m

√
2 log ΠG(m)

�

Now we can bound R(hERMS )−R(h∗) using Massart’s Lemma and the corollary above.

Theorem 14.3. (Big Theorem) Let D ∈ ∆(X × {−1, 1}). H is a binary function class with VC-dimension
of d. G is a loss class such that G = {g(x, y) = 1h(x) 6=y : h ∈ H}. For a sample S ∼ Dm, hERMS minimizes

R̂S. With probability of 1− δ,

R(hERMS )−R(h∗) ≤
√

8d logm

m
+

√
2 log 1

σ

m

14-1



Lecture 14: Growth Function Generalization Bound and Online Learning 14-2

Proof: Let h∗ = arg minh∈H R(h).

R(hERMS )−R(h∗) ≤ R(hERMS )− R̂S(hERMS ) + R̂S(h∗)−R(h∗) (R̂S(hERMS ) ≤ R̂S(h∗))

≤ 2 sup
h∈H
|R(h)− R̂S(h)| (Uniform Deviation Bound)

≤ 4Rm(G) +

√
2 log 1

δ

m
(Symmetrization trick)

= 2Rm(H) +

√
2 log 1

δ

m
(Rm(G) = 1

2Rm(H))

≤ 2

√
2 log ΠG(m)

m
+

√
2 log 1

δ

m
(Massart’s Lemma and Corollary)

≤
√

8d logm

m
+

√
2 log 1

δ

m
(Sauer’s Lemma)

�

Recall that the error rate is d
m for non-noisy setting. Here we have

√
d logm
m for noisy setting. This is a

nice bound since the right-hand-side only grows when VC-dimension grows.

14.2 Online Learning

Online learning assumes that the learning algorithm learns and tests by observing a sequence of data in real
time. This is a more realistic setting than having a batch of data and training on them. Popular settings in
online learning include regret minimization, no regret setting and expert’s setting. Some key facts in online
learning are:

• You do not need i.i.d. any more.

• Bounds are often the same.

14.2.1 “Noise-Free” Learning from Experts

We assume that there is a binary outcome yt ∈ {0, 1} on each round. There are N experts. Expert i on
round t predicts fi,t ∈ {0, 1}. Our algorithm interacts with the environment in the following way.

Algorithm 1 Learning form Experts

#mistakes← 0
for t = 1, · · · , T do

Algorithm observes predictions of experts f1,t, f2,t, · · · , fn,t
Algorithm outputs a guess ŷt ∈ {0, 1}
Nature reveals yt
if yt 6= ŷt then

#mistakes← #mistakes+ 1
end if

end for

We can make the following claim on the number of mistakes (#mistakes) an algorithm can make.



Lecture 14: Growth Function Generalization Bound and Online Learning 14-3

Claim 14.4. There exists an algorithm such that as long as there is a “perfect expert”, i.e., ∃ifi,t = yt∀t,
the perfect algorithm makes number of mistakes fewer than log2N .

Proof: We construct an algorithm as follows.
First, we define “good experts” at time step t as ct = {i : fi,t′ = yt′ ,∀t′=1,··· ,t−1}. In each round, the

algorithm makes a prediction using the majority votes of good experts.

Notice that if the algorithm predicts ŷt 6= yt, then at least half of good experts are ruled out. |ct+1|
|ct| ≤

1
2 .

Therefore,

1 ≤ |ct| ≤ (
1

2
)#mistakes|c1| = (

1

2
)#mistakesN

Take the log of the inequality. We have

#mistakes ≤ log2N

�

Note that this is analogous to PAC learning, where we have error rate of log |H|
m .

14.2.2 Gambling Example

Imagine N teams on week t, Team i plays Team j for some pair i, j ∈ [N ]. Assume there exists a perfect
permutation of [N ], denoted by Π, such that i beats j if and only if Π(i) > Π(j).

We need an algorithm that “wins money from gambling.” There are N ! possible permutations. From
Claim 14.4, we know that there exists an algorithm that makes number of mistakes fewer than log2N ! ≤
N logN . This means that we only need logN samples per team to make a good prediction. But still we
lack efficient ways to realize such algorithm.


