EECS 598-005: Theoretical Foundations of Machine Learning Fall 2015

Lecture 14: Growth Function Generalization Bound and Online Learning
Lecturer: Jacob Abernethy Scribes: Shun Zhang

14.1 Growth Function Generalization Bound

Recall Massart’s Lemma from the last lecture.

Lemma 14.1. (Massart’s Lemma) Let A be finite. A CR™. maxxea ||x||2 =r. Then

E[sup Z oix;] < /2log |Alr

xXEA i—1
where o;’s are Rademacher variables.

Corollary 14.2. Let G be a function class taking values in {—1,1}.

2log g (m)

R (G) < =

Recall that
Mo(m) = _wmax [{(h(aer),hlaz), b)) s h € GY

where S = (z1, 22, , Tm)-

Proof: By the definition of Rademacher complexity,

m

R (G) = Esopm {Ea[sup L ZQ(Iz’)Wﬂ

m
g€G|s i=1

where o is a Rademacher vector.
Let As = {(g9(x1), - ,9(xm)) : g € G}. Define the L-2 norm of a set as || X||2 = max,ex ||z]|2. We
notice that ||Agl||2 = v/m. Therefore,

1 m
R (G) = EgopmEs[sup — 0%
@ s 3l

1
%]ES {\/ﬁ 2log |AS|} (Massart’s Lemma)

1
—+/2log g (m)

Vm

IN

IN

Now we can bound R(hERM) — R(h*) using Massart’s Lemma and the corollary above.

Theorem 14.3. (Big Theorem) Let D € A(X x {—1,1}). H is a binary function class with VC-dimension
of d. G is a loss class such that G = {g(x,y) = lp)2y : h € H}. For a sample S ~ D™, REEM minimizes

Rg. With probability of 1 — 9,
8dlogm 2log +
ERMY _ *) < o
ROWETM) — R(h*) < 1| 5208 4y [208

14-1

Lecture 14: Growth Function Generalization Bound and Online Learning 14-2

Proof: Let h* = argminpey R(h).

R(h§™) — R(h*) < R(h§™) — Rs(h§™) + Rs(h*) — R(h") (Rs(h§™) < Rs(h"))
< 2sup |R(h) — Rs(h)| (Uniform Deviation Bound)
heH
2log 5
< 4R, (G) + ;)5 8 (Symmetrization trick)
2log % 1
=20 (H) +4/ — (R (G) = 3R (H))

2log (M) N 2log ¥
m m

<2

(Massart’s Lemma and Corollary)

8dlo 21o 1
d gm g 5
m

(Sauer’s Lemma)

3

dlogm

Recall that the error rate is % for non-noisy setting. Here we have pre

for noisy setting. This is a
nice bound since the right-hand-side only grows when VC-dimension grows.

14.2 Online Learning

Online learning assumes that the learning algorithm learns and tests by observing a sequence of data in real
time. This is a more realistic setting than having a batch of data and training on them. Popular settings in
online learning include regret minimization, no regret setting and expert’s setting. Some key facts in online
learning are:

e You do not need i.i.d. any more.

e Bounds are often the same.

14.2.1 “Noise-Free” Learning from Experts

We assume that there is a binary outcome y; € {0,1} on each round. There are N experts. Expert ¢ on
round t predicts f;; € {0,1}. Our algorithm interacts with the environment in the following way.

Algorithm 1 Learning form Experts

#mistakes + 0

fort=1,---,7 do
Algorithm observes predictions of experts fi+, fot, -+, fnt
Algorithm outputs a guess 4; € {0,1}
Nature reveals y;
if y; # 9, then

H#mistakes < #mistakes + 1

end if

end for

We can make the following claim on the number of mistakes (#mistakes) an algorithm can make.

Lecture 14: Growth Function Generalization Bound and Online Learning 14-3

Claim 14.4. There exists an algorithm such that as long as there is a “perfect expert”, i.e., 3;ifi+ = y:Vy,
the perfect algorithm makes number of mistakes fewer than logy IN.

Proof: We construct an algorithm as follows.

First, we define “good experts” at time step ¢t as ¢, = {i : fir = yv,Yo=1,... ;—1}. In each round, the
algorithm makes a prediction using the majority votes of good experts.

Notice that if the algorithm predicts g; # ¥, then at least half of good experts are ruled out. lec+a] < %
Therefore,

L jemi 1 s
1< e < (5)#mzstakes|cl| _ (5)#mzstakesN

Take the log of the inequality. We have

#mistakes < logy N

Note that this is analogous to PAC learning, where we have error rate of logmﬂ.

14.2.2 Gambling Example

Imagine N teams on week ¢, Team 4 plays Team j for some pair 4,5 € [IN]. Assume there exists a perfect
permutation of [N], denoted by II, such that ¢ beats j if and only if II(7) > II(y).

We need an algorithm that “wins money from gambling.” There are N! possible permutations. From
Claim 14.4, we know that there exists an algorithm that makes number of mistakes fewer than log, N! <
Nlog N. This means that we only need log N samples per team to make a good prediction. But still we
lack efficient ways to realize such algorithm.

