
Theoretical Foundations of Machine Learning - Homework #5

Jacob Abernethy and Chansoo Lee Due: 12/10/2015

Homework Policy: Working in groups is fine, but every student must submit their own writeup. Please
write the members of your group on your solutions. There is no strict limit to the size of the group but we
may find it a bit suspicious if there are more than 4 to a team. Questions labelled with (Challenge) are
not strictly required, but you’ll get some participation credit if you have something interesting to add, even
if it’s only a partial answer.

1) Generalized Minimax Theorem. Let X ⊂ Rn and Y ⊂ Rm be convex compact sets. Let
f : X × Y → R be some differentiable function with bounded gradients, where f(·,y) is convex in its first
argument for all fixed y, and f(x, ·) is concave in its second argument for all fixed x.

Prove that
inf
x∈X

sup
y∈Y

f(x,y) = sup
y∈Y

inf
x∈X

f(x,y).

Furthermore, give an efficient algorithm for finding an ε-optimal pair (x∗,y∗) for any parameter ε > 0.

2) Regret of Follow the Perturbed Leader. We will observe a sequence of loss vectors `1, `2, . . . , `T ∈
[0, 1]n. We need an algorithm for picking a sequence of distributions p1,p2, . . . ,pT ∈ ∆n with the goal of
minimizing regret. For the rest of this problem we shall define regret relative to some p as

RegretT (Alg;p) :=

T∑
t=1

(pt · `t − p · `t).

Note that this differs slightly than our usual notion where p is chosen to be the best distribution (or expert)
in hindsight.

I have already mentioned an algorithm often called Follow The Leader (FTL) defined as

FTL := pt ← arg min
p∈∆n

p ·

(
t−1∑
s=1

`s

)

There’s an easy lower bound that shows that this algorithm can achieve Θ(T) regret which is bad! But what
if we just perturb this algorithm slightly? Here’s an alternative approach which involves playing FTL on the
cumulative loss vector with some added noise.

FTPL := X
u.a.r.∼ [0, b]n; then ∀t pt ← arg min

p∈∆n

p ·

(
X +

t−1∑
s=1

`s

)

Note that the perturbation X is only sampled once in this algorithm. X is sampled uniformly at random
from a cube, and note that the sidelength of the cube b > 0 is a parameter which we can tune.

For analysis purposes, it is convenient to define two fictitious algorithms, known as Be The Leader (BTL),

1

Theoretical Foundations of Machine Learning - Homework #5 Due 12/10/2015

and Be The Perturbed Leader (BTPL).

BTL := pt ← arg min
p∈∆n

p ·

(
t∑

s=1

`s

)

BTPL := X
u.a.r.∼ [0, b]n; then ∀t pt ← arg min

p∈∆n

p ·

(
X +

t∑
s=1

`s

)
.

What is different here? Notice I changed the sum to end at s = t rather than s = t − 1 – that’s why these
algorithms are fictitious, they get to see one datapoint in the future! Here we are “being” the leader rather
than “following” the leader because we actually can compute the leader up to and including the loss vector
that will arrive today.

(a) BTL, while not a realistic algorithm, kicks ass! Prove, for any p ∈ ∆n, that

RegretT (BTL;p) ≤ 0

Hint: Induction.

(b) BTPL is really not that much worse than BTL. Prove that

RegretT (BTPL;p) ≤ b.

Note that this is a deterministic statement, doesn’t depend on the sample of X.

(c) Assume that BTPL and FTPL were run using the same perturbation X sampled before round 1.
Let p1,p2, . . . ,pT be the distributions played by FTPL throughout the sequence. Prove that for any
perturbation X,

RegretT (FTPL;p) = RegretT (BTPL;p) +

T∑
t=1

(pt − pt+1) · `t.

Again this is for a fixed, arbitrary X.

(d) It turns out that by perturbing the loss by X, we are much less likely to switch from round to round.
If pt,pt+1 are the distributions played by FTPL on rounds t and t+1 (respectively), then show that
for any t,

E
X

u.a.r.∼ [0,b]n
[(pt − pt+1) · `t] ≤ n

b
.

Hint: Define the random variables Zt := X +
∑t−1
s=1 `

s and Zt+1 := X +
∑t
s=1 `

s. Notice that the
distributions of Zt and Zt+1 overlap significantly.

(e) Let’s put it all together! Prove that for a particular choice of b we can achieve:

E
X

u.a.r.∼ [0,b]n
[Regret(FTPL;p)] ≤

√
nT .

It’s ok if you didn’t solve all of the above, you may use the conclusions from each subproblem.

(f) (Challenge) It is important for the analysis that X is sampled once and fixed throughout the
sequence. But in terms of expected regret, would it matter if we sampled X separately for each
round? Why or why not?

2

Theoretical Foundations of Machine Learning - Homework #5 Due 12/10/2015

(g) (Challenge) It’s too bad the above bound isn’t as tight as the O(
√
T log n) bound we can get with

EWA. Can FTPL be improved using a better choice of perturbation X? I might suggest a Laplace
distribution or a Gaussian.

(h) (Challenge) Is there a way to implement EWA (exponential weights algorithm) in the action setting
(i.e. the “hedge” setting) using FTPL? In other words, can you choose a perturbation random
variable X such that the maximizing action on round t is chosen with the same probabilities as the
EWA distribution?

(i) (Challenge) Show that any FTPL can be formulated as FTRL, although the regularizer for FTRL
may not be efficiently computable. Hint : Given FTPL with distribution D, consider the Fenchel
conjugate of the function

g(L) := EX∼D [maxp∈∆n
−p · (X + L)] .

3) Online Non-Convex Optimization. Sometimes our nice assumptions don’t always hold. AWWW
SHUCKS!! But maybe things will still work out just fine. For the rest of this problem assume that X ⊂ Rn
is the learner’s decision set, and the learner observes a sequence of functions f1, f2, . . . , fT mapping X → R.
The regret of an algorithm choosing a sequence of x1,x2, . . . is defined in the usual way:

RegretT :=

T∑
t=1

ft(xt)− min
x∈X

T∑
t=1

ft(x)

Wouldn’t it ruin your lovely day if the functions ft were not convex? Maybe the only two conditions you
can guarantee is that the functions ft are bounded (say in [0, 1]) and are 1-Lipschitz : they satisfy that
|ft(x) − ft(x′)| ≤ ‖x − x′‖2. Prove that, assuming X is convex and bounded, there exists a randomized
algorithm with a reasonable expected-regret bound. Something like E[RegretT] ≤

√
nT log T would be

admirable. (Hint: Always good to ask the experts for ideas. And you needn’t worry about efficiency.)

4) Information-theoretic Lower Bound for EXP3. Someone hands you N coins and tells you that
all BUT ONE are symmetrically weighted: each will come up heads exactly half the time. But there’s one
odd coin I ∈ [N] that lands heads with probability 1

2 + ε for some ε > 0. Your task is to sequentially select

coins to flip, in any manner you choose, and then to make a guess Î ∈ [N] which is the odd coin.

CLAIM(*): If you perform fewer than cN
ε2 coin flips, where c > 0 is some constant, then Pr(Î = I) ≤ 3/4.

In other words, no algorithm will have a very good chance to guess the odd coin with so few coin tosses.

It turns out that the above claim is true, but we will not concern ourselves with proving it here. Instead we
will use it to construct a lower bound.

Recall that the EXP3 algorithm has a regret bound on the order of
√
TN logN where N is the number of

arms and T is the length of the sequence. Prove that if there exists an algorithm with a slightly better regret
bound, say O(T

1
2N

1
2−δ) for some δ > 0, then we would violate CLAIM(*).

Remark: The problem shows precisely that the
√
N dependence is fundamental to the bandits problem.

Plus, this lower bound is information-theoretic as opposed to computational. That is, any algorithm, whether
polynomial or exponential time, would lead to the contradiction.

Partial Credit: Show that any algorithm with regret bound O((TN)
1
2−δ) would violate CLAIM(*).

3

