
Theoretical Foundations of Machine Learning - Homework #4

Jacob Abernethy and Chansoo Lee Due: 11/20/2015

Homework Policy: Working in groups is fine, but every student must submit their own writeup. Please
write the members of your group on your solutions. There is no strict limit to the size of the group but we
may find it a bit suspicious if there are more than 4 to a team. Questions labelled with (Challenge) are
not strictly required, but you’ll get some participation credit if you have something interesting to add, even
if it’s only a partial answer.

1) Solving Feasibility Problems with Perceptron. We can define a special class of Linear Program-
ming Feasibility (LFP) problems as follows. Given a set of m vectors a1, . . . ,am ∈ Rd, we want to find a
feasible solution, which is a vector y ∈ Rd such that ai · y > 0 for all i = 1, . . . ,m. For any vector x, we

can define ν(x) := mini
ai·x

‖ai‖2‖x‖2 , which is positive if x is a feasible solution. Define the wiggle room of the

feasibility problem as ν∗ := supx∈Rd ν(x).

Assume we are given an LFP defined by a1, . . . ,am ∈ Rd with a positive wiggle room ν∗ > 0. Using

Perceptron as a subroutine, give an algorithm that finds a feasible solution requiring no more than
(

1
ν∗

)2
updates to Perceptron. Prove that your solution works.

2) Tuning Parameters. We are going to imagine we have some algorithm A with a performance bound
that depends on some input values (which can not be adjusted) and some tuning parameters (which can be
optimized). We will use greek letters (α, η, ζ, etc.) for the tuning parameters and capital letters (T,D,N,
etc.) for inputs. We would like the bound to be the tightest possible, up to multiplicative constants. For
each of the following, tune the parameters to obtain the optimal bound. Using big-Oh notation is fine to
hide constants, but you must not ignore the dependence on the input parameters. For example, assuming
M,T > 0, imagine we have a performance guarantee of the form:

Performance(A;M,T, ε) ≤Mε+
T

ε
(1)

and we know ε > 0. Then by optimizing the above expression with respect to the free parameter we can set

ε =
√

T
M . With this value we obtain Performance(A;M,T, ε) = O(

√
MT )

NOTE: I didn’t have to make up this problem, I actually pulled all the bounds below from different papers!

(a) Performance(A;T,N, η) ≤ logN+ηT
1−exp(−η)

(b) Performance(A;T, η) ≤ max(Tη, η−2)

(c) Performance(A;T, η) ≤ T
η + exp(η). (Note: you needn’t obtain the optimal choice of η here or the

tightest possible bound, but try to tune in order to get a bound that is o(T ) – i.e. the bound should
grow strictly slower than linear in T .)

(d) Performance(A;N,T, η, ε) ≤ Tε
η + N

ε + Tη
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3) The Doubling Trick. Let’s imagine that an online learning algorithm that runs in T rounds has the
bound in Eq. (1). By optimally tuning ε we obtain a bound of the form O(

√
TM). The problem with this

approach is that it requires us to know T in advance. Is there a way around this issue?

Imagine constructing a modified algorithm A′ that does the following iterative procedure. A′ starts with an
initial parameter ε1, implements algorithm A using this parameter for T1 rounds, then adjusts the parameter
to ε2, and runs A for T2 rounds, and so forth. Let’s say ε gets updated k times, where T1 +T2 + . . .+Tk = T .
You can also assume that Performance(A′;T,M) =

∑k
i=1 Performance(A;Ti,M, εi).

Can you construct a schedule for the sequence of (εi, Ti) that achieves the same bound (up to a multiplicative
constant factor) as the optimally tuned bound (namely, O(

√
MT )), even though T is unknown in advance? In

other words, you want to choose the sequence of sequence of T1, T2, . . ., with the associated ε1, ε2, . . . so that
whenever the game truly ends, at a previously unknown T , the bound Performance(A′;T,M) = O(

√
MT )

will always hold. (Note: this is referred to as a “doubling trick”.)

4) Exponential Weights Algorithm with a Prior. The Exponential Weights Algorithm had the initial
weights w1

1, . . . , w
1
n all set to 1. What if instead we imagine an algorithm A′ where we set these weights

according to w1
i = pi where ~p is some distribution (i.e. pi ≥ 0 for all i and

∑
i pi = 1). We will do the same

multiplicative update rule as before.

Prove that with this modified algorithm we achieve the following bound: for any expert i we have that

LossT (A) ≤ log p−1i + ηLossT (expert i)

1− e−η

5) Subsets as Experts. We saw that when we wanted to do “predictive sorting” it’s not easy to apply
the halving algorithm to the class of all permutations (rankings) as experts. But this isn’t the case for all
classes of “complex experts”.

Imagine a setting where we have N experts but our goal is not to choose one but k < N of them on each
round! We can imagine having a “hyperexpert” for each subset S ⊂ [N ], with |S| = k, of which there are
clearly

(
N
k

)
. Let SNk be the set of all k-sized subsets of [N ]. On round t, each “base” expert i suffers loss `ti

which implies that the hyperexpert S suffers loss

losst(S) :=
∑
i∈S

`ti,

that is, the hyperexpert loss is additive across the base experts in the subset. Our aim is to run the Expo-
nential Weights Algorithm on these subset hyperexperts. With this well-defined loss on each hyperexpert
and a given parameter η, we can define the weight update wt+1

S = wtS exp(−ηlosst(S)).

In many scenarios in which we are dealing with hyperexperts, it’s suitable to compute the “projected” weights
for each base expert i. That is, assume we can run our algorithm by simply knowing uti :=

∑
S∈SN

k :i∈S w
t
S . In

other words, if our weights define a distribution over SNk , then the value uti corresponds to the (unnormalized)
marginal probability of i being in a randomly drawn subset. Can we obtain these values efficiently? If so,
how?

Hint: Given a vector of positive values v1:n := 〈v1, . . . , vn〉, we can define

SumProd(v1:n, k) :=
∑
S∈Sn

k

∏
i∈S vi

Naively this requires O(nk) computation, but perhaps there is a faster way to compute SumProd?
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6) Reduction to the Halving Algorithm. (Challenge) In the 0-noise expert setting, where there is
one expert that makes no mistakes, we showed that a simple strategy, the Halving algorithm, is guaranteed
to make no more than logN mistakes. But what if we know that the best expert will some errors, but
definitely no more than k mistakes? Try to find a master algorithm, via a reduction to the 0-noise case, such
that the number of mistakes of the algorithm is never more than

max

{
m : m ≤ log2N + log2

(
m

≤ k

)}
where

(
m
≤k
)

is the sum of binomial coefficients
(
m
0

)
+ . . . +

(
m
k

)
. (Hint: You need to find a large set of

hyperexperts on which to perform the halving algorithm. You may need to argue that, without loss of
generality, the majority of these hyperexperts are incorrect on every round.)
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