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Announcements

• Moving / class. Possible candidates:

– :am - :am ( students unavailable)

– Relocate to central campus at usual time ( students unavailable)

• Class participation credit may be satisfied in the following ways:

– Scribing (% + % for an additional scribe)

– Solving a challenge problem (-% depending on difficulty of problem and/or quality
of solution)

– Presenting homework solutions (%)

– Presenting final project (%)

• On scribe notes. . .

– Notes are expected back  business days from original lecture

– Sign-up sheet for scribing is posted on CTools

• Notes on proof of Nash’s Theorem posted on course website

An Observation on Nash’s Theorem

Given a bimatrix game (A,B), we would like to define the map (x,y) 7→ (x′ , y′) such that

x′ = argmax
x

x>Ay and y′ = argmax
y

x>By. (.)

We would like to use Brouwer’s fixed point theorem to prove that there exists some (x,y) which
maps to itself. However, the mapping we have defined is not continuous. Yet, for some small ε > 0,
we may define a mapping (x,y) 7→ (x′ , y′) such that

x′ = argmax
x

x>Ay − ε||x||2 and y′ = argmax
y

x>By − ε||y||2.

In this case, the mapping is continuous and Brouwer applies. We may then regard any fixed point,
(xε, yε), of this mapping as an “ε-optimal” Nash equilibrium pair. Now, we should be able to take
some sequence of ε values which converge to zero and argue that there exists a fixed point in the
limiting case of equation ??.

Exercise: Formalize and prove (or disprove) the arguments given above.
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Von Neumann’s Minimax Theorem

Let p take values in ∆n, let q take values in ∆m, and let M ∈ [0,1]n×m. Then

min
p

max
q
p>Mq = max

q
min
p
p>Mq. (.)

. Proof of "≥"

This part of the proof is trivial. To see this, consider the right hand side of ??. Let us regard p as
a function of q where

p(q) = min
p
p>Mq. (.)

Informally, we may regard the value of ?? as the value obtained from p’s best strategy given q’s
strategy. Similarly, we may regard the left hand side of ?? as the value achieved from q’s best
strategy given p’s strategy. Now, since q can do no worse upon observing p’s strategy than it could
if it had to choose a strategy beforehand, it follows that the LHS of equation ?? meets or exceeds
the RHS.

. Alternate Formulation of "≥" Proof

The LHS of equation ?? is the smallest c1 such that

∃p∀q : p>Mq ≤ c1. (.)

However, the RHS of equation ?? is the smallest c2 such that

∀q∃p : p>Mq ≤ c2. (.)

Let p∗ be any strategy which achieves the minimum value in ??. Then we must have c1 ≥ c2 since
we may always play p∗ in response to any q in ??.

Linear Programming Connections

Consider a linear program which seeks to minimize c over variables c and p ∈ ∆n subject to the
constraints:

p>Mej ≤ c j = 1, . . . ,m

where M ∈ [0,1]n×m. This is equivalent to finding the value of c1 in ??. Note that we do not need
explicit constraints for every q ∈ ∆m; we only need to consider the corners of the simplex. One can
show that the dual LP is equivalent to the max-min formulation.

. General LP’s

For given vectors d and b and matrix A, we seek the maximum value of d>x over x subject to the
constraint that Ax ≤ b and x ≥ 0. If we allow these constraints to be broken with infinite cost, then
we may instead seek

max
x≥0

min
y≥0

d>x+ y> (b −Ax) .
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Thus, if any entry of Ax exceeds b, then y may be arbitrarily large such that the sum diverges to
−∞. Now, in cases where strong duality holds, we may write

max
x≥0

min
y≥0

d>x+ y> (b −Ax) = min
y≥0

max
x≥0

d>x+ y> (b −Ax)

= min
y≥0

max
x≥0

(
d − y>A

)
x+ y>b

This invokes the dual LP which seeks to minimize y>b subject to the constraint that y>A ≥ d and
y ≥ 0.

Note: It has been shown that LP strong duality is equivalent to minimax duality [?].

Exponential Weights Algorithm with Gains

Consider EWA in the setting where money can always be made. We observe a sequence of gain
vectors g1, . . . , gT ∈ [0,1]N . Let gti = money earned for action i on round t. In this setting, we have

regretT = max
j

T∑
t=1

gtj −
T∑
t=1

pt · gt (.)

where pt is our strategy on round t. We assume that we can achieve some bound on regret which
is sub-linear in T . In particular, we assume that our familiar bound O(

√
T logN ) holds. We then

assign weights sequentially such that wt+1
i = wti exp(ηgti ).

. Proof of Strong Duality for Minimax Theorem

We shall now prove that minpmaxq p>Mq ≤maxqminp p>Mq+ε. However, we will see that this ε
is inconsequential. Now, imagine that both players P1 and P2 play a game, each learning from the
actions of the other. Then P1 chooses p1,p2, . . . and P2 chooses q1,q2, . . . according to the information
available at each time step. Each pt is chosen by learning from loss vectors `1, . . . , `t−1, where
`s = Mqs. Now, suppose at each time step, P2 announces his strategy, qt, to P1. Our results will
hold even when this is not the case, but this assumption will simplify our analysis. Now, we will
have qt chosen according to g1, . . . , gt−1, where gs = psM. Let q̂T = 1

T

∑T
t=1 q

t, the average strategy
of P2. We may now analyze the average payoffs

1
T

T∑
t=1

(
pt

)>
Mqt =

1
T

T∑
t=1

pt · `t

≤ 1
T

min
p

T∑
t=1

p · `t +
regretT
T

= min
p
p>Mq̂T + εT

≤max
q

min
p
p>Mq+ εT .

Here we have used εT := regretT
T as a term that we can make vanish by increasing T .
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Following a similar argument, with p̂T = 1
T

∑T
t=1p

t, we have

1
T

T∑
t=1

(
pt

)>
Mqt ≥ 1

T
max
q

T∑
t=1

gt · q −
regretT
T

= max
q

(
p̂T

)>
Mq − εT

≥min
p

max
q
p>Mq − εT .

Combining these two chains of inequalities yields

min
p

max
q
p>Mq − 2εT ≤max

q
min
p
p>Mq.

However, T was arbitrary and so we may increase T to make εT arbitrarily small. Taking the limit
as εT → 0 implies that

min
p

max
q
p>Mq ≤max

q
min
p
p>Mq.

Observations:

. p̂T and q̂T form a 2εT -optimal Nash equilibrium pair. Let v denote the value of the game.
We then have

max
q
p̂TMq ≤max

q
min
p
p>Mq+ 2εT

= v + 2εT

and

min
p
p>Mq̂T ≥min

p
max
q
p>Mq − 2εT

= v − 2εT

and 2εT -optimality holds.

. Our proof had both players learning. Instead, if we have qt = argmaxq p
tMq, then we get

1
T

T∑
t=1

(
pt

)>
Mqt =

1
T

T∑
t=1

max
qt

(
pt

)>
Mqt

≥ 1
T

max
q

T∑
t=1

(
pt

)>
Mq.

The effect is that we drop the factor of two in the 2εT error bound.
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