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Announcements

• Office Hours Friday : - :

• Bug in Homework # fixed

. Regret

In a prediction setting we defined regret as the difference between the loss of the learning algo-
rithm, and the loss of the best expert

Prediction Regret =
T∑
t=1

`(ŷt , yt)−min
i

T∑
t=1

`(f ti , yt).

We can define a similar notion of regret for the action setting where in each round we pick a
mixture over N actions pt ∈ 4N and each action has an associated cost for that round `t ∈ [0,1]N .
We can define the regret in this setting as the difference between our algorithm and the best action
as

Action Regret =
T∑
t=1

pt · `t −min
i

T∑
t=1

`ti︸     ︷︷     ︸
comparator

.

Note that these settings are really two different ways too look at the same problem.

Question: Why should we care about a fixed comparator?

What if instead we tried to minimize

Better Regret? =
T∑
t=1

pt · `t − min
i1,...,iT

T∑
t=1

`ti︸       ︷︷       ︸
T∑
t=1

min
i
`ti

.

. Exponential Weights Algorithm with Hyper Experts

Define an expert for every possible sequence of experts

I = [N ]× [N ]× . . .× [N ] = [N ]T

i ∈ I , i = (i1, . . . , iT ).

On round t, hyper expert i’s advice is to follow the advice of expert it.
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Definition .. ˜̀t
i := `tit , the loss of a hyper expert on round t is the same as the recommended normal

expert.

Definition .. w̃ti := exp
(
−η

∑t−1
s=1

˜̀t
i

)
, the weight on a hyper expert follows the EWA.

Definition .. vtj :=
∑

i∈I :it=j w̃
t
i , the total weight on a piece of advice at time t is the sum of all hyper

expert weights that chose that advice.

Exponential Weights on Hyper Experts

Play mixture

pt :=
〈
vt1∑
j v
t
j

, . . . ,
vtN∑
j v
t
j

〉
Claim .. pt is uniform for all t!

Proof. Proof by picture. Each row represents a different expert, and the path represents a hyper
expert. by time t each hyper expert that took the solid path has weight w̃ti . When trying to predict
for time t + 1, each normal expert gains weight w̃ti from the hyper experts that shared a common
history up to time t. Therefore very expert at time t + 1 has the same weight, implying pt is
uniform.

t − 3 t − 2 t − 1 t t + 1

w̃ti

Question: Does this hold with a prior? Yes, for every time but the initial one.

We can still use our regret bound to calculate the regret from using this algorithm.

Regret ≤ c
√
T log(# of hyper experts)

= c
√
T log(NT )

= c
√
T T logN

= cT
√

logN

Because loss is bounded at 1 for each round, total loss is bounded by T , and therefore from the
problem definition

Regret ≤ T .

Therefore the above bound on regret is meaningless.
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.. Better Prior on Hyper Experts

Generate a random hyper expert sequence with parameter α ∈ (0,1).

() Sample i1 u.a.r. (uniformly at random)

() For t = 2, . . . ,T

it =
{
it−1 w.p. 1−α
j w.p. α

N−1∀j , it−1

Thus, the prior over all of these sequences is

Π(i) =
1
N

( α
N

)σ (i)
(1−α)T−σ (i)−1

where

σ (i) = #switchs in i
= |{t ∈ [T ] : it+1 , it}|

Straightforward Exercise: Show
∑

i

Π(i) = 1.

.. Fixed Share Forecaster

w̃ti = Π(i)︸︷︷︸
w̃1

i

exp

−η t−1∑
s=1

`sis



Bound:

LTMA −L
T
i ≤ ηT +

log
(

1
Π(i)

)
η

where

log
1

Π(i)
= logN + σ (i) log

N − 1
α

+ (T − σ (i)− 1)log
1

1−α

≤ (σ (i) + 1)
(
logN + log

1
α

)
+ T log

1
1−α

α =
1
T

*Jake Magic*

log
1

Π(i)
≤ (σ (i) + 1)(logN + logT ) + T log

1

1− 1
T


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If we limit the number of switches an expert makes to k then the regret bound becomes

RegretT ≤
ηT + (k + 1)(logN + logT ) +O(1)

η
.

After tuning η we get

RegretT ≤O
(√
T (k + 1)(logN + logT )

)
Compare this bound to if we cut the time up into k segments and ran standard exponential weights
over each segment (T ′ := T

k ).

RegretT ≤
k∑
i=1

√
T ′ logN

= k

√
T
k

logN

=
√
T k logN

This bound is very close to the bound on our modified hyper expert algorithm, except our hyper
expert algorithm allows k switches anywhere, not just at predefined points.

. Efficient Modified EWA

ŵt+1
i = wti exp

(
−η`ti

)
wt+1
i = (1− β)

ŵt+1
i∑

jw
t+1
j

+ β
1
N

Weight on an expert never gets below β
N , so it’s easier for individual experts to recover if they

begin to make good predictions.

Easy Challenge: Show that this algorithm is the same as EWA on hyper experts with prior Π.
What is the value of β ∈ (0,1)?

weight on expert i: vtj =
∑

i∈I :it=j

Π(i)exp

−η t−1∑
s=1

`sis


key idea: vt+1

j =
(
1−α − α

N

)
vtj exp

(
−η`tj

)
+

α
N − 1

∑
i

vti exp
(
−η`ti

)


(

1
1− 1

T

)−T
≈ e
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