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Announcements

• Lecture Videos are on CTools

• You can reach the GSI at email eecs-plg@umich.edu

. Recap: Online prediction and combining advice

• Here, we have N experts

• For every time step t = 1, . . . ,T , each expert says f t1 , . . . f
T
N

• An algorithm then combines the advice as a weighted average:

ŷt =

∑N
i=1w

t
i f
T
i∑N

i=1w
t
i

• Algorithm then observes outcome yt, and suffers loss `(ŷt , yt)

. Sequential Decision Making / Game Playing (a.k.a Hedge setting)

• On each round, algorithm chooses action i ∈ [N ].

• Alternatively algorithm choses a distribution pt ∈ 4N
• Nature chooses `t ∈ [0,1]N

• Algorithm suffers expected loss pt · `t =
∑N
i=1p

t
i`
t
i

. Predictive Setting vs. Action Setting

Predictive Setting Action Setting

Loss `(f ti , yt) `ti

Weight wti = exp

−η t−1∑
s=1

`(f si , ys)

 wti = exp

−η t−1∑
s=1

`si


Play ŷt =

∑N
i=1w

t
i f
T
i∑N

i=1w
t
i

pt =
〈
wt1∑
jw

t
j

,
wt2∑
jw

t
j

, . . . ,
wtN∑
jw

t
j

〉

Algorithm Loss `(ŷt , yt) = `

∑N
i=1w

t
i f
T
i∑N

i=1w
t
i

, yt

 pt · `t =

∑
iw

t
i`
t
i∑

iw
t
i
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Figure : Jensen’s Inequality

. Finding a Bound on the Loss of EWA

We need the following preliminaries to do this derivation:

.. Jensen’s Inequality

Jensen’s inequality follows from (/is) the definition of convexity. For a convex function g:

E [g(X)] ≥ g (E[X]) .

Jensen’s inequality can be visualized with the graph in Figure . Imagine a Bernoulli random
variable with parameter p, and the convex function g. E[g(X)] = (1 − p)g(0) + pg(1), which is the
line between g(0) and g(1). g(E[X]) = g(p), which is just the convex function g in the range [0,1].

The bottom row of the Prediction vs. Action (.) table can be viewed with Jensen’s inequality
when

X = f ti i ∼
〈
wti∑
jw

t
j

〉
g(x) = `(x,yt).

When phrased like this, the loss in the prediction setting is equivalent to g(E[X]), and the loss in
the action setting is equivalent to E[g(X)]. When viewed in this light, the loss of the prediction
setting is bounded by the loss in the action setting.

.. Other Useful Lemmas

The following identity can be used to find a tighter bound:

Lemma ..
logE[esX] ≤ (es − 1)E[X]; for X ∈ [0,1].
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The following identity provides a less tight bound, but it is easier to work with (we will use this
in the upcoming derivation)

Lemma ..

logE[esX] ≤ sE[X] +
s2

8
; for X ∈ [0,1].

.. Loss Bound

First lets bound − logwt+1 + logwt where wt =
∑
jw

t
j

− logwt+1 + logwt = − log
wt+1

wt

= − log


∑
iw

t
i exp

(
−η`ti

)
∑
iw

t
i


≥
η
∑
iw

t
i`
t
i∑

iw
t
i

−
η2

8

The inequality at the end is a result of Lemma ..

Finally, we’ll bound the total loss (LTMA) with the loss of a single expert i (LTi ).

ηLTi + logN = − log
(
e−ηL

T
i

)
+ log(N )

≥ − log
(
wT+1

)
+ log(w1)

=
T∑
t=1

− log(wt+1) + log(wt)

≥
T∑
t=1

η

∑
iw

t
i`
t
i∑

iw
t
i

−
η2

8

= ηLTMA −
T η2

8

LTMA ≤ L
T
i +

logN
η

+
T η

8

.. Tuning η

Example:

min
η

A
η

+Bη = 2
√
AB

A general trick is that the minimum of additive convex functions is achieved when all of the terms
are equal.

This is bad notation for saying the support of X is [0,1].
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Lets tune our bound on loss.

LTMA ≤ L
T
i +

logN
η

+
T η

8

A = logN

B =
T
8

LTMA ≤ L
T
i +O

(√
T logN

)
︸          ︷︷          ︸

RegretT

.

Note, that our regret is sublinear in T . In other words

LTMA
T
−
LTi
T

= o(1).

This is also known as the “no regret property” or hannan consistency[citation needed].

We can also use Lemma . to get a similar result for any expert i:

Theorem .. For any expert i

LTMA ≤ L
T
i +O

(√
LTi logN

)
sketch.

LTMA ≤
1

1− e−η
(
ηLTi + logN

)
≈ (1 + η)LTi +

logN
η

= LTi + ηLTi︸︷︷︸
≤ηT

+
logN
η

= LTi +O
(√
LTi logN

)

.. Non-uniform prior

Theorem .. For any expert i, and an initial prior over experts p ∈ 4N

LTMA ≤
1

1− e−η

(
ηLTi + log

1
pi

)

. Hyperexperts

A hyper expert is a path through experts.

I := [N ]T = [N ]× [N ]× . . .× [N ]
i ∈ I is a hyper expert
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We define EWA variables on hyper experts as such:

`ti := `tit ,

wti := exp

−η t−1∑
s=1

`sis

 ,
vti :=

∑
i∈I :it=i

wti .

Apply the EWA bound to hyper experts:

LTMA ≤
1

1− e−η
(
ηLTi + T logN

)
.

This SUCKS! Scales linearly with T =⇒ we’re not learning.
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