
Lecture 3: The Exponential Weights Algorithm 1

EECS598: Prediction and Learning Fall 2013

Lecture 3: The Exponential Weights Algorithm
Prof. Jacob Abernethy Scribe: Cat Saint Croix

Announcements

• Our GSI is Sindhu Kutty, skutty@umich.edu

• The homework has been posted and is due 9/25.

• EECS598 now has a CTools site; submit homework there.

3.1 Reviewing the Weighted Majority Algorithm

In Lecture 2, we introduced the Weighted Majority Algorithm, which allows us to drop the
very strong “realizability” assumption1 used in the Halving algorithm. In doing so, we proved
the following theorem:

Theorem 3.1. For any expert i and ε ≤ 1
2

MistakesT(WMA) ≤ 2 log(n)
ε

+ 2(1 + ε) MistakesT(experti)

Note that this restriction on ε arises because one of the inequalities we use in proving this is
restricted to x ∈ [0, 1

2].

A note on tuning parameters like ε: What’s the best choice for an ε? Minimize w.r.t ε by
choosing ε as a function of the inputs. For example, given inputs A and B s.t. performance

= A
ε + Bε, the optimal value for ε, ε∗ =

√
A
B . With this ε, performance = 2

√
AB. The notion is

that the terms should grow at the same rate (so, one can approximate the optimization by setting
the terms, A

ε and Bε, equal to one another). Tricks to this sort of (psuedo-)optimization show up
on the homework.

Now, applying this to the inequality above, with A = 2 log(n) and B = 2MistakesT(experti), we
get

MistakesT(WMA) ≤ 2MistakesT(experti) + 4
√

log(n)MistakesT(experti) (3.1)

The two in equation (3.2) indicates a higher cost than one would think necessary in a situation
like this. The algorithm we discuss in this lecture lets us get rid of this high cost.

In the process of proving Theorem 3.1, we used some approximations, which will be useful again
in the case of the Exponential Weight Algorithm. These are:

1That there exists a perfect expert.

mailto:skutty@umich.edu

Lecture 3: The Exponential Weights Algorithm 2

(1) Lower bound on the logarithm function:

log(1 + x) ≤ x ∀x (3.2)

(2) Upper bound
eαx ≤ 1 + (eα − 1)x x ∈ [0, 1] (3.3)

(3)

− log(1− x) ≤ x + x2 x ∈ [0,
1
2
] (3.4)

3.2 Introduction to Loss Functions

How do we measure the quality of a prediction given an outcome? Use a loss function! For a loss
function `(ŷ, y), ` describes the “cost” of guessing ŷ when the outcome is y.

Here, we will assume convexity for the time being. Why?

• Convex functions are well-behaved

• Demonstrates an interesting property of prediction – intuitively, the average of two predic-
tions shouldn’t do worse than both. So, it’s a natural choice.

Let ` be a convex loss function,
` : [0, 1]× {0, 1} → [0, 1] (3.5)

Some examples of loss functions:

(1) Squared Loss
`(ŷ, y) = (ŷ− y)2 (3.6)

(2) Absolute Loss
`(ŷ, y) = |ŷ− y| (3.7)

(3) Log Loss

`(ŷ, y) =

{
log(ŷ), if y = 1
log(1− ŷ), if y = 0

(3.8)

Note: log loss violates the [0, 1] bound used in our definition of a loss function above, so
it won’t be used in the following discussion.

Note that (1) and (3) are proper loss functions: the true probability minimizes expected loss.

Lecture 3: The Exponential Weights Algorithm 3

3.3 The Exponential Weight Algorithm

In plain(-ish) English: Given a set of experts and their predictions, the Exponential Weight

Algorithm
2 begins with equal weights for each. On each round, it makes a prediction based

on the predictions of these experts (according to their weights). After learning the outcome of
that round, the algorithm reduces the weight of incorrect experts by multiplying their previous
weights by the exponential defined in the algorithm below.

Algorithm 1: Exponential Weight Algorithm

Input: N experts i each predicting outcomes f t
i for round t, a parameter η

w1
i ←− 1 for i = 1, ..., N (set initial weight of each expert to 1)

for rounds t = 1, 2, ... do

ŷt ←− ∑N
i=1 wt

i f t
i

∑N
i=1 wt

i
(compute prediction)

Outcome yt is revealed
wt+1

i ←− wt
i e
−η`(f t

i ,yt) (update the weight assigned to each expert)
end

Theorem 3.2. Let Lt
MA (respectively, Lt

i) be the accumulated losses (up to round t) for the master algorithm
(MA) (respectively, expert i). That is,

Lt
MA :=

t

∑
s=1

`(ŷs, ys), Lt
i :=

t

∑
s=1

`(f s
i , ys)

Then, the following bound holds on the loss of MA over T rounds

LT
MA ≤

ηLT
i + log N
1− e−η

We begin by proving a lemma:

Lemma 3.3. For any s and r.v. X taking values in [0, 1],

log E[esX] ≤ (es − 1)EX (3.9)

Proof of Lemma: By definition,
E(esX) = ∑

x
Pr(x)esX

by inequality 3.3,
∑
x

Pr(x)esX ≤∑
x

Pr(x)(1 + (es − 1)x)

Further, since ∑x Pr(x) = 1 and ∑x x Pr(x) = E[x], we have

EesX ≤ EX(es − 1) + 1

2a.k.a. the Exponentially Weighted Average Forecaster. See Lugosi & Gabòr, 2006, Prediction, Learning, and
Games, p.14

Lecture 3: The Exponential Weights Algorithm 4

Since log is monotonic, it follows that

log(EesX) ≤ log(1 + EX(es − 1))

Using inequality 3.2, we have
log(EesX) ≤ EX(es − 1)

We are now ready to prove the theorem.

Proof of Theorem 3.2:
We will use a potential function:

Φt = − log Wt, (3.10)

where

Wt =
N

∑
i=1

wt
i (3.11)

Look at the increase in potential in a round:

Φt+1 −Φt = − log Wt+1 + log Wt

= − log
Wt+1

Wt

= − log
∑N

i=1 wt
i e
−η`t

i

∑N
i=1 wt

i

(3.12)

where we define `t
i := `(f t

i , yt) and equality 3.12 follows from the fact that wt+1
i = wt

i e
−η`(f t

i ,yt)

(see algorithm definition).

Now, define r.v. X taking value `t
i with probability wt

i
∑i wt

i
. Then applying Lemma 3.3

Φt+1 −Φt = − log Ee−ηX

≥ −(e−η − 1)EX

= (1− e−η)
∑i wt

i`
t
i

∑i wt
i

= (1− e−η)
∑i wt

i`(f t
i , yt)

∑i wt
i

≥ (1− e−η)`(
∑i wt

i f t
i

∑i wt
i

, yt) (3.13)

= (1− e−η)`(ŷt, yt) (3.14)

where 3.13 follows from the fact that ` is a convex loss function, meaning that the loss of the

Lecture 3: The Exponential Weights Algorithm 5

MA’s average must be less than the average of their losses. Now,

(1− e−η)LT
MA = (1− e−η)

T

∑
t=1

`(ŷt, yt)

≤
T

∑
t=1

Φt+1 −Φt (from 3.14)

= ΦT+1 −Φ1 (telescoping sum)
= − log ∑

i
wT+1

i + log N

≤ − log wT+1
i + log N (for any expert i)

= − log[e−η ∑T
t=1 `

t
i] + log N

= ηLT
i + log N

Now, dividing both sides by (1− e−η), we get

LT
MA ≤

ηLT
i + log N
1− e−η

Corollary 3.4. For an optimally-tuned η,

LT
MA ≤ LT

i︸︷︷︸
loss of the best expert

+

Halving algorithm cost︷ ︸︸ ︷
log N +

√
2LT

i log N︸ ︷︷ ︸
additional cost

(3.15)

See homework regarding tuning parameters...

3.4 Proof Techniques

The above proof relies on a particular proof technique involving potential functions. Here,
we had ∆`(alg.) ≤ ∆Φ, where Φ was a path-independent sufficient statistic on the cost of the
algorithm to T. This tells us roughly where the loss of the algorithm will be, depending only
on the cumulative loss of the experts. This allows us to bound the cost based on the potential
function.

Additionally, the potential function is softmin, − 1
η log(∑i e−ηxi), which is close to the loss of the

best.

3.5 Next time. . .

So far, the algorithms in play have used “experts”. Moving forward, we’ll talk in terms of actions.
Suppose, instead of experts, we have plans of action. Now, if, instead of continuing the proof
after the use of the convexity assumption, we use a random strategy over actions, we have the
expected loss of the choice. We can use this fact to talk in terms of game theory rather than
prediction!

	Reviewing the Weighted Majority Algorithm
	Introduction to Loss Functions
	The Exponential Weight Algorithm
	Proof Techniques
	Next time…

