EECS598: Prediction and Learning: It's Only a GameFall 2013Lecture 24: Generalized Calibration and Correlated EquilibriaProf. Jacob AbernethyScribe: Yuqing Kong

24.1 Generalized Calibration

In previous section, we make predictions in [0,1]. [0,1] interval can be generalized to convex set. As before we divide [0,1] into small sections, now we devide the convex set into *n* small pieces and pick one point q_i in each piece. Now the calibration setting will be generalized to: For t=1,...,T

- 1. Forecaster "guesses" \hat{y}_t with q_{i_t}
- 2. Outcome is y_t

In the end, we want to guarantee that: $\exists T_0, \forall i, \forall T > T_0, \| \frac{\sum_{t=1}^T y_t \mathbb{1}[q_{i_t} = q_i]}{\sum_{t=1}^T \mathbb{1}[q_{i_t} = q_i]} - q_i \| < c\epsilon$

With this generalized calibration you can:

- 1. Get lower regret
- 2. Get minmax duality
- 3. Show Approachability Theorem.

24.2 Two players zero-sum game

Consider a repeated zero-sum game between two players.

Given matrix M, two players chooses $(x, y) \in \Delta_n \times \Delta_n$ to get value $x^T M y$. Player 1 chooses $x \in \Delta_n$ and wants to minimize $x^T M y$ while Player 2 chooses $y \in \Delta_n$ and wants to maximinze $x^T M y$. They play this game repeatedly. Consider the following setting: For t=1,...,T

- 1. Player 1 chooses $x_t \in \Delta_n$
- 2. Player 2 chooses $y_t \in \Delta_n$

Let V^* denote $\min_{x} \max_{y} (xMy)$

Given any ϵ , we want to find an algorithm such that in the end $\frac{1}{T}\sum_{t=1}^{T} x_t M y_t \le V^* + O(\epsilon)$, The idea is to reduce this problem to generalized calibration and use ϵ calibration algorithm. Consider the following algorithm:

2

Reduction to Calibration: For t=1,2,...,T

- 1. Player 1 guesses $q_{i_t} \in \Delta_n$
- 2. Player 1 computes the best response $x_t = x(q_{i_t}) = \underset{x \in \Delta_n}{\operatorname{arg\,min}} x^T M q_{i_t}$
- 3. Player 2 reveals y_t

We assume that this algorithm is calibrated and now let's analyze the value $\frac{1}{T}\sum_{t=1}^{T} x_t M y_t$ to see whether it exceeds V^* much: For the sake of analysis, let n_T^i denote $\sum_{t=1}^{T} \mathbb{1}[q_{i_t} = q_i]$, we can see $\sum_i n_T^i = T$

 $\frac{1}{T} \sum_{t=1}^{T} x_t M y_t = \sum_{t=1}^{N} (\frac{1}{T} \sum_{t=1}^{T} x_t M y_t \mathbb{1}[q_{i_t} = q_i])$ (24.1)

$$= \sum_{i=1}^{N} \left(\frac{1}{T} \sum_{t=1}^{T} x(q_i) M y_t \mathbb{1}[q_{i_t} = q_i]\right)$$
(24.2)

$$=\sum_{i=1}^{N} \left(\sum_{t=1}^{T} \frac{n_{T}^{i}}{T} x(q_{i}) M\left(\frac{y_{t} \mathbb{1}[q_{i_{t}}=q_{i}]}{n_{T}^{i}}\right)\right)$$
(24.3)

$$=\sum_{i=1}^{N}\frac{n_{T}^{i}}{T}x(q_{i})M(q_{i}+\epsilon U)$$
(24.4)

$$=\sum_{i=1}^{N} \frac{n_T^i}{T} x(q_i) M q_i + o(\epsilon) \le V^* + o(\epsilon)$$
(24.5)

From line 3 to line 4, we are assuming forecast is calibrated. In line 4, *U* is a vector and $||U|| \le 1$. In line 5, $\sum_{i=1}^{N} \frac{n_T^i}{T} x(q_i) M q_i \le V^*$, V^* is the value of game. So we can see:

Theorem 24.1. Existence of ϵ -Nash Equilibrium is reducible to ϵ calibration algorithm.

24.3 Correlated Equilibrium

Now let's consider a game among *k* players.

For all *i*, player i has M_i strategies. Let $[M_i]$ denote the set of the M_i strategies player i can use. Each time *k* players play $(j_1, j_2, ..., j_k) \in [M_1] \times [M_2] \times ... \times [M_k]$ and then player i would get loss: $C_i(j_1, ..., j_k)$

We assign a joint distribution $\mu \in \Delta([M_1] \times [M_2] \times ... \times [M_k])$ to the actions of k players. Then we can see the expected loss to Player i with distribution μ would be:

$$C_i(\mu) = \sum_{(j_1,...,j_k)} \mu(j_1, j_2, ..., j_k) C_i(j_1, ..., j_k)$$

A strategy modification is a function $\phi[M_i] \rightarrow [M_i]$ such that $\phi(j) = j$ for all j but one j_o . $\phi(j_o)$ is arbitrary. Then after this modification, the expected loss would change to:

$$C_i^{\phi}(\mu) = \sum_{(j_1,\dots,j_k)} \mu(j_1, j_2, \dots, j_k) C_i(j_1, \dots, j_{i-1}, \phi(j_i), j_{i+1}, \dots, j_k)$$

Now we can give the definition of *Correlated Equilibrium*(CE): Distribution μ is a CE if for all i, $C_i(\mu) \leq C_i^{\phi}$ for all modifications ϕ .

Distribution μ is an ϵ -CE if for all i, $C_i(\mu) \leq C_i^{\phi}(\mu) + \epsilon$ for all modifications ϕ .

In the past, the loss we analyze is compared to a constant sequence. But now, we can generalize the definition and discuss a loss which is compared to a "class" of sequences. Let's see the definitions of *external regret* and *internal regret*.

- An algorithm(Alg) has no *external regret* if $\mathbb{E}[\frac{1}{T}(\sum l_{I_t} l_i)] \le \epsilon$ for large T. Here (i, i, ..., i) is the best constant sequence we can choose in hindsight.
- An algorithm(Alg) has no *internal regret* if for all ϕ , $\mathbb{E}[\frac{1}{T}(\sum l_{I_t} l_{\phi(I_t)})] \leq \epsilon$ for large T. Here $\{(\phi(I_1), \phi(I_2), ..., \phi(I_T))\}_{\phi}$ are a "class" of sequences compared to our actions.

We know that no-external-regret algorithm can give us an algorithm to get an ϵ - Nash Equilibrium. Now let's see whether no-internal-regret algorithm can give us an algorithm to get an ϵ - Correlated Equilibrium and discuss the relation among B.A.T, no-internal-regret algorithm and calibration algorithm.

Theorem 24.2. Existence of No-Internal Alg is reducible to Black Well Approachibility

Proof. If we want to use B.A.T, firstly we need to define a vector game. Let's define a biaffine $r: \Delta_n \times [0,1]^n \to \mathbb{R}^{n^2}$

$$r(\underline{w},\underline{l}) = \langle (l_i - l_j)w_i \rangle_{(i,j)\in[n]^2}$$

Then we need to define the set: $S = \mathbb{R}_{-}^{n^2}$

So we need to know whether the assumption of B.A.T is satisfied. In other words, we need to know $\forall \underline{l} \in [0,1]^n$ whether there exist $w \in \Delta_n$ such that $r(w,\underline{l}) \in S$.

The answer is yes, since we can find $w = e_i$ where $i = \arg \min_{i'} l_{i'}$. Now we can use the result of B.A.T,

which means given any ϵ we can find an adaptive strategy such that $\exists T_0, \forall T > T_0, d(\frac{1}{T} \sum_{t=1}^T < (l_i^t - l_j^t) w_i^t >, S) < \epsilon$. No-internal-regret algorithm requires that $\frac{1}{T} \sum_T \sum_I (l_{I_t} - l_{\phi(I_t)}) w_{I_t} \le \epsilon$, which can be satisfied by the result B.A.T gives us. So we can see we find a no-internal-regret algorithm through Black Well Approachibility.

Theorem 24.3. If all players use a no internal regret algorithm to play then $\bar{\mu}_t$, the empirical distribution of

$$\{(j_1^1, ..., j_k^1), (j_1^2, ..., j_k^2), ..., (j_1^T, ..., j_k^T)\}$$

is an ϵ -CE.

Proof. The definition of
$$\epsilon$$
- CE is for all i, for all ϕ
 $C_i(\mu) \le C_i^{\phi}(\mu) + \epsilon = \sum_{(j_1,...,j_k)} \mu(j_1, j_2, ..., j_k) C_i(j_1, ..., j_{i-1}, \phi(j_i), j_{i+1}, ..., j_k) + \epsilon$

If all players use a no-internal-regret algorithm, then for all i, for all ϕ , $\frac{1}{T}\sum_{t}(C_{i}(\mu_{t}) - C_{i}^{\phi}(\mu_{t})) \leq \epsilon$ $\Rightarrow C_{i}(\bar{\mu}_{t}) \leq C_{i}^{\phi}(\bar{\mu}_{t}) + \epsilon$, which means $\bar{\mu}_{t}$ is an ϵ -CE

Theorem 24.4. We can reduce calibration to no-internal-regret.

Proof. The definition of calibration is: $\forall i \| \frac{\sum_{t=1}^{T} y_t \mathbb{1}[q_{i_t}=q_i]}{\sum_{t=1}^{T} \mathbb{1}[q_{i_t}=q_i]} - q_i \| < c\epsilon$ for large T. So if the algorithm is not calibrated, then $\exists \epsilon \forall T_0$, $\exists T > T_0$ such that \exists a set I for all $i \in I \| \frac{\sum_{t=1}^{T} y_t \mathbb{1}[q_{i_t}=q_i]}{\sum_{t=1}^{T} \mathbb{1}[q_{i_t}=q_i]} - q_i \| > c\epsilon$ but $\| \frac{\sum_{t=1}^{T} y_t \mathbb{1}[q_{i_t}=q_i]}{\sum_{t=1}^{T} \mathbb{1}[q_{i_t}=q_i]} - q_j \| < c\epsilon(j \neq i)$. At this time, if we define a modification ϕ to change strategy from q_i to q_j at time $\{t : q_{i_t} = q_i\}$ for all $i \in I$, then $\sum_i | \frac{1}{T} \sum_t (q_{i_t} - y_t) \mathbb{1}(q_{i_t} = q_i)| - \sum_i | \frac{1}{T} \sum_t (\phi(q_{i_t}) - y_t) \mathbb{1}(\phi(q_{i_t}) = q_i)| > O(\epsilon)$, which means the algorithm has internal regret. By this contradiction, we can reduce calibration to no-internal-regret.

So we can see B.A.T \Rightarrow Existence of no internal algorithm \Rightarrow Existence of an ϵ -CE; No-internal-regret algorithm \Rightarrow Calibration algorithm \Rightarrow an ϵ -NE. \Rightarrow means "gives".