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. Generalized Calibration

In previous section, we make predictions in [,]. [,] interval can be generalized to convex set.
As before we divide [,] into small sections, now we devide the convex set into n small pieces
and pick one point qi in each piece. Now the calibration setting will be generalized t:
For t=,...,T

. Forecaster “guesses” ŷt with qit

. Outcome is yt
.

In the end, we want to guarantee that:

∃T0,∀i,∀T > T0, ||
∑T
t=1 yt1[qit=qi ]∑T
t=11[qit=qi ]

− qi || < cε

With this generalized calibration you can:

. Get lower regret

. Get minmax duality

. Show Approachability Theorem.

. Two players zero-sum game

Consider a repeated zero-sum game between two players.
Given matrix M, two players chooses (x,y) ∈ ∆n ×∆n to get value xTMy. Player  chooses x ∈ ∆n
and wants to minimize xTMy while Player  chooses y ∈ ∆n and wants to maximinze xTMy. They
play this game repeatedly. Consider the following setting:
For t=,...,T

. Player  chooses xt ∈ ∆n

. Player  chooses yt ∈ ∆n

Let V ∗ denote min
x

max
y

(xMy)

Given any ε, we want to find an algorithm such that in the end 1
T

∑T
t=1 xtMyt ≤ V ∗ +O(ε),

The idea is to reduce this problem to generalized calibration and use ε calibration algorithm. Con-
sider the following algorithm:
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Reduction to Calibration:
For t=,,...,T

. Player  guesses qit ∈ ∆n

. Player  computes the best response
xt = x(qit ) = argmin

x∈∆n
xTMqit

. Player  reveals yt

We assume that this algorithm is calibrated and now let’s analyze the value 1
T

∑T
t=1 xtMyt to see

whether it exceeds V ∗ much:
For the sake of analysis, let niT denote

∑T
t=11[qit = qi], we can see

∑
i n
i
T = T

1
T

T∑
t=1

xtMyt =
N∑
i=1

(
1
T

T∑
t=1

xtMyt1[qit = qi]) (.)

=
N∑
i=1

(
1
T

T∑
t=1

x(qi)Myt1[qit = qi]) (.)

=
N∑
i=1

(
T∑
t=1

niT
T
x(qi)M(

yt1[qit = qi]

niT
) (.)

=
N∑
i=1

niT
T
x(qi)M(qi + εU ) (.)

=
N∑
i=1

niT
T
x(qi)Mqi + o(ε) ≤ V ∗ + o(ε) (.)

From line  to line , we are assuming forecast is calibrated. In line , U is a vector and ||U || ≤ 1.

In line ,
∑N
i=1

niT
T x(qi)Mqi ≤ V ∗, V ∗ is the value of game.

So we can see:

Theorem .. Existence of ε− Nash Equilibrium is reducible to ε calibration algorithm.

. Correlated Equilibrium

Now let’s consider a game among k players.
For all i, player i has Mi strategies. Let [Mi] denote the set of the Mi strategies player i can use.
Each time k players play (j1, j2, ..., jk) ∈ [M1] × [M2] × ... × [Mk] and then player i would get loss:
Ci(j1, ..., jk)
We assign a joint distribution µ ∈ ∆([M1]× [M2]× ...× [Mk]) to the actions of k players. Then we can
see the expected loss to Player i with distribution µ would be:

Ci(µ) =
∑

(j1,...,jk)

µ(j1, j2, ..., jk)Ci(j1, ..., jk)
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A strategy modification is a function φ[Mi]→ [Mi] such that φ(j) = j for all j but one jo. φ(jo) is
arbitrary. Then after this modification, the expected loss would change to:

C
φ
i (µ) =

∑
(j1,...,jk)

µ(j1, j2, ..., jk)Ci(j1, ..., ji−1,φ(ji), ji+1, ...jk)

Now we can give the definition of Correlated Equilibrium(CE):
Distribution µ is a CE if for all i, Ci(µ) ≤ Cφi for all modifications φ.

Distribution µ is an ε−CE if for all i, Ci(µ) ≤ Cφi (µ) + ε for all modifications φ.

In the past, the loss we analyze is compared to a constant sequence. But now, we can generalize the
definition and discuss a loss which is compared to a “class” of sequences. Let’s see the definitions
of external regret and internal regret.

• An algorithm(Alg) has no external regret if E[ 1
T (

∑
lIt − li)] ≤ ε for large T. Here (i, i, ..., i) is the

best constant sequence we can choose in hindsight.

• An algorithm(Alg) has no internal regret if for all φ, E[ 1
T (

∑
lIt − lφ(It))] ≤ ε for large T. Here

{(φ(I1),φ(I2), ...,φ(IT ))}φ are a “class” of sequences compared to our actions.

We know that no-external-regret algorithm can give us an algorithm to get an ε− Nash Equilib-
rium. Now let’s see whether no-internal-regret algorithm can give us an algorithm to get an ε−
Correlated Equilibrium and discuss the relation among B.A.T, no-internal-regret algorithm and
calibration algorithm.

Theorem .. Existence of No-Internal Alg is reducible to Black Well Approachibility

Proof. If we want to use B.A.T, firstly we need to define a vector game. Let’s define a biaffine
r : ∆n × [0,1]n→R

n2

r(w,l) =< (li − lj )wi >(i,j)∈[n]2

Then we need to define the set: S = R
n2

−
So we need to know whether the assumption of B.A.T is satisfied. In other words, we need to
know ∀l ∈ [0,1]n whether there exist w ∈ ∆n such that r(w,l) ∈ S.
The answer is yes, since we can findw = ei where i = argmin

i′
li′ . Now we can use the result of B.A.T,

which means given any ε we can find an adaptive strategy such that ∃T0,∀T > T0,d( 1
T

∑T
t=1 <

(lti − l
t
j )w

t
i >,S) < ε. No-internal-regret algorithm requires that 1

T

∑
T
∑
I (lIt − lφ(It))wIt ≤ ε, which

can be satisfied by the result B.A.T gives us. So we can see we find a no-internal-regret algorithm
through Black Well Approachibility.

Theorem .. If all players use a no internal regret algorithm to play then µ̄t, the empirical distribu-
tion of

{(j1
1 , ..., j

1
k ), (j2

1 , ..., j
2
k ), ..., (jT1 , ..., j

T
k )}

is an ε−CE.

Proof. The definition of ε− CE is for all i, for all φ

Ci(µ) ≤ Cφi (µ) + ε =
∑

(j1,...,jk)
µ(j1, j2, ..., jk)Ci(j1, ..., ji−1,φ(ji), ji+1, ...jk) + ε
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If all players use a no-internal-regret algorithm, then for all i, for all φ, 1
T

∑
t(Ci(µt)−C

φ
i (µt)) ≤ ε

⇒ Ci(µ̄t) ≤ C
φ
i (µ̄t) + ε, which means µ̄t is an ε−CE

Theorem .. We can reduce calibration to no-internal-regret.

Proof. The definition of calibration is: ∀i ||
∑T
t=1 yt1[qit=qi ]∑T
t=11[qit=qi ]

− qi || < cε for large T. So if the algorithm

is not calibrated, then∃ε ∀T0, ∃T > T0 such that ∃ a set I for all i ∈ I ||
∑T
t=1 yt1[qit=qi ]∑T
t=11[qit=qi ]

− qi || > cε but

||
∑T
t=1 yt1[qit=qi ]∑T
t=11[qit=qi ]

−qj || < cε(j , i). At this time, if we define a modification φ to change strategy from qi

to qj at time {t : qit = qi} for all i ∈ I , then
∑
i | 1T

∑
t(qit −yt)1(qit = qi)| −

∑
i | 1T

∑
t(φ(qit )−yt)1(φ(qit ) =

qi)| > O(ε), which means the algorithm has internal regret. By this contradiction, we can reduce
calibration to no-internal-regret.

So we can see B.A.T⇒ Existence of no internal algorithm⇒ Existence of an ε−CE;
No-internal-regret algorithm⇒ Calibration algorithm⇒ an ε−NE.
⇒means “gives”.
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