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Announcements

• One lecture remains.

• Project presentation coming soon.

. Review of Blackwell Approachability

Given a biaffine function
r : X ×Y →R

d (.)

where X,Y are convex and r(x,y) is the “payoff vector”.

Denote S as some goal set, Blackwell Approachability states that

If ∀y ∈ Y , ∃x ∈ X s.t. r(x,y) ∈ S, then there exists an adaptive strategy s.t.

1
T

T∑
t=1

r(xt , yt)→ S, ∀y1, · · ·yT (.)

where xt is computed via a strategy given y1, · · ·yt−1, i.e.xt← f (y1, · · ·yt−1).

Last time we show that

• B.A.T⇒ No external regret in “expert” setting

• B.A.T⇐ No regret in OCO

• B.A.T⇔ No internal regret in “expert” setting

We know that B.A.T⇒ No regret for experts.Consider the following setting

For t = 1,2, · · ·T

• player chooses wt ∈ 4n

• nature chooses lt ∈ [0,1]n

We want to guarantee that 1
T

(∑
tw

tlt −mini
∑
t l
t
i

)
= O(1).

Define the vector game r(w,l) = 〈(w · l − l1, · · · ,w · l − ln)〉, if 1
T

∑
r(wt , lt)→ Rn, we say there is no

regret.

Question:∀l ∈ [0,1]n,∃w ∈ 4n, r(w,l) ∈ Rn, how to choose w?

Answer:Choose w(l) = ei∗ , where i∗ = arg mini li .
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. Calibrated Forecasting

.. Forecast and ε Calibration

What does it mean to make correct forecast?

Repeats prediction for t = 1,2, · · ·

• Forecaster says pt ∈ [0,1]

• Nature reveals yt ∈ {0,1}

Intuitively, what we would expect for p1, y1, · · · ,pt , yt is∣∣∣∣∣ 1
T

∑
pt −

1
T

∑
yt

∣∣∣∣∣→ 0 (.)

Eq(.) may be too easy to achieve. Now consider calibrated forecaster. We say a Forecaster id ε
calibrated if

∀p ∈ [0,1], for large enough T ∣∣∣∣∣∣
∑T
t=1 yt1[|pt − p| ≤ ε]∑T
t=1 1[|pt − p| ≤ ε]

− p
∣∣∣∣∣∣ < cε (.)

for some c > 0.

Problem with the definition above: What if the forecaster never predicts p? We need to assume

that liminfT→∞
∑T
t=1 1[‖pt−p‖≤ε]

T > 0.

.. L-Calibration Score

Definition:Assume [q1, · · · ,qn] is an ε discretization of [0,1],

L1CSεT =
N∑
i=1

∣∣∣∣∣∣∣ 1
T

T∑
t=1

(qi − pt)1[|qi − pt | ≤ ε]

∣∣∣∣∣∣∣
If ∀ε,∃T0 : T > T0,L1CSεT ≤ cε is equivalent to the former definition about ε calibrated.

.. Calibration Against an Adversary

It is difficult to calibrate against an adversary. For example, if forecaster says pt > 0.5, adversary
chooses yt = 0 and if forecaster says pt ≤ 0.5, adversary chooses yt = 1.

Solution: The forecaster must actually predict randomly!

Imagine that forecaster chooses σ t ∈ 4N and pt = qIt , where It ∼ σ t. Also, image adversary chooses
yt ∼ α ∈ [0,1].

Define vector game r(σ,α) = 〈(qi −α)σi〉 for i = 1, · · · ,N . Towards using B.A.T., the average payoff
is 1

T

∑T
t=1 r(σ

t ,αt) = 〈 1
T

∑T
t=1(qi −α)σ ti 〉 = Eyt∼α,pt∼σ t [

1
T

∑T
t=1(qi − yt)1[pt = qi]]

if the average payoff converges to L1 ball of radius cε, the we are calibrated,
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To show that ε-calibration⇔ Approachability of B1(cε), first we need to check ∀α ∈ [0,1],∃σ ∈ 4n,
s.t.

〈(qi −α)σi〉i=1,...,n ∈ B1(cε) (.)

Set σ to put all weight on q∗i , the nearest grid point to α,

〈(qi −α)σi〉 = 〈0, · · · , (qi −α)1,0 · · · ,0〉 ∈ B1(cε) (.)

we can approach B1(cε).

Sketch proof on reverse reduction: Calibration⇒ B.A.T.

Given r : X × Y → R
d , a convex set S ⊂ R

d . Assume that ∀y ∈ Y ,∃x ∈ X,r(x,y) ∈ S and we have a
calibrated algorithm.

For t = 1,2, · · ·

. Player “guesses” opponent’s cation ŷt ∈ Y . Let this be a “calibrated forecast” x(ŷt)

. Player selects xt s.t. r(xt , ŷt)

. Player observes true yt

For the sake of the analysis, let niT :=
∑T
t=1 1[ŷt = qi], that is, the number of times the forecaster

predicted that ŷt was the grid point qi . Then we have

1
T

∑T
t=1 r(xt , yt) =

N∑
i=1

 1
T

T∑
t=1

r(xt , yt)1[ŷt = qi]


=

N∑
i=1

 1
T

T∑
t=1

r(x(qi), yt)1[ŷt = qi]


next we apply the calibration statement =

N∑
i=1

r

x(qi),
1
T

T∑
t=1

yt1[ŷt = qi]


where ui is O(1)-norm “error” vec =

N∑
i=1

r

x(qi),
niT
T

(qi + εui)


where ū is O(1)-norm avg “error” vec =

 N∑
i=1

niT
T
r (x(qi),qi)

+ εū

Notice that the first term in the final expression is an average of elements of S by construction,
and the second term is a vector of norm O(ε). Hence the final vector is O(ε) close to S as desired..
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