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Prof. Jacob Abernethy Scribe: Petter Nilsson

Announcements

• Prof. Jacob Abernethy will be away Tuesday-Friday next week. It is possible to schedule a
meeting this week to discuss homework and/or project.

• Start to think about presenting projects in class. Participation credit will be given.

• Reminder: No class on November th.

. Blackwell’s Approachability Theorem

When the payoff function is multivariate, the minmax theory needs to be modified. Optimizing a
vector is not well defined, nor is the notion of equilibria in a vector-valued game.

Given is a payoff function r : ∆n×∆m→R
d which is biaffine. The bi-affinity is required to preserve

the expectation of mixed strategies, i.e. that

r(p,q) = Ei∼p, j∼qr(i, j). (.)

Rather than maximizing, the goal in this setting is to direct the payoff vector to some convex set
S ⊂R

d . We are interested in some duality result like the following

∀q ∃p s.t r(p,q) ∈ S =⇒ ∃p s.t ∀q r(p,q) ∈ S, (.)

which is a direct translation of the classical minimax result for scalar-valued payoff functions.
This statement is however not true in the multivariate setting, as the following counter-example
shows:

Counter-example to (.): If S = {(p,q) : p = q} and r(p,q) = (p,q), one can trivially, for all q,
choose p(q) = q to guarantee that r(p(q),q) ∈ S. It is however not possible to find a p which works
for all q, indeed the only p which works for a given q is p = q.

However, the duality statement (.) holds when S is a half-space {x | v ·x ≥ c}. To see this, define
a zero-sum game with scalar payoff given by the projection onto the normal direction v of the
half-space:

Mi,j = v · r(ei , ej ). (.)

Then the condition r(p,q) ∈ S is equivalent to pTMq ≥ c (because of bi-affinity), so the von Neu-
mann minimax theorem applies. More succinctly, the following two conditions are equivalent
(here S is a general convex set).

∀q ∃p s.t r(p,q) ∈ S, (.)
For all half-spaces H containing S, ∃p s.t ∀q, r(p,q) ∈H. (.)

Proof. See previous lecture.
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Even though (.) is false in the general case, the half-space condition (.) can be used to prove
Blackwell’s Approachability Theorem (BAT).

Theorem .. If (.) or (.) holds, then there exists an adaptive strategy

pt← ft(q1, . . . , qt−1) (.)

such that for all q1,q2, . . .

d

 1
T

T∑
t=1

r(pt ,qt),S

→ 0 (.)

as T →∞.

Here d : Rd ×Rd →R is the usual euclidean metric on R
d , extended to R

d × 2R
d ∗ by

d(x,S) = inf
s∈S
d(x,s) (.)

for sets S ⊂R
d .

Proof. The proof is constructive, i.e. it explicitly gives an adaptive strategy so that (.) holds.
This strategy is given below. See Figure  for an illustration.

Algorithm : Adaptive Strategy
for t=,,. . . do

Compute

r̄t←
1
t

t∑
i=1

r(pi ,qi) (.)

if r̄t ∈ S then
Choose pt+1 as anything (it doesn’t matter).

else
Let πS(r̄t) be the projection of r̄t onto S, i.e. πS(x) = arginfy∈S d(x,y). See Figure .
Select the half space Ht+1 containing S such that ∂Ht+1 (∂ is the boundary operator)
contains πS(r̄t) and has normal direction r̄t −πS(r̄t).
Choose pt+1 such that r(pt+1,q) ∈Ht+1 for all q. This is possible because of the half-space
condition (.).

end
Observe qt+1.

end

We now analyze this strategy. The average payoff will update as

r̄t+1 =
t

t + 1
r̄t +

1
t + 1

r(pt+1,qt+1). (.)

∗2R
d

is the power set of Rd , the set of all subsets defined as 2R
d

= {D :D ⊂R
d }.
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Ht+1

S

•

•πS(r̄t)

r̄t • r(pt+1,qt+1)

Figure : Blackwell Approachability algorithm.

We want to bound the distance of r̄T to the set S.

d2 (r̄t+1,S) ≤ d2 (r̄t+1,πS(r̄t)) =
∥∥∥∥∥ t
t + 1

r̄t +
1
t + 1

r(pt+1,qt+1)−πS(r̄t)
∥∥∥∥∥2

2

=
∥∥∥∥∥ t
t + 1

(r̄t −πS(r̄t)) +
1
t + 1

(r(pt+1,qt+1)−πS(r̄t))
∥∥∥∥∥2

2

=
( t
t + 1

)2
‖r̄t −πS(r̄t)‖22 +

( 1
t + 1

)2
‖r(pt+1,qt+1)−πS(r̄t)‖22

+
2t

(t + 1)2 (r̄t −πS(r̄t)) · (r(pt+1,qt+1)−πS(r̄t)) .

(.)

Since r̄t and r(pt+1,qt+1) are on different sides of the hyperplane ∂Ht+1 (see Figure ), which by
construction contains πS(r̄t), the dot product in the last line is negative. Recognizing that d(r̄t ,S) =
‖r(pt+1,qt+1)−πS(r̄t)‖2, it follows that

(t + 1)2d2 (r̄t+1,S) ≤ t2d2 (r̄t ,S) + ‖r(pt+1,qt+1)−πS(r̄t)‖22 . (.)

By scaling, we can WLOG assume that S and the domain of r are inside the unit ball. Then the
distance ‖r(pt+1,qt+1)−πS(r̄t)‖22 is O(1).

Then, by summing (.) telescopically, we get

T 2d2(r̄T ,S) ≤ d2(r̄1,S) +O(T ), (.)

so, finally,

d(r̄T ,S) ≤ O(

√
1
T

). (.)

This shows that the average payoff converges to the set S as T →∞.

. Solving Online Learning using Approachability

Consider an online learning setting where loss vectors `1, `2, . . . ∈ [0,1]d are observed. We want to
choose weights w1,w2, . . . ∈ ∆d so that

∀ε > 0, ∃T s.t.
1
T

 T∑
t=1

`t ·wt −
T∑
t=1

`ti

 ≤ ε ∀i. (.)

Note that this is the normal condition of sublinear regret when competing against the best fixed
expert. The problem of choosing wt can be reduced to an approachability problem as follows:
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Reduction: The components of an approachability problem are the payoff function r : ∆d ×
[0,1]d →R

d and a convex set S ⊂R
d , define these in terms of ` and w as follows:

r(w,l) = 〈w · ` − `1,w · ` − `2, . . . ,w · ` − `d〉, (.)

S = R
d
− := {v ∈Rd : vi ≤ 0 ∀i}. (.)

From this definition the average payoff in the approachability problem becomes

1
T

T∑
t=1

r(`t ,wt) = 〈 1
T

T∑
t=1

`t ·wt −
T∑
t=1

`t1, . . . ,
1
T

T∑
t=1

`t ·wt −
T∑
t=1

`td〉, (.)

so if we can make the average payoff in the approachability problem approach the set S, we get
low regret in the online learning problem. To apply Blackwell’s Approachability Theorem, we
verify that (.) holds, which is a more useful condition than (.) in practice.

Claim .. For all ` ∈ [0,1]d , there is a w such that r(w,l) ∈Rd−.

Proof. By choosing
w(`) = ei∗ , where i∗ = argmin

j
`j , (.)

we get that
r(ei∗ , `) = 〈`i∗ − `1, . . . , `i∗ − `d〉, (.)

which is in R
d
− by definition.

Remark .. The intuition behind this result is that if we observe the loss vector in advance, of course
we can beat the best expert. We just choose the minimizer ourselves!

Thus condition (.) holds, and we can apply Blackwell’s Approachability Theorem. To conclude,
the online learning problem of minimizing the regret (.) can be solved by applying Algorithm
 on the approachability problem defined by (.) and (.).

. Solving Approachability using Online Convex Optimization

NOTE: The following material was drawn from recent work of Bernstein and Shimkin (http://
arxiv.org/abs/.) which gave a simplification of previous work by Abernethy, Bartlett,
and Hazan (http://jmlr.org/proceedings/papers/v/abernethyb/abernethyb.pdf).

We just saw that solving a learning problem in the simplex is can be reduced to solving an ap-
proachability problem in the dual cone to the simplex, which is Rd−. It turns out that a connection
exists also in the other direction; online convex optimization can be used to solve an approacha-
bility problem. This provides an alternative proof for Blackwell’s Approachability Theorem.

Let a bi-affine r : X ×Y →R
d and a convex set S ∈Rd define an approachability problem. Assume

that r and S fulfill the half-space condition (.). Define the support function hS of S as

hS(θ) = max
s∈S

θ · s. (.)

Since hS is the maximum over a set of affine functions, it is convex.

http://arxiv.org/abs/1312.7658
http://arxiv.org/abs/1312.7658
http://jmlr.org/proceedings/papers/v19/abernethy11b/abernethy11b.pdf
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H

θt

S

Figure : Choice of half space H according to a direction θt.

Claim ..
d(x,S) = max

‖θ‖2≤1
{θ · s − hS(θ)}. (.)

Proof.
max
‖θ‖2≤1

{θ · x − hS(θ)} = max
‖θ‖2≤1

{θ · x −max
y∈S

θ · y} = max
‖θ‖2≤1

min
y∈S

θ · (x − y). (.)

Also note that for the projection of x on S,

πS(x) = argmin
y∈S

‖x − y‖2 = argmin
y∈S

(x − y)
‖x − y‖2

· (x − y) ≥ argmin
y∈S

θ · (x − y), (.)

for all θ such that ‖θ‖2 ≤ 1. Since θ = (x − y)/‖x − y‖2 gives the projection,

πS(x) = max
‖θ‖2≤1

argmin
y∈S

θ · ‖x − y‖, (.)

so,
max
‖θ‖2≤1

min
y∈S

θ · (x − y) = ‖x −πS(x)‖ = d(x,S). (.)

Now, suppose we are receiving a sequence of qt’s. We want to choose pt such that the average
payoff 1

T

∑T
t=1 r(pt ,qt) approaches S. To this end, we choose pt so that

θt · r(pt ,q) ≤max
s∈S

θt · s = hs(θt), ∀q, (.)

where the θt’s are to be defined later. This choice is possible because we assume that the half-space
condition (.) holds. Indeed, if H is the half-space tangent to S and with normal θ pointing
away from S, then maxs∈S θt · s is attained in the tangent point and all points h of H are ‘below’
the tangent point in the θ-direction, as shown in Figure .

We now define an objective function

ft(θ) = hS(θ)−θ · r(pt ,qt) (.)

and choose θt+1 by doing an online convex optimization update where θt+1 is constrained to the
euclidean unit ball. We then know that for all ε > 0 there exists a T such that the following regret
bound holds

1
T

 T∑
t=1

ft(θt)− min
‖θ‖2≤1

T∑
t=1

ft(θ)

 ≤ ε. (.)



Lecture : Blackwell’s Approachability Theorem 

But by the definition of f , the regret expression reads

1
T

 T∑
t=1

ft(θt)− min
‖θ‖2≤1

T∑
t=1

ft(θ)


=

1
T

 T∑
t=1

hs(θt)−θt · r(pt ,qt)

− min
‖θ‖2≤1

hS(θ)−θ · 1
T

T∑
t=1

r(pt ,qt)


=

1
T


T∑
t=1

hs(θt)−θt · r(pt ,qt)︸                  ︷︷                  ︸
≥0 by (.)

+ max
‖θ‖2≤1

θ · 1
T

T∑
t=1

r(pt ,qt)− hS(θ)

︸                                     ︷︷                                     ︸
=d( 1

T

∑T
t=1 r(pt ,qt),S) by (.)

.

(.)

It follows that

d

 1
T

T∑
t=1

r(pt ,qt),S

 ≤ ε, (.)

and since ε can be arbitrarily small,

d

 1
T

T∑
t=1

r(pt ,qt),S

→ 0 (.)

as T →∞. Thus we can make the average payoff approach S by using online convex optimization.
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