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Announcements

• HW is due Nov  (next Wednesday)

• Work on projects!! (presentation after three weeks)

. Bandit problem in stochastic shortest path (continue on the last lecture)

.. FTRL in the bandit setting

In every round,

xt = argmin
x∈K

t−1∑
s=1

fs · x+λR(x) (.)

From the last lecture, we can use estimated loss function. Therefore,

xt = argmin
x∈K

t−1∑
s=1

f̃s · x+λR(x) (.)

The regret bound becomes,

RegretT ≤
T∑
t=1

λDR(xt ,xt + 1) +λR(x?)

≤
T∑
t=1

||f̃t ||2?
λ

+λR(x?)

≤ T ·G
λ

+λD

≤ 2
√
T ·G ·D

(.)

Probelm As xt approaches to the boundary, ||f̃t ||2? grows very large. So above inequality breaks.

Solution: Use regularization with Self Concordance Function

.. Self Concordance Function

Classical Newton’s method Let our objective function be g(x). we want to minimize

min
x∈D

g(x) (.)
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By adding self-concordance regularization term R,

min
x∈D

g(x) +λR(x) (.)

The Newton’s update rule becomes

xt+1← xt + (∇2
xtR)−1∇ĝ(xt) (.)

Therefore, xt+1 is in the ellipsoid centered on xt.

xt+1 ∈ (∇2
xtR)-ellipsoid

Back to Bandit Optimization Previously, our update rule was

xt = argmin
x∈K

t−1∑
s=1

f̃s · x+λR(x) (.)

We approximate ft as eigenpoles of (∇2
xtR)-elliposid.

f̃t ≈ λ1/2
i ei (.)

where λj and ej are eigenvalues and unit eigenvalues of ∇2
xtR

Figure : eigenpols approximation

Then, the new regret bound becomes

RegretT ≤
T∑
t=1

λDR(xt ,xt + 1) +λR(x?)

≤
T∑
t=1

f̃ Tt (∇−2
xt R)f̃ T

λ
+λR(x?)

≤
nG
√
σitσ

−1
it

√
σit

λ
+λDθlogT

≤ 2
√
n ·G ·D ·θ · T logT

(.)
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However, this results are "in expectation" only, and only work against "oblivious adversaries". The
general problem is still hard.

. Blackwell Approachability

In standard -player -sum game, the game matrix M satisfies

• M ∈ [0,1]n×m,

• Mij ∈R1 is the payoff for P, when P and P play i and j respectively.

The minimax theorem is
min
p

max
q
pTMq = max

q
min
p
pTMq (.)

or equivalently, (strong duality)

∀p∃q : pTMq ≥ c
∃q∀p : pTMq ≥ c

(.)

Generation Now, we want to generalize this to the case when Mij ∈Rd .

Let r(i, j) be the payoff vector for P,

r : ∆n ×∆m→R
d

This is biaffine!

. r(αp1 + (1−α)p2,q) = αr(p1,q) + (1−α)r(p2,q)

. r(p,αq1 + (1−α)q2) = αr(p,q1) + (1−α)r(p,q2)

In this generalized version, we can define the minimax theorem by

∀p∃q : r(p,q) ∈ S
∃q∀p : r(p,q) ∈ S (.)

S is a certain convex set applying some constraints. In general, this condition is not satisfied.

Example: A bad case

r(p,q) = (p,q)
S = {(x,y) : x = y}

∀p, there exists q = p such that r(p,q) ∈ S.
However, there is no q satisfying ∀p : r(p,q) ∈ S
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Figure : A bad case

.. Blackwell Approachability Theorem

If r, S, p, q satisfies
∀p,∃q : r(p,q) ∈ S (.)

Then, ∃ an adaptive strategy
qt← f (p1,p2, ...,pt) (.)

such that
1
T

∑
r(pt ,qt)→ S (.)

or equivalently,

dist(
1
T

∑
r(pt ,qt),S)→ 0 (.)

Example In above bad case example, one possible strategy for q is to choose previous p.

qt← pt−1 (.)

This strategy satisfies Blackwell Approachability theorem,

dist(
1
T

T∑
t=1

pt ,
1
T

T−1∑
t=0

pt)→ S (.)

where p0 = q1. (initial choice of q)

.. Halfspace condition

∀ halfspaces H ⊃ S, ∃q ∀p
r(p,q) ∈H (.)

Lemma: The followings are equivalent

. The halfspace condition

. ∀ halfspaces H ⊃ S, ∀p, ∃q: r(p,q) ∈H

. ∀p, ∃q: r(p,q) ∈ S
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Proof:

.  and  are equivalent
Project r(p,q) into the normal of H, and apply minimax theorem.

. ⇒ 
Assume ∃H,∃pbad ,∀q

r(pbad ,q) <H

which implies r(pbad ,q) < S (contradiction)

. ⇒ 
If ∃pbad ,∀q: r(pbad ,q) < S
⇒ ∃ hyperplane separating S and {r(pbad ,q) : q ∈ ∆m}, but this hyperplane violates .
(contradiction)

Figure : Separating Hyperplane


	Bandit problem in stochastic shortest path (continue on the last lecture)
	FTRL in the bandit setting
	Self Concordance Function

	Blackwell Approachability
	Blackwell Approachability Theorem
	Halfspace condition


