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Announcements

• Homework  grading nearly finished

• Homework  will be out within a week or so

• Class on Nov  (Wednesday before Thanksgiving) may be cancelled

. Bandit setting

The player only finds out the loss associated with his choice, the losses on other choices are un-
known to the player (as opposed to the “full information” setting, where all losses are known at
the end of the round).

.. Basic setting

• N (slot machine) arms

• On round t, each arm i returns a loss Xi,t ∈ [0,1] if selected

• Player selects an arm It (possibly at random) on round t, and consequently has a loss of XIt ,t
in that round

Bandit restriction: The player only observes XIt ,t on round t.

.. Stochastic setting

Same as the basic setting, except the losses Xi,t are i.i.d. with mean µi for all t.

Notion of regret We define the expected regret (E-regret)/pseudo regret of making a sequence
of choices I1, ..., IT :

E-regret := max
i

E

 T∑
t=1

(XIt ,t −Xi,t)


Note that the expectation is taken with respect to

• the player’s randomness in choosing an arm

• nature’s randomness in assigning losses
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. A greedy algorithm for the bandit setting

Select some parameter m ∈Z+

for i = 1, ...,N do
for j = 1, ...,m do
t← (i − 1)N +m
Play It = i
Observe the loss Xi,t = Zj

end for

µ̂i ←
1
m

m∑
j=1

Zj

end for
for t > Nm do

Play It = î = argmin
i

µ̂i

end for

Observation .. The algorithm has two phases

. Exploration (sampling) phase (t = 1, ...,Nm)

. Exploitation phase (t > Nm)

Hoeffding’s Inequality If Z1, ...,Zm are i.i.d. with mean µ on [0,1], then

P


∣∣∣∣∣∣∣∣ 1
m

m∑
j=1

Zj −µ

∣∣∣∣∣∣∣∣ > ε
 ≤ 2e−2mε2

We use Hoeffding’s inequality to prove the following theorem.

Theorem .. Assume there exists some ∆ > 0 such that µi∗ < µj − ∆ (the smallest mean and the
second smallest mean have some positive difference) for all j , i∗. Then the expected regret of the greedy
algorithm is

E-regret =O
(
N (logN − logT

∆2

)
for some appropriately chosen m.

Proof. Will be completed in the next class!


