EECS598: Prediction and Learning: It's Only a Game

Fall 2013

Lecture 16: FTRL

Prof. Jacob Abernethy

Scribe: Nan Jiang

Announcements

- Project ideas and guidelines posted.
- A project poster session will be held on last class.
- Tershia visiting.
- We will do a poll on the remaining topics to cover. See below for some potential ones.
 - Blackwell, Approachability \approx Calibrated Forecast \approx Corrlated Equilibrium.
 - Finance: option pricing and its relation to Black-Scholes.
 - Bandit settings (also called limited feedback models).
 - Relationship between regret minimization and generalization error in statistical learning theory.

16.1 Online Convex Optimization: Problem Formulation

Given a convex decision set $X \subset \mathbb{R}^n$,

```
For t = 1, \dots, T {
Learner chooses x_t \in X,
Nature chooses l_t : X \to \mathbb{R}.
```

Regret_T $\stackrel{\triangle}{=} \sum_{t=1}^{T} (l_t(x_t) - l_t(u))$, where *u* is arbitrary point in *X* (could be $\arg \min_x \sum_{t=1}^{T} l_t(x)$).

Question: Why compared to a fixed *u*?

An answer: there exist reductions that let you compete against *u* that changes over time.

Challenge Find an algorithm and its bound that competes against $u_1, ..., u_T$. Hint: the bound will depend on $\sum_{t=1}^{T-1} ||u_{t+1} - u_t||$.

16.2 A Review of Follow The Leader (FTL) Algorithm

Follow The Leader:

$$x_t = \arg\min\sum_{s=1}^{t-1} l_s(x)$$

Regret bound:

$$\operatorname{Regret}_{T}(\operatorname{FTL}) \leq \sum_{t=1}^{T} (l_t(x_t) - l_t(x_{t+1}))$$

If loss function takes the form of

$$l_t(x) = \frac{1}{2} ||z_t - x||^2$$

(which can come from log loss of Gaussian density estimation), then

$$l_t(x_t) - l_t(x_{t+1}) = O(\frac{1}{t})$$

hence

$$\operatorname{Regret}_{T}(\operatorname{FTL}) \leq O(\log T)$$

In general FTL is a bad algorithm, however it rocks in this special case. The intuition is that, it works because of curvature of the objective function, which stems from the curvature of l_t 's.

16.3 Adding Curvature to FTL: Follow The Regularized Leader (FTRL)

Follow The Regularized Leader

$$x_t = \arg\min_{x} \sum_{s=1}^{t-1} l_s(x) + \frac{1}{\eta} R(x)$$

where

- η learning rate.
- *R* the "regularizer", which is a "curved" convex function. Several usual choices of *R*:
 - (1) $R(x) = \sum x_i \log x_i$. (Equivalent to EWA)
 - (2) $R(x) = \frac{1}{2} ||x x_1||^2$, where x_1 is the initial point. (Similar to OGD)
 - (3) R(x) is log of the barrier function. ¹.

Exercise: Prove that if $X = \Delta_n$, $l_t(x) = l^t \cdot x$, then FTRL \Leftrightarrow EWA.

Proposition 16.1. If X is the ball of radius C and $l_t(x) = \nabla_t x$, then FTRL with 12-norm regularizer

$$x_t = \operatorname*{arg\,min}_{x \in X} \sum_{s=1}^{t-1} \nabla_s x + \frac{1}{\eta} \frac{\|x - x_1\|^2}{2}$$

is equivalent to

- 1. Compute the minimizer without constraining $x \in X$.
- 2. Project the minimizer onto the boundary of X.

¹In 1-dimension, the barrier function is $\log \frac{1}{x} + \log \frac{1}{1-x}$. This choice of R(x) works well in bandit setting. See http: //ie.technion.ac.il/~ehazan/papers/ieeeitbandit.pdf for further reading

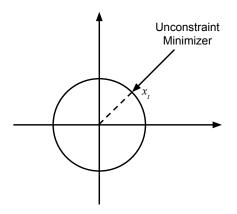


Figure 1: Illustration of projecting the unconstraint minimizer.

Connection to Online Gradient Descent (OGD)

OGD:
$$x_{t+1} = \operatorname{Proj}_X(x_t - \eta \nabla_t)$$

FTRL: $x_{t+1} = \operatorname{Proj}_X(x_1 - \sum_{s=1}^{t-1} \nabla_s)$

If you never "try" to leave *X*, the two algorithms are essentially the same.

16.4 Regret Bound for FTRL

Observation 16.2. *FTRL* \Leftrightarrow *FTL*⁺⁺ (*FTL with one more function* $l_0(x) = \frac{1}{\eta}R(x)$).

Note that

Regret(FTL⁺⁺) = Regret(FTRL) +
$$\frac{1}{\eta}(R(x_0) - R(u))$$

Let $x_0 = \arg \min_{x \in X} \frac{1}{\eta} R(x)$. As a consequence, $x_1 = x_0$. Applying the regret bound of FTL, we have

Regret(FTL⁺⁺) =
$$\sum_{t=0}^{T} (l_t(x_t) - l_t(u)) \le \sum_{t=0}^{T} (l_t(x_t) - l_t(x_{t+1}))$$

= $\sum_{t=1}^{T} (l_t(x_t) - l_t(x_{t+1}))$ (since $x_1 = x_0$)

Hence,

Regret(FTRL) = Regret(FTL⁺⁺) -
$$\frac{1}{\eta}(R(x_0) - R(u))$$

 $\leq \frac{1}{\eta}(R(u) - R(x_1)) + \sum_{t=1}^{T}(l_t(x_t) - l_t(x_{t+1}))$

It seems that FTRL is worse than FTL, since besides $\frac{1}{\eta}(R(u)-R(x_1))$ the remaining part of the regret bound looks the same. However, the remaining part actually gets improved due to curvature.

$$l_t(x_t) - l_t(x_{t+1}) \le \nabla l_t(x_t) (x_t - x_{t+1}) \le \|\nabla l_t\| \|x_t - x_{t+1}\|$$

where $||x_t - x_{t+1}||$ is roughly of order η for OGD. Therefore, the whole regret bound looks like

$$\frac{a}{\eta} + bT\eta$$

where *a* and *b* are bounds on $\|\nabla l_t\|^2$ and $\|x_1 - x^*\|^2$ respectively. It is easy to see that the bound is optimized when $\eta = \Theta(\frac{1}{\sqrt{T}})$, and the optimal bound is $O(\sqrt{T})$.