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Announcements

• CRLT in-class evaluation on Wednesday lecture.

• Project ideas coming soon.

• Schedule individual meeting with Prof. Jacob Abernethy by the end of next week to talk
about final project.

 Online Convex Optimization

. General Framework of Online Convex Optimization (OCO)

Assume we have a decision space X ⊂R
n, which is convex, closed and compact.

For t = 1, ...,T

• Player plays some xt ∈ X.

• Nature reveals some lt : X→R which is convex.

• Player suffers loss of lt(xt).

Our goal is to minimize the regret regards the best static decision in hindsight:

RegretT :=
T∑
t=1

lt(xt)−min
x∈X

T∑
t=1

lt(x) (.)

. Online Gradient Descent (OGD) Approach

Assuming {lt(·)}Tt=1 are differentiable. Starting with some arbitrary x1 ∈ X.

For t = 1, ...,T

• xt+1←ΠX(xt − η 5 lt(xt)), where ΠX(·) is the projection function.

The performance of OGD is described as follows.

Theorem .. If there exists some positive constant G,D such that

|| 5 lt(x)||2 ≤ G,∀t,x ∈ X (.)
||X ||2;= max

x,y∈X
||x − y||2 ≤D (.)

Then RegretT (OGD) ≤ O(DG
√
T ).
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Observation: The bound may not be optimal! Here are two examples.

• X = ∆n, lt(x) = lt · x, where 0 ≤ lti ≤ 1 for i = 1, ...,n.

This is the expert problem in action setting. We know that EWA will give us O(
√
log(n)T )

bound on regret. But Theorem . only gives us O(
√
nT ) because G =

√
n,D =

√
2.

• X = ∆n, lt(x) = −log(bt · x), where bt ∈ (0,∞)n.

This is the universal portfolio selection problem. We know that UCRP gives us O(nlog(T ))
bound on regret.. In this case we cannot even apply OGD because 5lt(x) = − bt

bt ·x is un-
bounded.

 Follow the Regularized Leader (FTRL)

Recall that the Follow the Leader Algorithm works pretty bad in some adversarial setting. How-
ever, after closer look into the algorithm, it actually works really well if the loss function is “reg-
ularized”! This motivate the FTRL algorithm.

. Follow the Leader Algorithm

Follow the leader (FTL):

xt = argmin
x∈X

t−1∑
s=1

ls(x).

What if we can observe the loss function  period ahead of time?

Be the leader (BTL):

x̂t = argmin
x∈X

t∑
s=1

ls(x).

Claim : RegretT (BT L) ≤ 0.

Proof: By induction and definition of x̂t: for all t

Regrett(BT L) =
t∑
s=1

[ls(x̂s)− ls(x̂t)] =
t−1∑
s=1

[ls(x̂s)− ls(x̂t)]

≤
t∑
s=1

[ls(x̂s)− ls(x̂t−1)] = Regrett−1(BT L) ≤ ... ≤ Regret0(BT L) = 0.�

This tells us that BTL performs very well despite its fictitiousness. Then how far is FTL from BTL?
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Claim : RegretT (FT L) ≤
∑T
t=1[lt(xt)− lt(xt+1)].

Proof: By definition of xt and the fact that x̂t = xt+1:

RegretT (FT L) =
T∑
t=1

[lt(xt)− lt(xT+1)] =
T∑
t=1

[lt(xt+1)− lt(xT+1)] +
T∑
t=1

[lt(xt)− lt(xt+1)]

=
T∑
t=1

[lt(x̂t)− lt(xT+1)] +
T∑
t=1

[lt(xt)− lt(xt+1)] = 0 +
T∑
t=1

[lt(xt)− lt(xt+1)].�

Now we are ready to introduce a situation where FTL works very well.

. Online Density Estimation

Observe Z1,Z2, ...ZT ∈ R
n. Before seeing Zt, we want to predict the mean µt. We assume the

underlying model is normal distribution:

Zt ∼N (µ,I)

and the predictor pay log loss of the conditional probability:

−log(P(Zt |µt)) = −log(C · exp{−
||Zt −µt ||2

2
}) =
||Zt −µt ||2

2
+C′

What is the Maximum Likelihood Estimator (MLE)?

µ∗ = argmax
µ

T∏
t=1

P(Zt |µ) = argmin
µ

T∑
t=1

−log(P(Zt |µ))

= argmin
µ

T∑
t=1

||Zt −µt ||2

2
=

1
T

T∑
t=1

Zt

So, if we apply FTL by using MLE, what would be the regret?

FT L : µt =
1
t

t−1∑
s=1

Zs

By Claim  in section .

RegretT (FT L) ≤
T∑
t=1

[lt(xt)− lt(xt+1)] =
1
2

T∑
t=1

[||Zt −µt ||2 − ||Zt −µt+1||2]
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Notice that µt+1 = t−1
t µt + Zt

t , ||Zt −µt+1|| = ||Zt −
Zt
t −

t−1
t µt || = (1− 1

t )||Zt −µt ||, we have

RegretT (FT L) ≤=
1
2

T∑
t=1

(1− (1− 1
t

)2)||Zt −µt ||2 ≤
T∑
t=1

||Zt −µt ||2

t

If we assume that ||Zt || ≤D, then RegretT (FT L) ≤
∑T
t=1

D2

t ∼ O(D2log(T ))!

Question: Why FTL works pretty well here?

Answer: Because lt’s are curved, thus xt’s don’t move so much across time.

Claim: If lt’s are α-strongly convex, i.e. for all x ∈ X and δ > 0

lt(x+ δ) ≥ lt(x) +5lt(x) · δ+α
||δ||2

2

then FTL has regret bounded by O( 1
α log(T )).

Thus we need to modify FTL when lt’s are not curved!

. Follow the Regularized Leader (FTRL)

Choose a “regularizer” R : X→R

For t = 1, ...,T , predicts

xt = argmin
x∈X
{
t−1∑
s=1

ls(x) +
R(x)
η
}.

Observation: Assume linear loss function lt(x) = lt · x and X = ∆n. For R(x) =
∑n
i=1 xi log(xi)

(negative entropy function), FTRL gives us

xt = argmin
x∈∆n
{
t−1∑
s=1

lt · x+
∑n
i=1 xi log(xi)

η
},∀t

whose close form solution is

xti = (e−η
∑t−1
s=1 l

s
i )/(

n∑
i=1

e−η
∑t−1
s=1 l

s
i ),∀i, t

This is exactly the distribution of EWA! So EWA is a special case of FTRL.
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