Announcements

- Homework 2 due in one week.
- It is time to think about the projects. There will be discussion on early November.

13.1 Universal Portfolios Review

Consider the problem with *n* stocks and $\mathbf{b}^t \in (0, \infty)^n$ as the "Price relatives" where $b_i^t = \frac{\text{Price}_{t+i}(i)}{\text{Price}_t(i)}$. Our decision is the portfolio $\mathbf{w} \in \Delta_n$, which means we have w_i fraction of wealth invest in stock *i*. From time *t* to time t + 1, the wealth grows by $\mathbf{wb}^t = \sum_i w_i b_i^t$. Without loss of generality, we can consider the starting wealth c = 1.

13.1.1 Constant Rebalanced Portfolio

We focus on a certain class of policies called the constant rebalanced portfolio(CRP), where the **w** is constant for each day. Then the total wealth of a CRP policy after *T* days would be $V_T(w) = \prod_{t=1}^{T} (\mathbf{w} \cdot \mathbf{b}^t)$.

13.1.2 Cover's Algorithm - UCRP

To compete with the best CRP under all scenarios, we consider a Universal CRP(UCRP), where the money is invested in *all* CRP's evenly. In another word, all CRP got an infinitesimal amount of weight. We try to develop a regret bound of the UCRP to the best CRP.

Proof ideas: Define the ball around w_0 as $\text{Ball}_{\epsilon}(w_0) = \{w : (1 - \epsilon)w_0 + \epsilon v, \text{ where } v \in \Delta_n\}$. By this definition, we can see the following two properties:

- $\operatorname{Vol}[\operatorname{Ball}_{\epsilon}(w_0)] = \epsilon^{n-1} \operatorname{Vol}(\Delta_n)$
- $V_T(w) \ge V_T(w_0)(1-\epsilon)^T$

With these, we are ready to show the regret bound of the UCRP to the best CRP using these two properities.

Proof:

Wealth(UCRP) =
$$\frac{1}{\operatorname{Vol}(\Delta_n)} \int_{w \in \Delta n} V_T(w) d\mu(w)$$

 $\geq \frac{1}{\operatorname{Vol}(\Delta_n)} \int_{w \in \operatorname{Ball}_{\epsilon}(w^*)} V_T(w) d\mu(w)$
 $\geq \frac{1}{\operatorname{Vol}(\Delta_n)} \int_{w \in \operatorname{Ball}_{\epsilon}(w^*)} d\mu(w) V_T(w^*) (1-\epsilon)^T$
 $= \epsilon^{n-1} (1-\epsilon)^T V_T(w^*)$

It is clear that we need to tune the parameter ϵ to achieve a good bound. The best bound could be a little bit complex to achieve and we just let $\epsilon = \frac{1}{T}$ and it can give a good enough result. To derive the bound, we let $\epsilon = \frac{1}{T}$ and look at the log-wealth of UCRP and CRP:

Logwealth(UCRP)
$$\geq -(n-1)\log \frac{1}{\epsilon} + T\log(1-\epsilon) + \log V_T(w^*)$$

= $-(n-1)\log T + O(1) + \log V_T(w^*)$

This gives the bound of UCRP.

The properties of UCRP:

- The regret is $O(n \log T)$ in log space.
- UCRP only very mild assumption on price relatives(could be very large or small).
- UCRP requires no tuning(although the analysis part need some tuning).
- Here we ignore the transition cost, but it is easy to be added.([BK99])
- UCRP is not efficient to implement. (See [KV03] for details)

• Lots of work within Online Convex Optimization(OCO) framework on efficient algorithm with the same regret bound.

13.2 Online Convex Optimization(OCO)

The general framework in OCO looks like this:

- We have a decision space $X \in \mathbb{R}^n$ fort = 1, ..., T. Assume that X is convex, closed and bounded.
- Player chooses $x_t \in X$, then nature chooses $l_t : X \xrightarrow{\text{convex}} \mathbb{R}$,
- Player suffers $l_t(x_t)$ and observe l_t , (we will go to bandit setting where player only observe $l_t(x_t)$ soon!)

We want to minimize the regret $\sum_{t=1}^{T} l_t(x_t) - \min_{x^* \in X} \sum_{t=1}^{T} l_t(x^*)$.

There are a variety of problems fall into the category of OCO, here are some examples:

Setting	Action	Data	Loss
Prediction with expert advice	$\mathbf{w} \in \Delta_n$	$(\mathbf{f}, y) \in (0, 1)^{n+1}$	$l(\mathbf{w}, \mathbf{f}, y)$
Action setting	$\mathbf{P} \in \Delta_n$	$\mathbf{l}_t \in [0, 1]^n$	\mathbf{pl}^{t}
Linear Prediction (pattern recognition)	$\mathbf{w} \in \mathbb{R}_n$	$(\mathbf{x}, y) \in \mathbb{R} \times \{-1, 1\}$	$max(0, y\mathbf{wx})$
Portfolio Selection	$\mathbf{w} \in \Delta_n$	$\mathbf{b}^t \in (0,\infty)^n$	-logwb

13.2.1 Online Gradient Decent (OGD)[Zino3]

First we define the projection function $\operatorname{Proj}_{x}(z) = \operatorname{argmin}_{x \in X} ||x - z||_{2}$. Then we know: 1) $\operatorname{Proj}_{x}(z) = z$ iff $z \in X$. 2) $||x - z||_{2} \ge ||x - \operatorname{Proj}_{x}(z)||_{2}$.

The main idea of OGD method is the following:

- Choose an initial *x*⁰ arbitrarily in *X*.
- For each *t* = 1, ..., *T*
 - $z_{t+1} = x_t \eta \nabla l_t(x_t),$
 - $x_{t+1} = \operatorname{Proj}_X(z_{t+1}).$

It can be shown that if $\nabla_t := \nabla l_t(x_t)$ has norm $\leq G$, and $D := \max_{x,y \in X} \|x - y\|_2$. Then regret(ODG) $\leq \eta \frac{G^2T}{2} + \frac{D^2}{2\eta}$. Apply tuning to η and let $\eta = \frac{D}{G\sqrt{T}}$, we can have regret(ODG) $\leq GD\sqrt{T}$.

References

- [BK99] Avrim Blum and Adam Kalai. Universal portfolios with and without transaction costs. *Mach. Learn.*, 35(3):193–205, June 1999.
- [KV03] Adam Kalai and Santosh Vempala. Efficient algorithms for universal portfolios. J. Mach. Learn. Res., 3:423–440, March 2003.
- [Zino3] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. 2003.